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In this paper the properties of thermal Abelian monopoles in the deconfinement phase of the SUð2Þ
gluodynamics are considered. In particular, to study the properties of the Abelian monopole component of

quark-gluon plasma (QGP), we calculate three-point correlation functions of monopoles for different

temperatures from the region T=Tc 2 ð1:5; 6:8Þ. The results of the calculation show that the three-point

correlation functions can be described by independent pair correlations of monopoles. From this, one can

conclude that the system of Abelian monopoles in QGP reveals the properties of a dilute gas. In addition,

one can assert that the interaction between Abelian monopoles is a pair interaction and there are no three-

particle forces acting between monopoles.
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One of the most interesting results obtained at RHIC
is a large elliptic flow [1,2]. Interpretation of this result
suggests that QGP reveals the properties of a strongly
correlated system with very small shear viscosity [3]. An
interesting explanation of this peculiarity can be given
within the hypothesis that unusual properties of QGP are
closely connected with the magnetic degrees of freedom
[4–8].

In paper [7] such magnetic degrees of freedom have
been related to thermal Abelian monopoles evaporating
from the magnetic condensate, which is believed to induce
color confinement at low temperatures. Moreover, it has
been proposed to detect such thermal monopoles in finite
temperature lattice QCD simulations by identifying them
with monopole currents having a nontrivial wrapping in the
Euclidean temporal direction [7,9,10].

The way one can study the monopoles’ properties on
the lattice is via an Abelian projection after fixing the
maximally Abelian gauge (MAG) [11,12]. This gauge, as
well as the properties of monopole clusters, have been
investigated in numerous papers both at zero and nonzero
temperatures (see for an extensive list of references, e.g.
[13]). The evidence was found that the nonperturbative
properties of the gluodynamics, such as confinement, de-
confining transition, chiral symmetry breaking, etc., are
closely related to the Abelian monopoles defined in
MAG. This was called a monopole dominance.

Motivated by the hypothesis that thermal Abelian mono-
poles might be responsible for the unusual properties of
QGP, in this paper we continue the study of their proper-
ties. In particular, we are going to study monopole corre-
lation functions in order to address the question of

collective phenomena of the magnetic component of
QGP. Although the study of two-point correlation func-
tions carried out in papers [14–17] revealed rather non-
trivial interaction between monopoles, it is rather difficult
to draw some conclusions about the properties of mono-
pole medium in QGP. To study the properties of this
medium, in this paper we consider three-point correlation
functions of monopoles.
The correlation function under consideration can be

defined as follows:

gð3Þðr12; r13; r23Þ ¼ h�ð �r1Þ�ð �r2Þ�ð�r3Þi
�3

; (1)

where �r1, �r2, �r3 are the positions of three monopoles,
r12 ¼ j�r1 � �r2j, r13 ¼ j�r1 � �r3j, r23 ¼ j�r2 � �r3j are
distances between the monopoles, �ð�rÞ is the operator of
monopole density at the point �r and � is the averaged
density.
To study collective phenomena and medium effects we

are going to compare correlation function (1) with the
model correlation function

Gð3Þðr12; r13; r23Þ ¼ gð2Þðr12Þgð2Þðr13Þgð2Þðr23Þ; (2)

where gð2ÞðrÞ is the two-point correlation function

gð2Þðr12Þ ¼ h�ð �r1Þ�ð �r2Þi
�2

; (3)

which will be taken from paper [17]. Now two comments
are in order:
(1) Model (2) implies that three-particle correlation

takes place only through independent correlation
of the pairs. Such correlation function is valid for
the systems similar to a dilute gas. Evidently in a
dilute gas there are no collective phenomena, and
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one can disregard the influence of monopole medium
to the system of three monopoles. So, the deviation of
correlation function (1) from model function (2) can
be considered as a measure of collective phenomena
and monopole medium effects.

(2) From correlation function (2) one can conclude that
the interaction between monopoles in the monopole
medium is a pair interaction described by some
universal potential VðrÞ, which can be extracted
from the two-point correlation function. The poten-
tial VðrÞ depends on the distance between two
monopoles r and the temperature of QGP. We be-
lieve that the last property is rather a nontrivial
property of nonabelian gluodynamics.

