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We study the properties of charmonium states at finite temperature in quenched QCD on large and

fine isotropic lattices. We perform a detailed analysis of charmonium correlation and spectral functions

both below and above Tc. Our analysis suggests that both S wave states (J=c and �c) and P wave states

(�c0 and �c1) disappear already at about 1:5Tc. The charm diffusion coefficient is estimated through

the Kubo formula and found to be compatible with zero below Tc and approximately 1=�T at 1:5Tc &

T & 3Tc.
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I. INTRODUCTION

The main goal of ongoing heavy ion programs at the
RHIC and LHC is to study the properties of the hot and
dense medium formed during the collision of two relativ-
istic heavy nuclei. It has been conjectured that at suffi-
ciently high temperature the QCD medium will undergo a
phase transition to a deconfined phase, in which the de-
grees of freedom are those of quarks and gluons. Unlike
light mesons, the heavy mesons, e.g. J=c , may survive in
the hot medium up to certain temperatures before they get
dissociated due to Debye screening [1]. Thus due to the
dissociation of heavy mesons, the suppression of their
yield in nucleus-nucleus (AA) collisions compared to that
in proton-proton (pp) collisions can serve as a good probe
for the properties of the medium. The experiments carried
out at the SPS and LHC at CERN and the RHIC at BNL
have indeed observed J=c suppression [2]. The interpre-
tation of experimental data, however, is not as straight-
forward as the original idea proposed in Ref. [1]. The
observed modification of J=c production in AA collisions
could be caused by two distinct classes of effects. On the
one hand there are cold nuclear matter effects, which
originate from the presence of cold nuclear matter in the
target and projectile. On the other hand there are hot
medium effects, which are of primary interest and reflect
the properties of the medium we want to study. In order to
disentangle these two effects, it is crucial to have a good
understanding of the behavior of heavy quarks and quar-
konia in the hot medium.

From the theoretical point of view, the meson spectral
function at finite temperature [3], which contains all the
information on the hadron properties in the thermal me-
dium, such as the presence, the location and the width of
bound states (and thus about dissociation temperatures) as
well as transport properties (e.g. heavy quark diffusion
coefficients), is the key quantity to be investigated. As
this is a difficult task, several theoretical approaches have

been followed to determine the quarkonium properties at
finite temperature.
The most traditional approach is based on the analysis

of nonrelativistic potential models. Here one assumes that
the interaction between a heavy quark pair forming the
quarkonium can be described by a potential [4]. Because
of its success at zero temperature, the potential model
approach has been used also at finite temperature [5]. The
temperature dependent potential used in these calculations
is based either on model calculations or on finite tempera-
ture lattice QCD results [6]. It is used to solve a non-
relativistic Schrödinger equation. The resulting dissociation
temperatures depend strongly on the potential used.
Recently progress has been made in comparing directly
heavy quark correlation functions calculated on the lattice
with potential model results. This allows to eliminate
certain ambiguities [5] and opens the possibility to deter-
mine which potential is more appropriate for a description
of the experimental data [7]. Nonetheless, the potential
model approach at finite temperature is still under scrutiny.
Most recently a nonrelativistic effective theory approach

at nonzero temperature, which requires the scales con-
cerned to be in hierarchy, has been developed [8]. By
integrating out certain scales, one arrives at a complex
real-time static potential, which includes effects of screen-
ing via its real part as well as the interaction with the
medium via its imaginary part. The presence of an imagi-
nary part in the heavy quark potential reduces the possi-
bility for stable quarkonium states in the hot medium. This
approach becomes more reliable as the quark mass
increases and thus is more relevant for the analysis of
bottomonium states. An approach to study charmonium
spectral functions at finite temperature using QCD sum
rules has also been developed recently [9].
First principle calculations in lattice QCD are thus

crucially needed to determine the nonperturbative behavior
of heavy quarks and quarkonia in the hot medium. The
investigations of charmonium states at finite temperature,
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which have been performed in both quenched and full
lattice QCD, have led to the rather interesting result that
J=c appears to survive up to temperatures well above Tc

[10–16]. The most relevant quantities, meson spectral
functions, however, cannot be obtained directly from lat-
tice QCD calculations. Further input is needed to extract
spectral functions from correlation functions calculated
on the lattice. One of the commonly used methods is the
Maximum Entropy Method (MEM). When using the
Maximum Entropy Method, a very important issue is to
get control over its input parameter (default model) depen-
dence. The output spectral function fromMEM can only be
trusted if the default model dependence is eliminated or at
least well understood. Additionally sufficient information
on the Euclidean time dependence of the correlation func-
tion is crucially important in the MEM analysis. One
economical way to increase the number of correlator data
points in the temporal direction is to perform simulations
on anisotropic lattices [11–16]. However, lattice cutoff
effects are more significant on anisotropic lattices [17].
Thus in the present paper we use isotropic lattices and
perform simulations on very large lattices. The finest
lattices we performed simulations on are 1283 � 96,
1283 � 48, 1283 � 32 and 1283 � 24 at 0:73Tc, 1:46Tc,
2:20Tc and 2:93Tc, respectively. The number of data points
in the temporal direction in the current study is doubled
compared to our previous study in Ref. [10] and it is about
1.5 times larger than that in studies [11–15] and compatible
with that used in Ref. [16]. Based on the correlation
functions calculated on these large lattices, we will report
on a detailed study of finite temperature charmonium
correlators and perform a detailed MEM analysis of spec-
tral functions, expanding on preliminary results reported in
[18–21]. The signature obtained for the dissociation of
charmonium states in the hot medium from the spectral
function will be discussed.

Besides the properties of charmonium states in the
medium, the behavior of a single charm quark in the
hot medium is of great interest as well. Experimentally
a substantial elliptic flow of heavy quarks has been
observed [22]. The heavy quark diffusion D can be
connected to the energy loss of a heavy quark during its
propagation in the medium and is also related to the ratio
of shear viscosity to entropy density �=s [23,24]. Various
phenomenological model studies suggest the heavy quark
diffusion coefficient D & 1=T to accommodate data
while various pQCD and T-Matrix calculations of the
heavy quark diffusion coefficient differ significantly
from each other [24–27]. It is thus important to have a
first principle calculation of the heavy quark diffusion
coefficient. The heavy quark diffusion coefficient can be
obtained from the vector spectral function at vanishing
frequency through the Kubo formula. We will give here
also an estimate for the value of the charm diffusion
coefficient at different temperatures.

The rest of the paper is organized as follows. In Sec. II
we discuss general features of quarkonium correlators and
spectral functions. In Sec. III we give the lattice setup used
in the calculation of charmonium correlation functions. In
Sec. IV we discuss information on the change of spectral
functions from below to above Tc that can be obtained from
the analysis of correlation functions only, i.e. on thermal
modifications of charmonium states and also on the charm
quark diffusion coefficient. In Sec. V we will describe the
Maximum Entropy Method used for the reconstruction of
spectral functions and discuss the spectral functions below
and above Tc obtained from MEM. Signatures for the
dissociation of charmonium states and values of charm
quark diffusion coefficients are discussed. Finally we sum-
marize in Sec. VI. Some further details of our MEM
analyses are given in an Appendix.

II. MESON CORRELATION AND
SPECTRAL FUNCTIONS

In this section, we give the definition of the meson
spectral function and its relation to the Euclidean
correlation function, which can be calculated directly on
the lattice.
All information on quarkonium states is embedded in

these spectral functions. The spectral function for a given
meson channel H in a system can be defined through the
Fourier transform of the real-time two-point correlation
functions Dþ and D�. The ensemble average of the
commutator is

DHðt;xÞ¼�ih½JHðt;xÞ;JHð0;0Þ�i¼Dþ
Hðt;xÞ�D�

Hðt;xÞ;
(1)

and its spectral density �ð!;pÞ can be expressed in terms
of the retarded correlator DR

Hð!;pÞ [28]
�Hð!;pÞ¼Dþ

Hð!;pÞ�D�
Hð!;pÞ¼2ImDR

Hð!;pÞ; (2)

where

Dþð�Þ
H ð!;pÞ ¼

Z
d4xei!t�ipxDþð�Þ

H ðt;xÞ; (3)

iDþ
Hðt;xÞ ¼ hJHðt;xÞJHð0; 0Þi; (4)

iD�
Hðt;xÞ ¼ hJHð0; 0ÞJHðt;xÞi: (5)

The two-point correlation functions Dþð�Þ
H satisfy the

Kubo-Martin-Schwinger (KMS) relation

Dþ
Hðt;xÞ ¼ D�

Hðtþ i�;xÞ;
Dþ

Hð!;pÞ ¼ e�!D�
Hð!;pÞ:

(6)

Inserting a complete set of states in Eq. (2) and using the
KMS relation, one gets an explicit expression for �Hð!;pÞ
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�Hð!;pÞ ¼ 2�

Z

X
n;m

e��Enð�ðpþ kn � kmÞ

� �ðpþ km � knÞÞjhnjJHð0Þjmij2; (7)

where Z is the partition function, p ¼ ð!;pÞ and knðmÞ
refer to the four-momenta of the state jnðmÞi. Given the
above equation it is clear that the spectral function
�Hð!;pÞ is an odd function of the frequency and momen-
tum, �Hð�!;�pÞ ¼ ��Hð!;pÞ and !�Hð!;pÞ � 0.
If the system is rotationally invariant, which means the
state can have the same energy ! but opposite momentum
p, the spectral function �Hð!;pÞ would also be an odd
function of !.

The spectral function in the vector channel is related to
the experimentally accessible differential cross section for
thermal dilepton production [29],

dW

d!d3p
¼ 5�2

54�3

1

!2ðe!=T � 1Þ�Vð!;p; TÞ; (8)

where � is the electromagnetic fine structure constant and
�V is the spectral function in the vector channel.
Additionally the spatial components of the vector spectral
function are related to the heavy quark diffusion constant
D [3]

D ¼ 1

6�00
lim
!!0

X3
i¼1

�V
iið!; ~p ¼ 0; TÞ

!
; (9)

where �00 is the quark number susceptibility that is defined
through the zeroth component of the temporal correlator in
the vector channel.

In this work we consider local meson operators of
the form

JHð�;xÞ ¼ �c ð�;xÞ�Hc ð�;xÞ; (10)

with �H ¼ 1, 	5, 	
, 	5	
, for scalar (SC), pseudoscalar

(PS), vector (VC) and axial vector (AV) channels, respec-
tively. The relation of these quantum numbers to different
charmonium states from the particle data book is summa-
rized in Table I.

The Euclidean temporal correlation functionGð�;pÞ can
then be defined as

GHð�;pÞ ¼
Z

d3xe�ip�xhJHð�;xÞJHð0; 0Þi; (11)

where GHð�;pÞ is the analytic continuation of Dþðt;pÞ
from real to imaginary time

GHð�;pÞ ¼ Dþð�i�;pÞ: (12)

By using the KMS relation and the above equation, one
can easily relate the correlation function to the spectral
function,

GHð�;pÞ ¼
Z 1

0

d!

2�
�Hð!;pÞKð!; �Þ; (13)

where the integration kernel Kð!; �Þ is

Kð!; �Þ ¼ coshð!ð�� 1=2TÞÞ
sinhð!=2TÞ : (14)

Note that the kernel Kð!; �Þ is symmetric around
� ¼ 1=2T.
Because of asymptotic freedom the spectral functions at

very high energy are expected to be described well by the
propagation of a free quark antiquark pair. In this non-
interacting limit the spectral function is analytically given
by [17,31]

�Hð!Þ¼Nc

8�
�ð!2�4m2Þ!2 tanh

�
!

4T

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
2m

!

�
2

s

�
�
ðað1ÞH �að2ÞH Þþ

�
2m

!

�
2ðað2ÞH �að3ÞH Þ

�
þNc½ðað1ÞH það3ÞH ÞI1þðað2ÞH �að3ÞH ÞI2�!�ð!Þ; (15)

with

I1¼�
Z d3k

2�2

@nFð!kÞ
@!k

; I2¼�
Z d3k

2�2

k2

!2
k

@nFð!kÞ
@!k

:

(16)

The coefficients að1;2;3ÞH can be read off from Ref. [31],
!2

k ¼ m2 þ k2 and nFð!kÞ is the Fermi distribution func-
tion. Note in the above expression that there is a term
proportional to !�ð!Þ, implying a � independent contri-
bution to the correlation function. This contribution is also
known as a zero mode contribution [32]. For correlators
with massive quarks, the zero mode contribution vanishes
only in the PS channel.
On lattices with finite temporal extent N� the spectral

functions suffer from lattice cutoff effects. As shown in the
left plot of Fig. 1, the free lattice spectral functions for
the Wilson fermion discretization, which is used in this
work on isotropic lattices of temporal extent N� ¼ 24,
32, 48, strongly deviate from the free continuum spectral
function in the large ! region. In contrast to the contin-
uum case the lattice spectral function starts from
!min=T ¼ 2N� logð1 þ ma�=�Þ. It has two cusps at
2N� logð1þð2þma�Þ=�Þ and 2N� logð1þ ð4þma�Þ=�Þ
and vanishes at !max=T ¼ 2N� logð1þ ð6þma�Þ=�Þ
[17]. Here ma� is the value of the quark mass m in units
of spatial lattice spacing a�, � is the anisotropic factor,

TABLE I. Charmonium states in different quantum number
channels taken from the particle data book [30].

Channel �H
2Sþ1LJ JPC c �c Mðc �cÞ [GeV]

PS 	5
1S0 0�þ �c 2.980(1)

VC 	

3S1 1�� J=c 3.097(1)

SC 1 3P0 0þþ �c0 3.415(1)

AV 	5	

3P1 1þþ �c1 3.510(1)
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i.e. the ratio of lattice spacing in the spatial direction over
that in the temporal direction,� ¼ a�=a�. In Fig. 1 the value
of quark mass m=T ¼ mN�a�=� ¼ 3. These lattice cutoff
effects can be well separated from the region of physics
interestswhen the number of points in the temporal direction
N� is large, i.e. the lattice spacing at fixed temperature
T ¼ 1=N�a� becomes small. In this work we use isotropic
lattices, i.e. � ¼ 1. In order to increase N�, which is very
crucial in the spectral function analysis, an economic way is
to perform simulations on anisotropic lattices. For instance,
the anisotropic factor ratio� ¼ 4 or larger has typically been
used in previous calculations [11–13,16]. However, the
lattice spectral functions on anisotropic lattices (� > 1) are
much more distorted. As seen from the right plot of Fig. 1,
which shows the free lattice spectral functionwithN� ¼ 48,
the lattice spectral function on the � ¼ 4 anisotropic lattice
vanishes at a much smaller energy, almost half of that on the
isotropic lattice. As a consequence, the two cusps move
closer to the region of physics interests. Thus lattice spectral
functions obtained on anisotropic lattices are more contami-
nated by lattice cutoff effects, e.g. lattice simulations with
N� on the � ¼ 4 anisotropic lattices roughly correspond to
those withN�=2 on isotropic lattices. We therefore prefer to
work on an isotropic lattice, although it is much more time
consuming to generate gauge field configurations.