To model the system of Abelian monopoles in QGP,
we use SUð2Þ lattice gauge theory with the standard
Wilson action

S ¼ �
X

x

X

�>�

�
1� 1

2
TrðUx�Uxþ�;�U

y
xþ�;�U

y
x�Þ

�
;

where � ¼ 4=g20 and g0 is a bare coupling constant.

Our calculations were performed on the asymmetric
lattices with lattice volume V ¼ LtL

3
s , where Lt;s is the

number of sites in the time (space) direction. The tempera-
ture T is given by

T ¼ 1

aLt

; (4)

where a is the lattice spacing.
The MAG is fixed by finding an extremum of the gauge

functional

FUðgÞ ¼ 1

4V

X

x�

1

2
Tr

�
Ug

x��3U
gy
x��3

�
; (5)

with respect to gauge transformations gx. We apply the
simulated annealing (SA) algorithm, which proved to be
very efficient for this gauge [18] as well as for other gauges
such as a center gauge [19] and Landau gauge [20].

In Table I we provide the information about the gauge
field ensembles used in our study.

The lattice version of correlation functions (1) can be
written as follows:

gð3Þðr1; r2; r3Þ ¼ 1

�3

dNðr1; r2; r3Þ
dVðr1; r2; r3Þ ; (6)

where dNðr1; r2; r3Þ is the total number of triples of
monopoles such that the distances between monopoles lie
in the domain r12 2 ðr1; r1 þ�rÞ, r13 2 ðr2; r2 þ �rÞ,
r23 2 ðr3; r3 þ �rÞ. dVðr1; r2; r3Þ is the number of lattice
cubes located in the same domain. In order to take into
account discretization errors, we evaluate the dVðr1; r2; r3Þ
numerically. �r is the size of one bin. An additional factor
1=�3 was introduced to normalize the whole expression.
At large distances, where there are no correlations at
all, g ¼ 1.
In our analysis only monopoles with magnetic charge

q ¼ �1 are taken into account. Our results show that the
monopoles with jqj> 1 are greatly suppressed. Since one
considers only two types of effective particles (monopoles
q ¼ þ1 and antimonopoles q ¼ �1), there are four dif-

ferent correlators gð3ÞMMM, g
ð3Þ
AAA, g

ð3Þ
MMA, g

ð3Þ
AAM, where M, A

denote monopole and antimonopole. Evidently, monopoles
are equivalent to antimonopoles in the sense that one can
make magnetic charge conjugation and this does not
change the physical properties of QGP. For this reason,
instead of four correlators we calculate the following linear
combinations:

gð3Þ1 ¼ 1

2
ðgð3ÞMMMþgð3ÞAAAÞ; gð3Þ2 ¼ 1

2
ðgð3ÞMMAþgð3ÞAAMÞ: (7)

Now let us proceed to the results of this paper. In

Figs. 1–3, we plot the correlation functions gð3Þ1 ðr1;r2;r3Þ,
gð3Þ2 ðr1; r2; r3Þ, and model (2) for the configurations with

� ¼ 2:43, T=Tc ¼ 1:5. In Fig. 1 we fixed the distances
between the first and second, and the first and the third
monopoles at the values r1 ¼ r2 ¼ 3 lattice spacings and
varied the distance between the second and the third
monopoles r3. Similarly, in Fig. 2 we take the r1¼ r2¼6
lattice spacings and varied the r3. In Fig. 3 the monopoles

TABLE I. Values of �, lattice sizes, temperatures and number
of configurations. To fix the scale we take

ffiffiffiffi
�

p ¼ 440 MeV.