At finite temperature, i.e. in the interacting case, due to
the conservation of the vector current, the spectral function
�V
00 in the 	0 channel will contribute a � independent

constant to the correlator

�V
00 ¼ 2��00!�ð!Þ; (17)

GV
00 ¼ T�00: (18)

In the spectral function �V
ii in the 	i channel on the other

hand the!�ð!Þ contribution present at infinite temperature
changes into a smeared peak at finite temperature.

From linear response theory the shape of this peak is
expected to be a Breit-Wigner-like distribution [33]

�V
iið! � TÞ ¼ 2�00

T

M

!�

!2 þ �2
; � ¼ T

MD
:(19)

Here M is the mass of the heavy quark, � is the drag
coefficient and D is the heavy quark transport coefficient
defined in Eq. (9). The contribution from Eq. (19) to the
correlation function is generally called the smeared zero
mode contribution.

III. DETAILS OF LATTICE SIMULATIONS

In this work we present results based on quenched lattice
QCD simulations performed on isotropic lattices using
OðaÞ-improved Wilson (clover) fermions. The simulation
parameters are shown in Table II. As we are interested in
temporal correlation functions there is a need for very fine
lattices in order to have enough data points in the temporal
direction and reduce lattice cutoff effects. We thus per-
formed simulations on lattices with lattice spacing ranging
from 0.01 fm to 0.03 fm corresponding to the bare gauge
couplings � ¼ 6=g2 ¼ 7:793, 7.457 and 6.872. At these �
values the lattice spacing has been determined from the
string tension parameterization with Tc=

ffiffiffiffi
�

p ¼ 0:630ð5Þ
and

ffiffiffiffi
�

p ¼ 428 MeV [34,35]. The simulated temperatures
range from about 0:75Tc to 3Tc. Simulations have been
performed at T � 0:75Tc and T � 1:5Tc with three differ-
ent lattice spacings. This allows an estimate of the magni-
tude of lattice cutoff effects. For the higher temperatures,
T � 2:2Tc and T � 2:9Tc, simulations are done only on
the finest lattice. The number of correlator data points in
the temporal direction is more than doubled compared to
the finest lattice used in our previous study [10]. To reduce
the volume dependence on such fine lattices, we use a large
spatial lattice N� ¼ 128. The spatial extent thus ranges

 0

0.2

0.4

0.6

0.8

 1

1.2

 0  20  40  60  80  100  120  140  160  180

m/T=3ρvc(ω)/ω2

ω/T

Nτ=24, ξ=1
Nτ=32, ξ=1
Nτ=48, ξ=1
continuum

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  20  40  60  80  100  120  140  160  180

m/T=3ρvc(ω)/ω2

ω/T

Nτ=48, ξ=4
Nτ=48, ξ=1
continuum

FIG. 1 (color online). Left: free spectral functions on the isotropic lattice (� ¼ 1) versus free spectral functions in the continuum limit.
The vector spectral functions �vcð!Þ=!2 are plotted as function of !=T for N� ¼ 24, 32, 48 at fixed T. Right: the free lattice spectral
function on the isotropic lattice (� ¼ 1) versus the free spectral function on the anisotropic lattice (� ¼ 4). The spectral functions
�vcð!Þ=!2 are plotted as function of !=T for N� ¼ 48 at fixed T. In both plots the value of quark mass m by T is fixed to be 3.
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from 1.3 fm on the finest lattice to 3.9 fm on the coarsest
lattice, which is in all cases significantly larger than the
charmonium diameter. A subset of these lattices was used
previously for the study of light meson spectral functions
in Ref. [36].

All gauge field configurations were generated using a
heat bath algorithm combined with 5 over-relaxation steps,
whereby neighboring configurations are separated by 500
sweeps. For the fermion part the OðaÞ nonperturbatively
improved Sheikholeslami-Wohlert action [37] has been
implemented in our simulation with nonperturbatively de-
termined clover coefficients, cSW [38], listed in Table II.
The inversion of the Dirac matrix is carried out by using the
Conjugate Gradient (CG) algorithm. At the smallest lattice
spacing, i.e. at � ¼ 7:793, we measured two-point corre-
lation functions on lattices of size 1283 � 96, 1283 � 48,
1283 � 32 and 1283 � 24 corresponding to temperatures
0:73Tc, 1:46Tc, 2:20Tc and 2:93Tc, respectively. Since the
temporal extent of the lattices is large and the exponen-
tially decreasing correlation functions consequently be-
come small at large distances, a rather stringent residue
of 10�24 in the CG algorithm has been implemented in our
simulations.

The nonperturbatively improved clover action used in
our calculations removes OðaÞ discretization errors.
However, in calculations with heavy quarks, discretization
errors of order am can also be large. We have estimated the
quark mass values using the Axial Ward Identity (AWI) to
compute the so called AWI current quark mass, mAWI, and

the related Renormalization Group Invariant quark mass
mRGI, for the different lattice data sets [39–41]. Here we
used a nonperturbatively improved axial-vector current
with coefficient cA taken from Ref. [38]. The commonly
quoted quarkmass for the heavy quark is themass at its own

scale. We therefore scaled mRGI in the MS scheme to the
scale 
 ¼ m, where the evolution of mMSð
Þ to 
 is done

using perturbative renormalization group functions known
with four-loop accuracy [42–44]. The resulting quark
masses are listed in Table III. The mAWI is independent of
temperature, which consequently makes also the RGI quark
mass mRGI and running quark mass mMSðmÞ temperature

independent. On the finest lattice amMSð
¼mÞ is around
0.06 and thus the discretization errors proportional to the
quark mass should be small. After adjusting the quark mass
parameters for our calculations it a posterior turned out that
the J=c mass on the finest lattice is around 10% larger than
the physical J=c mass. In the other two cases our choice of
parameters reproduces the J=c mass very well.
As a local current, Eq. (10), is used in our calculations, it

needs to be renormalized,

JcontH ¼ 2
ZHða;m;
 ¼ 1=aÞJlatH a�3: (20)

The renormalization factors ZHða;m;
¼1=aÞ are esti-
mated using one-loop tadpole improved perturbation theory

ZHðamq;g
2
MS

Þ
¼ZHðamq¼0;g2

MS
;a
¼1Þð1þbHðg2MS

ÞamqÞ; (21)

TABLE II. Lattice parameters and number of configurations used in the analysis with a clover
improved Wilson fermion action.

� a [fm] a�1 [GeV] L� [fm] cSW 
 N3
� � N� T=Tc Nconf

6.872 0.031 6.43 3.93 1.412488 0.13035 1283 � 32 0.74 126

1283 � 16 1.49 198

7.457 0.015 12.86 1.96 1.338927 0.13179 1283 � 64 0.74 179

1283 � 32 1.49 250

7.793 0.010 18.97 1.33 1.310381 0.13200 1283 � 96 0.73 234

1283 � 48 1.46 461

1283 � 32 2.20 105

1283 � 24 2.93 81

TABLE III. Quark masses on available lattices. Here mb stands for the bare quark mass, mAWI is obtained from the Axial Ward
Identity at the scale of 
 ¼ 1=a and mMSðmÞ denotes the renormalized quark mass in the MS scheme at the scale of 
 ¼ mMSð
Þ.
� 
 
c amb T=Tc N� amAWI mRGI [GeV] mMSðmÞ [GeV]
6.872 0.13035 0.13497 0.13130 0.74 32 0.13305(2) 1.592(4) 1.255(2)

1.49 16 0.13305(2) 1.592(4) 1.255(2)

7.457 0.13179 0.13398 0.06201 0.74 64 0.065430(6) 1.4742(3) 1.1739(2)

1.49 32 0.065352(4) 1.4734(8) 1.1733(6)

7.793 0.13200 0.13346 0.04143 0.73 96 0.044245(7) 1.358(3) 1.093(2)

1.46 48 0.044222(2) 1.357(2) 1.094(1)

2.20 32 0.044280(6) 1.359(3) 1.096(2)

2.93 24 0.04420(1) 1.357(3) 1.095(2)
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where ZHðamq ¼ 0; g2
MS

; a
 ¼ 1Þ are the renormalization

constants for the massless quark case. ZHðamq¼0;g2
MS

;

a
¼1Þ has been determined perturbatively with two-
loop accuracy for all the channels [45–47] and nonpertur-
batively for vector and axial vector channels [48]. The
coefficients bHðg2MS

Þ can be expanded in powers of the

gauge coupling,

bHðg2MS
Þ ¼ 1þ CFbHg

2
MS

; (22)

These coefficients have been calculated at one-loop level
[49,50] and in particular, bH for the vector channel has been
determined nonperturbatively [48]. The resulting renormal-
ization factors used in our calculations are given in Table IV.

To check the magnitude of discretization errors, we
analyzed the dispersion relation of the mesons. At nonzero
‘‘momentum’’ (p? � 0 or !n � 0), the exponential drop
of the spatial correlator may be described by an energy Esc

Gðz;p?;!nÞ�expð�EsczÞ; E2
sc¼p2

?þ!2
n

A2
þm2

sc; (23)

where !n ¼ 2�nT are the Matsubara frequencies, p? is
the transverse momentum, and msc is the screening mass
which can differ from the pole mass if AðTÞ � 1. It is worth
noting that the above ansatz is based on the dispersion
relation in the continuum limit.

We show the dispersion relation of the screening mass in
the PS channel in Fig. 2. The results are obtained from
calculations performed on 1283 � N� lattices at 0:74Tc

(N� ¼ 64) and at 1:49Tc (N� ¼ 32) with a�1 ¼
12:86 GeV. Labels in the figure indicate whether spatial
(‘‘x’’) or temporal components (‘‘�’’) of ðpx; py; p�Þ were
chosen to be nonzero. The lines denote the dispersion
relation obtained by fitting with an Ansatz of E2

scðpÞ ¼
ap2 þ b. At 0:74Tc, for the results from the spatial direc-
tions, we have a good fit with parameters a ¼ 1:02	 0:01
and b ¼ 9:530	 0:013. The applicability of the Ansatz
ap2 þ b indicates that our lattice is very close to the
continuum limit; for the results from the temporal direc-
tion, even though we only have 3 data points, at this
temperature, the data points have the same behavior as
those from the spatial direction. We also performed a �2

fit and obtained a ¼ 1:01	 0:03 and b ¼ 9:539	 0:033.
The slope parameter a here equals A�2 in Eq. (23). The
proximity of a to 1 confirms that at 0:74Tc the screening
mass is a good approximation for the pole mass. The
meson masses obtained from the spatial correlation func-
tions at T < Tc are shown in Table V. When going to the
higher temperature of 1:49Tc, the data points from the
temporal direction differ strongly from the fitting line for
the results from spatial directions. Thus, the temporal
direction is distinguished from the spatial direction and
the breaking of Lorentz symmetry is clearly observed at
this temperature. We also note that the screening mass at
1:49Tc is about 10% larger than the mass determined in the
confined phase.
In the following sections, we restrict ourselves to the

case of vanishing momentum and suppress the p indices.

IV. EUCLIDEAN CORRELATORS ABOVE Tc

Following Ref. [10] we introduce the ‘‘reconstructed’’
correlator at temperature T from a spectral function deter-
mined at temperature T0

Grecð�; T;T0Þ ¼
Z 1

0
d!Kð�; T;!Þ�ð!; T0Þ: (24)

Grecð�; T;T0Þ at the temperature T is computed from a
spectral function at the temperature T0 and an integral
kernelK at the temperature T. In the following subsections,

TABLE IV. Renormalization constants of local operators for
different channels.

� ZSC ZPS ZVC ZAV

6.872 0.92 0.98 0.97 0.99

7.457 0.87 0.93 0.92 0.93

7.793 0.87 0.92 0.91 0.92

 8
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PS, a-1=12.86 GeVE2
sc(p) [GeV2]

p2 [GeV2]

x: 0.74 Tc
τ: 0.74 Tc
x: 1.49 Tc
τ: 1.49 Tc

FIG. 2 (color online). The dispersion relation of the screening
mass in the PS channel obtained from lattices with � ¼ 7:457.
Labels in the figure indicate whether spatial (‘‘x’’) or temporal
components (‘‘�’’) of ðpx; py; p�Þ were chosen to be nonzero.

The lines denote the dispersion relation obtained by fitting with
the form of Eq. (23).

TABLE V. Meson masses (in GeV) for different charmonium
states. The errors in the first bracket are statistical errors and the
errors in the second bracket are systematic errors from effects of
the physical distance.

Mass in GeV

� J=c �c �c1 �c0

6.872 3.1127(6) 3.048(2) 3.624(36) 3.540(25)

7.457 3.147(1)(25) 3.082(2)(21) 3.574(8) 3.486(4)

7.793 3.472(2)(114) 3.341(2)(104) 4.02(2)(23) 4.52(2)(37)
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wewill study the Euclidean correlation functions at T > Tc

with respect to a reconstructed correlation function that
uses a spectral function obtained at T0 < Tc.

A. Remarks on the reconstructed Euclidean
correlation function

We want to compare correlators calculated at T > Tc to
those at T < Tc, i.e. we consider the ratio of the measured
correlator to the reconstructed correlator [10],

Gð�; TÞ
Grecð�; T;T0Þ ¼

R1
0 d!Kð�; T;!Þ�ð!; TÞR1
0 d!Kð�; T;!Þ�ð!; T0Þ : (25)

This reduces the influence of the trivial temperature
dependence of the kernel Kð�; T;!Þ in the correlation func-
tion. If the ratio is equal to unity at all distances it would
suggest that the spectral function does not vary with
temperature. In fact, in order to obtain the reconstructed
correlator at temperature T from a spectral function at T0
one does not require any knowledge of the spectral function
at that temperature. It suffices to know the correlator at T0.