� a [fm] Lt Ls T=Tc Nmeas

2.43 0.108 4 32 1.5 1000

2.635 0.054 4 36 3.0 500

2.80 0.034 4 48 4.8 1000

2.93 0.024 4 48 6.8 1000
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FIG. 1 (color online). � ¼ 2:43, T=Tc ¼ 1:5. The correlation
function gð3Þðr1; r2; r3Þ and the model function Gð3Þðr1; r2; r3Þ.
The distances between the first and second, and the first and the
third monopoles, are r1 ¼ r2 ¼ 3 lattice spacings. The distance
between the second and the third monopoles r3 is varied.
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are located at the corners of a regular triangle r1 ¼ r2 ¼
r3 ¼ r and the side of this triangle r is varied. From
these figures it is seen that up to the statistical uncertainty
the correlation functions g1, g2 coincide with the corre-
sponding models (2). A similar conclusion can be drawn
for the other temperatures T=Tc ¼ 3:0, 4.8, 6.8 studied in
this paper.

Figures 1–3, can give us only qualitative results. To get
the quantitative measurement of the discrepancy between
models (1) and (2) we introduce the following quantity:

�¼ 1

N

X

r1;r2;r3

ðgð3Þðr1;r2;r3Þ�Gð3Þðr1;r2;r3ÞÞ2
�2ðr1;r2;r3Þ

: (8)

Here, �ðr1; r2; r3Þ is the uncertainty of the calculation of

the correlation function gð3Þðr1; r2; r3Þ at the given point

(r1, r2, r3). Note that we have disregarded the uncertainty
in the two-point functions since it is small compared to the
�ðr1; r2; r3Þ.
There are some restrictions on the values of distances

between monopoles. The first one comes from the finite
volume effect. Evidently, if r1 þ r2 þ r3 >Ls, then due to
periodical boundary conditions new nonphysical triples of
monopoles wrapped in a spatial direction appear. We
ignored such configurations in the calculation. Another
restriction comes from the triangle inequality: jr1 � r2j
<r3 < r1 þ r2. We also did not take into account the
distances smaller than 3 lattice spacings due to the large
statistical uncertainty. In Eq. (8) the sum is taken over all
distances with the mentioned restrictions. N is the total
number of triples of distances that satisfy these restrictions.
Obviously the value of the � is � 1 if there is no discrep-
ancy between two correlation functions. In Table II we
present the values of the � for the different �. From this
table it is seen that up to the uncertainty of the calculation,
the three-point correlation function of Abelian monopoles
can be described by model (2).
In conclusion, in this paper we studied the properties of

thermal Abelian monopoles in the deconfinement phase of
the SUð2Þ gluodynamics. In particular, to study the prop-
erties of the Abelian monopole component in QGP we
calculated three-point correlation functions of monopoles
for different temperatures from the region T=Tc 2
ð1:5; 6:8Þ. The results of the calculation show that the
three-point correlation functions can be described by the
independent pair correlation of monopoles. From the last
fact one can conclude that the system of Abelian monopoles
in QGP reveals the properties of a dilute gas. In addition,
one can assert that the interaction between Abelian mono-
poles is a pair interaction and there are no three-particle
forces acting between monopoles.
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FIG. 3 (color online). � ¼ 2:43, T=Tc ¼ 1:5. The correlation
function gð3Þðr1; r2; r3Þ and model function Gð3Þðr1; r2; r3Þ. The
monopoles are located at the corners of the regular triangle
r1 ¼ r2 ¼ r3 ¼ r and the side of this triangle r is varied.
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FIG. 2 (color online). � ¼ 2:43, T=Tc ¼ 1:5. The correlation
function gð3Þðr1; r2; r3Þ and the model function Gð3Þðr1; r2; r3Þ.
The distances between the first and second, and the first and the
third monopoles, are r1 ¼ r2 ¼ 6 lattice spacings. The distance
between the second and the third monopoles r3 is varied.

TABLE II. The values of �, temperature, the difference �
between correlation functions (1) and the corresponding mod-
els (2). The �1 corresponds to the correlation function g1 in (7).
The �2 corresponds to the correlation function g2 in (7).

� T=Tc �1 �2

2.43 1.5 0.59 0.67

2.635 3.0 0.67 0.68

2.80 4.8 0.66 0.69

2.93 6.8 0.62 0.68
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