To arrive at the desired correlation function at tempera-
ture T, we first exploit the following relation [20] which is
a generalization of the relation derived in Ref. [51],

cosh½!ð~�� N�=2Þ�
sinhð!N�=2Þ


 XN0
��N�þ~�

~�0¼~�;�~�0¼N�

cosh½!ð~�0 � N0
�=2Þ�

sinhð!N0
�=2Þ ;

(26)

where T0¼ðaN0
�Þ�1, T¼ðaN�Þ�1, ~�0¼ð�0=aÞ2½0;N0

��1�,
~�¼ð�=aÞ2½0;N��1�, N0

�¼mN�, m 2 Zþ. N� and N
0
� are

the number of time slices in the temporal direction at
temperature T and T0, respectively; ~� denotes the time slice
of the correlation function at temperature T while ~�0 de-
notes the time slice of the correlation function at tempera-
ture T0. The sum over ~�0 on the right-hand side of Eq. (26)

starts from ~�0 ¼ ~� with a step length of�~�0 ¼ N� and ends
at the upper limit N0

� � N� þ ~�. After multiplying both
sides of Eq. (26) with �ð!; T0Þ and performing the
integration over !, one immediately arrives at

Grecð~�; T;T0Þ ¼ XN0
��N�þ~�

~�0¼~�;�~�0¼N�

Gð~�0; T0Þ; (27)

which shows that Grecð�; T;T0Þ is obtained directly by
using the correlator Gð�0; T0Þ at T0. Using relation (27)
we can calculate Grecð�; T;T0Þ directly from the correlator
data at temperature T0. An immediate consequence clearly
is that one has a better control over systematic errors in the
calculation of ratios used in Eq. (25). In the following
subsections, we will implement Eq. (27) to calculate the
reconstructed correlators and compare them with the mea-
sured correlation functions. We will discuss what can be
learned about the modification of spectral functions from
the analysis of correlation functions. In the following
sections we will suppress the index T0 in the Grec.

B. Ratios of Gð�; TÞ to Grecð�; TÞ
We first investigate the temperature dependence of the

pseudoscalar correlators. We show the numerical results
for Gð�; TÞ=Grecð�; TÞ at 1:46Tc, 2:20Tc and 2:93Tc on our
finest lattice in the left plot of Fig. 3. Grecð�; TÞ are eval-
uated from the correlator data at T0 ¼ 0:73Tc using
Eq. (27). Note that the error bars shown in the plots are
statistical errors obtained from a Jackknife analysis. As
seen from the left plot of Fig. 3, the ratioGð�; TÞ=Grecð�; TÞ
approaches unity at small distances and starts to deviate
from unity at larger distances. Temperature effects start to
set in at about 0.06 fm at 1:46Tc and make the ratio smaller
than unity. Deviations are about 5% at the largest distance.
The small temperature dependence of the pseudoscalar
correlator might indicate that the corresponding spectral

0.85
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 0  0.05  0.1  0.15  0.2  0.25

G(τ,T)/Grec(τ,T) PS

τ [fm]

1.46 Tc
2.20 Tc
2.93 Tc

 0.95
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 0  0.05  0.1  0.15  0.2  0.25

ViiG(τ,T)/Grec(τ,T)
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FIG. 3 (color online). The ratio Gð�; TÞ=Grecð�; TÞ for PS (left) and Vii (right) channels as a function of the Euclidean distance � on
our finest lattice with � ¼ 7:793 (a ¼ 0:01 fm) at T ¼ 1:46, 2.20 and 2:93Tc. The reconstructed correlator Grec is obtained directly
from correlator data at 0:73Tc.
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function is subject to only small thermal modifications.
When going to the higher temperature, 2:20Tc, the tem-
perature effects set in at a smaller distance (� 0:03 fm).
The ratio rapidly drops and the deviation from unity
(� 8%) becomes larger at the largest distance � ¼ 1=2T.
Turning to the highest available temperature, i.e. 2:93Tc,
the temperature effects also set in at around 0.03 fm and the
deviation of the ratio from unity increases to about 12% at
the largest distance. This may suggest considerable mod-
ifications of the lowest state in the PS channel at this
temperature.

The ratio Gð�; TÞ=Grecð�; TÞ for the vector correlator Vii

(summing over spatial components only) on our finest
lattice is shown in the right plot of Fig. 3. Clearly this
plot shows that the temperature dependence of
Gð�; TÞ=Grecð�; TÞ is quite different from that in the PS
channel. At all temperatures the ratios are larger than unity.
This is already an indication that different temperature
dependent contributions arise in the vector channel at large
distances, related to the low frequency region in the spec-
tral function. The temperature effects set in at larger dis-
tances compared to pseudoscalar correlators: around 0.1,
0.08 and 0.06 fm at 1.46, 2.20 and 2:93Tc, respectively.
A unique feature seen in the Vii channel is that the magni-
tude ofGð�; TÞ=Grecð�; TÞ at the largest distance � ¼ 1=2T
does not vary with temperature. All ratios deviate from
unity by about 16%. In fact, the ratios seem to be to a good
approximation a function of �T only. However, one has to
be careful with the interpretation of this result in terms of
bound state modifications as their effect may be compen-
sated by possible positive diffusion contributions in the Vii

channel at temperatures above Tc. We will examine this in
more detail in the next two subsections.

The numerical results for the ratio G=Grec for P wave
states obtained on our finest lattice are shown in Fig. 4. The
left plot of Fig. 4 is for the scalar channel while the right
plot is for the axial-vector channel. They show similar
features as we have seen in S wave correlators: at short
distance the ratio is close to unity while at the large

distances the ratio deviates from unity and the deviations
start at shorter distance at higher temperatures. We find a
significant deviation ofG=Grec from unity in both channels
already at 1:46Tc: at the largest distance � ¼ 1=2T,G=Grec

reaches about 1.9 in the SC channel and about 2.5 in the Aii

channel. This deviation at the largest distance is much
larger compared to the case of S wave correlators and
the magnitude of this deviation at the largest distance
decreases with increasing temperatures. In order to connect
these features with the thermal modification of bound
states, one needs to separate the contribution of the
smeared zero mode at low frequency, which is present in
SC and Aii channels.
We also compared the ratiosGð�; TÞ=Grecð�; TÞ obtained

from the finest lattice with those from the two coarser
lattices, � ¼ 6:872 (a ¼ 0:031 fm) and � ¼ 7:457
(a ¼ 0:015 fm). We found that the lattice cutoff effects
are small in these ratios. The ratios at the largest distance
obtained on the finest lattices are about 7% larger than
those on the coarser lattices. This is mainly due to our
choice of quark mass parameters, which lead to somewhat
larger charmonia masses on our finest lattice. In fact, the
exponential decrease of the ratio of correlation functions,
G=Grec � expð��M�Þ, is controlled by the difference
of effective meson masses Meff below and above Tc,
i.e. �M ’ MeffðT > TcÞ �MeffðT < TcÞ. As the mass
MeffðT ’ 0:75TcÞ is larger on our finest lattice, the high
temperature massMeffðT ’ 1:5TcÞ differs less from the low
temperature value and thus leads to a smaller value of �M.
This in turn leads to a smaller decrease in G=Grec relative
to the result on the coarser lattice and explains the some-
what larger values for G=Grec on our finest lattice.

C. Smeared zero mode contributions

As discussed in Sec. II, there are zero mode contribu-
tions in Aii, SC and Vii channels in the infinite temperature
limit. In the study of spectral functions at temperatures
below Tc, which will be shown in Sec. VB, we found no
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FIG. 4 (color online). Same as Fig. 3 but for P wave states. The left plot is for the SC channel and the right one is for the Aii channel.
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zero mode contributions in SC, PS and Vii channels at
0:73Tc. Thus smeared zero mode contributions (or smeared
� functions) are expected to arise in Aii, SC and Vii

channels only at temperatures above Tc. In Aii, SC and
Vii channels, the information on bound states and smeared
zero modes are thus entangled in the low frequency region
and may partly compensate each other. In order to retrieve
reliable information on possible bound states it is therefore
necessary to filter out or separate the smeared zero mode
contribution. To emphasize this point we note that previous
studies suggested that the temperature dependence of
G=Grec is in fact mainly due to zero mode contributions
[32,52,53]. On the other hand, the smeared zero mode
contribution is interesting in its own. For example in the
vector channel it is related to the diffusion (process) of a
single quark in the medium. In this subsection we will
discuss the evidence we have for smeared zero mode
contributions and thermal modifications of bound states
at the correlation function level in more detail.

To get a better understanding of the � dependence of the
ratios defined in Eq. (25), we perform a Taylor expansion
of the correlators at the largest distance accessible at finite
temperature

Gð�; TÞ ¼
Z 1

0

d!

2�
�ð!Þ coshð!ð�� 1=2TÞÞ

sinhð!=2TÞ
¼

Z 1

0

d!

2�

�ð!Þ
sinhð!=2TÞ

�
1þ 1

2!

�
!

T

�
2
�
�T � 1

2

�
2

þ 1

4!

�
!

T

�
4
�
�T � 1

2

�
4 þ � � �

�
: (28)

This allows us to explore the properties of the low fre-
quency behavior of the spectral function. Here we define
the Taylor expansion coefficients, i.e. the time derivatives
of the Euclidean correlation functions,

GðnÞ ¼ 1

n!

dnGð�;TÞ
dð�TÞn

���������T¼1=2
¼ 1

n!

Z 1

0

d!

2�

�
!

T

�
n �ð!Þ
sinhð!=2TÞ ;

(29)

as thermal moments [36]. By going to higher order thermal
moments, one probes higher frequency regions in the
spectral function. In particular the value of the zeroth

order thermal moment Gð0Þ is the same as the value of
the correlator at the symmetry point, Gð�T ¼ 1=2Þ. We
have extracted the zeroth and second order thermal

moments (Gð0Þ and Gð2Þ) from correlation functions on
the finest lattices. The results are shown in Table VI.
We rewrite the Taylor expansion of the Euclidean cor-

relators Gð�; TÞ [Eq. (28)] as

Gð�;TÞ¼Gð0Þ X1
n¼0

R2n;0

�
�T�1

2

�
2n
; Rn;m
GðnÞ

GðmÞ : (30)

Thus the ratio of measured correlator to the reconstructed
correlator can be expanded as

Gð�; TÞ
Grecð�; TÞ

¼ Gð0Þ

Gð0Þ
rec

�
1þ ðR2;0 � R2;0

recÞ
�
�T � 1

2

�
2 þ � � �

�
;

(31)

which shows that the sign of R2;0 � R2;0
rec determines

whether Gð�; TÞ=Grecð�; TÞ is decreasing or increasing
with �T at large distances. Take the S wave states for

example. From Table VI we find that R2;0 � R2;0
rec is nega-

tive in the Vii channel and positive in the PS channel at
all three temperatures above Tc. It indicates that
Gð�; TÞ=Grecð�; TÞ increases with �T in the Vii channel
and deceases with �T in the PS channel at large distances
at T > Tc, which is consistent with Fig. 3.
As mentioned before the contribution from (smeared)

zero modes and bound states to the correlation function
is difficult to disentangle by investigating the ratios
Gð�; TÞ=Grecð�; TÞ. To investigate the modification of

TABLE VI. Thermal moments extracted from correlator data on the finest lattice (� ¼ 7:793). �GðnÞ is the difference between GðnÞ

and GðnÞ
rec as defined in Eq. (40).

Channel T=Tc Gð0Þ=T3 Gð0Þ
rec=T3 Gð2Þ=T3 Gð2Þ

rec=T3 �Gð0Þ=T3 �Gð2Þ=T3 �Gð4Þ=T3

Vii 1.46 0.955(5) 0.829(6) 46.39(4) 46.43(7) 0.126(8) �0:04ð8Þ
2.20 1.81(2) 1.561(9) 57.3(2) 59.2(1) 0.25(2) �1:9ð2Þ
2.93 2.33(2) 1.99(1) 59.6(3) 62.6(3) 0.34(2) �3:0ð4Þ

PS 1.46 0.858(8) 0.91(1) 44.73(3) 45.74(7) �0:05ð1Þ �1:01ð7Þ
2.20 1.44(2) 1.56(2) 52.6(1) 54.2(1) �0:12ð3Þ �1:6ð1Þ
2.93 1.68(2) 1.90(2) 51.2(1) 54.1(2) �0:22ð3Þ �2:9ð2Þ

Aii 1.46 0.708(6) 0.280(3) 23.80(4) 22.71(2) 0.428(7) 1.13(2) 45(4)

2.20 1.57(3) 0.761(6) 39.9(2) 40.0(1) 0.81(3) �0:1ð2Þ
2.93 2.18(3) 1.186(7) 47.9(2) 48.8(3) 0.99(3) �0:9ð3Þ

SC 1.46 0.493(5) 0.259(5) 21.32(2) 20.15(3) 0.234(7) 1.12(1) 33(2)

2.20 0.99(2) 0.665(7) 32.3(1) 32.21(9) 0.33(2) �0:1ð1Þ
2.93 1.26(2) 0.980(9) 35.2(1) 36.2(2) 0.28(2) �1:0ð2Þ
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bound states, one has to separate the zero mode contribu-

tion. Since the !�ð!Þ term only contributes to Gð0Þ, one
can construct quantities that only include the higher order
thermal moments. One possibility is to look at the ratio of
differences of the correlators at neighboring Euclidean
time slices to the difference of the corresponding recon-
structed correlators,

Gdiffð�; TÞ
Gdiff

rec ð�; TÞ

 Gð~�; TÞ �Gð~�þ 1; TÞ

Grecð~�; TÞ �Grecð~�þ 1; TÞ : (32)

This approximates the ratio of the time derivative of the
measured correlators to the time derivative of the recon-
structed correlators at ~�þ 1=2. Here ~� ¼ �=a and the

difference of correlators ~Gð�;TÞ¼Gð�;TÞ�Gð~�þ1;TÞ
can be expanded as

~Gð�; TÞ ¼ ~Gð1Þ X1
n¼0

~R2nþ1;1

�
�T � 1

2
þ 1

2N�

�
2nþ1

;

~Rn;m 

~GðnÞ

~GðmÞ :
(33)

where

~GðnÞ ¼ 1

n!

dn ~Gð�; TÞ
dð�TÞn

���������T¼1=2�1=2N�

¼ � 2

n!

Z 1

0

d!

2�

�
!

T

�
n
�ð!Þ sinhð!=2N�TÞ

sinhð!=2TÞ ; (34)

Thus Eq. (32) can be rewritten as

Gdiffð�;TÞ
Gdiff

rec ð�;TÞ
¼

~Gð1Þ

~Gð1Þ
rec

�
1þð ~R3;1� ~R3;1

recÞ
�
�T�1

2
þ 1

2N�

�
þ���

�
:

(35)

Alternatively one can consider the ratio of midpoint sub-
tracted correlators

Gsubð�; TÞ
Gsub

rec ð�; TÞ

 Gð�; TÞ �GðN�=2; TÞ

Grecð�; TÞ �GrecðN�=2; TÞ

¼ Gð2Þ

Gð2Þ
rec

�
1þ ðR4;2 � R4;2

recÞ
�
�T � 1

2

�
2 þ � � �

�
:

(36)

As seen from Eq. (35) and (36) the zeroth order thermal

moment Gð0Þ drops out in ratios Gdiffð�; TÞ=Gdiff
rec ð�; TÞ and

Gsubð�; TÞ=Gsub
rec ð�; TÞ. Since a !�ð!Þ term in the spectral

function only contributes to the zeroth order thermal mo-
ment and, moreover, its contribution vanishes in the higher

order moments ~Gðn�1Þ and Gðn�2Þ, it is thus possible to
completely remove the zero mode contribution in the two
ratios Gdiffð�; TÞ=Gdiff

rec ð�; TÞ and Gsubð�; TÞ=Gsub
rec ð�; TÞ.

However, at finite temperature above Tc, the !�ð!Þ term
is likely to be smeared out as a Breit-Wigner-like distribu-
tion (Eq. (19)). This Breit-Wigner-like distribution in the
very low frequency region of the spectral function does not
lead to a � independent constant, and it contributes to the
thermal moments at all orders. Thus the smeared zero
mode contributions cannot be completely removed from
the above two ratios. However, these contributions, which
are located only in the frequency region ! & T in the
spectral function, are suppressed at higher orders of the
thermal moments due to the presence of a factor ð!TÞn in

Eq. (29) and (34).
In Fig. 5 we show results forGsub=Gsub

rec andG
diff=Gdiff

rec in
the Vii (left) and also in the PS channel (right). The open
symbols denote the ratio Gsub=Gsub

rec while filled symbols
label the ratio Gdiff=Gdiff

rec . The ratios Gsub=Gsub
rec and

Gdiff=Gdiff
rec give similar results at all distances. In the Vii

channel we observe that values of Gsub=Gsub
rec and

Gdiff=Gdiff
rec are much smaller than those of G=Grec at large

distances. The values at the largest distance are reduced by
almost 15%. In the PS channels deviations of Gsub=Gsub

rec
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FIG. 5 (color online). The ratio Gdiffð�; TÞ=Gdiff
rec ð�; TÞ (Gsubð�; TÞ=Gsub

rec ð�; TÞ) of S wave sates as a function of the Euclidean distance
� on our finest lattice with � ¼ 7:793 at T ¼ 1:46, 2.20 and 2:93Tc. The superscript ‘‘x’’ denotes either ‘‘diff’’ or ‘‘sub’’. The left plot
is for the Vii channel and the right one is for the PS channel.
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and Gdiff=Gdiff
rec from unity are also reduced compared to

those of G=Grec at large distances. However, the change is
not as large as in the Vii channel. The values at the largest
distance are increased only by about 3% at both 1:46Tc and
2:20Tc and about 6% at 2:93Tc. The larger changes that
occur in the Vii channel correlators relative to those in the
PS channel may be understood in terms of large smeared
zero mode contributions that contribute in the vector chan-
nel and get almost completely eliminated in subtracted
correlation functions. Such contributions do not seem to
be present in the PS correlator and the resulting changes
are thus smaller. We will confirm this interpretation
through the explicit construction of the spectral functions
in the next section. We also note that in the subtracted
correlators there are significant differences in the pseudo-
scalar and vector channels. In fact, in the subtracted corre-
lators the situation now seems to be reversed compared to
the unsubtracted correlators. At T ¼ 1:46Tc the subtracted
vector correlator now stays close to unity at all distances
�T, while we observe a clear drop in the pseudoscalar
correlator. Of course, one has to keep in mind that the
subtracted correlators also modify the spectral contribu-
tions in the bound state region and thus may also suppress
contributions that result from modifications of the bound
states. The weak temperature dependence seen in Fig. 5
thus does not necessarily mean that the bound states suffer
negligible thermal modifications. We will look into this
issue more closely in the next subsection. At the two higher
temperatures, T ¼ 2:20Tc and 2:93Tc, the subtracted cor-
relators in both channels show almost identical behavior.

In addition to the S wave states we also examined
Gsub=Gsub

rec and Gdiff=Gdiff
rec for the P wave states. The cor-

responding results are shown in Fig. 6, where the left plot is
for the Aii channel while the right plot is for the SC
channel. The magnitudes of the ratios for both Aii and
SC channels are greatly reduced compared to the ratios
shown in Fig. 4. This behavior is quite similar to the ratios
in the Vii channel and it suggests that the strong rise seen in
G=Grec in Fig. 4 could be partly due to smeared zero mode

contributions. However, as mentioned in the case of the
vector correlator, also in the Aii and SC channels the bound
state contributions get modified in subtracted correlators.
We will examine this in more detail in the next subsection.

D. Difference between Gð�; TÞ and Grecð�; TÞ
The behavior of the ratios Gð�; TÞ=Grecð�; TÞ, Gsub=Gsub

rec

and Gdiff=Gdiff
rec provides some insight into the relative

importance of different frequency regions for the structure
of correlators. However, the contribution from smeared
zero modes and bound states to the correlation function
is still difficult to disentangle at this point. Further infor-
mation is gained by looking into the differences between
measured correlators and reconstructed correlators

�Gð�; TÞ=T3 ¼ ðGð�; TÞ �Grecð�; TÞÞ=T3

¼
Z d!

2�
��ð!; TÞKð!; �TÞ=T3 (37)

¼�Gð0Þ

T3
þ�Gð2Þ

T3
ð�T�1=2Þ2

þ�Gð4Þ

T3
ð�T�1=2Þ4þ��� ; (38)

where

��ð!; TÞ ¼ �ð!; T > TcÞ � �ð!; 0:73TcÞ (39)

and

�GðnÞ ¼ GðnÞ �GðnÞ
rec: (40)

The difference between the measured correlator and the
reconstructed correlator provides information on the dif-
ference of spectral functions below and above Tc. As can

be seen from Eqs. (31) and (36), the intercept (�Gð0Þ) and
curvature ofGð�; TÞ �Grecð�; TÞ at large distances (�Gð2Þ)
are related to the values of Gð�; TÞ=Grecð�; TÞ and
Gsubð�; TÞ=Gsub

rec ð�; TÞ at the largest distance, respectively.

The values of �Gð0Þ and �Gð2Þ, obtained by performing a

0.950

0.975

1.000

1.025

1.050

1.075

1.100

 0  0.05  0.1  0.15  0.2  0.25

AiiGx(τ,T)/Gx
rec(τ,T)

τ [fm]

diff sub
1.46 Tc
2.20 Tc
2.93 Tc

0.950

0.975

1.000

1.025

1.050

1.075

1.100

 0  0.05  0.1  0.15  0.2  0.25

AiiGx(τ,T)/Gx
rec(τ,T)

τ [fm]

diff sub

0.950

0.975

1.000

1.025

1.050

1.075

1.100

 0  0.05  0.1  0.15  0.2  0.25

SCGx(τ,T)/Gx
rec(τ,T)

τ [fm]

diff sub
1.46 Tc
2.20 Tc
2.93 Tc

0.950

0.975

1.000

1.025

1.050

1.075

1.100

 0  0.05  0.1  0.15  0.2  0.25

SCGx(τ,T)/Gx
rec(τ,T)

τ [fm]

diff sub

FIG. 6 (color online). Same as Fig. 5 but for P wave states. The left plot is for the Aii channel and the right one is for the SC channel.
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two-parameter quadratic fit to ðGð�; TÞ �Grecð�; TÞÞ=T3,
are listed in Table VI.

We first show the differences ðGð�; TÞ �Grecð�; TÞÞ=T3

for S wave states in Fig. 7. The first thing to notice is the
change in the dependence of ðGð�; TÞ �Grecð�; TÞÞ=T3 on
Euclidean time �T as one raises the temperature. In Vii and
PS channels we observe that ðGð�; TÞ �Grecð�; TÞÞ=T3

increases with �T at all temperatures. This is also reflected

in the differences of second order thermal moments �Gð2Þ,
which are clearly negative at the two highest temperatures
in the Vii channel and at all temperatures in the PS channel
as seen from Table VI. It is obvious that �Gð�; TÞ would
decrease with �T and �Gð2Þ thus would be positive, if
��ð!Þ> 0 for all !. Increasing differences of correlators

�Gð�; TÞ and negative values for �Gð2Þ thus indicate that
��ð!Þ is negative in some energy range. On the other
hand, one clearly cannot draw the reverse conclusion, i.e.
we cannot rule out that ��ð!Þ is negative in some energy

range even if �Gð�; TÞ decreases with �T and �Gð2Þ is
positive. However, in that case regions with ��ð!Þ< 0
need to be compensated by regions with an enhancement in
��ð!Þ> 0. To this extent it is worthwhile to note that the
presence of smeared zero mode contributions above Tc,
which do not have a counterpart below Tc, will give
positive contributions to ��ð!Þ, while disappearing bound
states will lead to negative contributions to ��ð!Þ. We
thus conclude that there must be some energy regions in
which �� is negative in the Vii channel at the two highest
temperatures and in the PS channel at all temperatures we

examined. At 1:46Tc the second thermal moment �Gð2Þ is
slightly smaller than zero in the Vii channel. It is mani-
fested in the behavior that Gð�; TÞ �Grecð�; TÞ is almost
flat at large distance and slightly increasing with distance at
1:46Tc. However, the increase with �T is not statistically
significant. If modifications of��ð!Þwould arise from the
smeared zero mode only, i.e. in the ! & T region, its
contribution to correlation function would be either a

constant at all distances or decreasing with distances.
The former case corresponds to a !�ð!Þ term in ��ð!Þ
and the latter case corresponds to a smeared Breit-Wigner-
like distribution. Figure 7 thus indicates that some mod-
ifications in the !> T region of the Vii channel are likely
to happen already at 1:46Tc. Combining the above discus-
sion with the information on smeared zero mode contribu-
tions gained from the analysis of the subtracted correlators
discussed in the previous subsection (and the following
section on spectral functions) we conclude that Fig. 7
provides strong evidence for modifications of the spectral
functions of S wave states that lead to ��ð!Þ< 0 in some
energy range for all T � 1:46Tc. Also note that the differ-
ences ðGð�; TÞ �Grecð�; TÞÞ=T3 are negative at all tem-
peratures in the PS channel. It is in contrast to the
positive values of ðGð�; TÞ �Grecð�; TÞÞ=T3 in the Vii

channel. This too suggests the existence of a significant
smeared zero mode contribution in the Vii channel and
larger thermal modifications in the bound states in the PS
channel at T > Tc.
The results for the differences ðGð�; TÞ �Grecð�; TÞÞ=T3

in Aii and SC channels are given in Fig. 8. At the two
highest temperatures ðGð�; TÞ �Grecð�; TÞÞ=T3 increases
with �T in both channels. This indicates that �� < 0 in
some energy region in these two channels at the two
highest temperatures. However, the interpretation of the
decreasing differences of correlation functions in Aii and
SC channels, which we observe at 1:46Tc, is a bit more
complex. These correlation functions receive positive con-
tributions to ��ð!Þ from smeared zero modes and positive
values for ��ð!Þ thus will arise at small !=T, i.e. for
! & T. However, if in addition ��ð!Þ would not change
or stay positive also in the region !> T, the higher order
moments �GðnÞ would still fulfill an inequality, �Gð0Þ >
2�Gð2Þ > 24�Gð4Þ > 0. This inequality, however, does not
hold in Aii and SC channels at 1:46Tc as is evident from
Table VI. We thus conclude that also in the Pwave spectral
functions at 1:46Tc thermal modifications in the !> T
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FIG. 7 (color online). ðGð�; TÞ � Grecð�; TÞÞ=T3 of S wave sates as a function of the Euclidean distance � on our finest lattice with
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region occur that lead to negative ��ð!Þ. It is thus
plausible that the P wave states disappear already at
T ¼ 1:46Tc (as expected) but smeared zero mode contri-
butions in these channels are so large that they still give the
dominant contribution to the shape of �Gð�; TÞ at this
temperature. It is also worthwhile to note that the magni-
tude of difference, Gð�; TÞ �Grecð�; TÞ, is smaller at
2:93Tc than at 2:20Tc in the SC channel. This too may be
due to a partial cancellation of effects arising from the
smeared zero mode contribution and those originating
from modifications of the bound states.

E. Charm quark diffusion coefficient estimated
from correlations functions

The charm diffusion coefficient is related to the smeared
zero mode contribution in the Vii channel. As the very low
frequency structure of the spectral function should mani-
fest itself most strongly at the largest distance of the
correlation function, the symmetry point of the correlation
function Gð�T ¼ 1=2Þ should be strongly influenced by
the transport contributions.

At 1:46Tc, one may assume that the intermediate and
high frequency region of the spectral function is similar to
that at 0:73Tc. Also based on the fact that there is no zero
mode contribution at 0:73Tc in the Vii channel, one could
then estimate the charm diffusion coefficient by fitting the
value of Gð1=2Þ �Grecð1=2Þ. Here we ignore the differ-
ence in the intermediate and high frequency region at 0.73
and 1:46Tc and only use the ansatz given in Eq. (19) for the
transport peak to fit the value of Gð1=2Þ �Grecð1=2Þ at
1:46Tc. There is only one parameter, i.e. the heavy quark
massM, that needs to be fixed to obtain the charm diffusion
coefficient D. We note that the correlation function calcu-
lated from Eq. (19) at �T ¼ 1=2 decreases faster with
increasing heavy quark mass than with decreasing D.
Thus there exist a maximum value of quark mass beyond
which no solution for D exists. The maximum value of
quark mass here is around 1.8 GeV. As the quark mass
extracted from correlation functions is around 1.0 GeV

(see Table III) we vary the charm quark mass from
1.0 GeV to 1.8 GeV. The charm diffusion coefficient D
multiplied by 2�T then ranges from 0.6 to 3.6, i.e.

M ¼ 1:0 GeV; 2�TD � 0:6; (41)

M ¼ 1:8 GeV; 2�TD � 3:6: (42)

If there is no negative contribution from ��ð!Þ to
Gð1=2Þ �Grecð1=2Þ, 3.6 could be an upper bound on
2�TD at 1:46Tc. We also performed a fit with a linear
form of b! describing the very low frequency behavior
of the vector spectral function. Fitting to the difference of
correlators at the symmetry point Gð1=2Þ �Grecð1=2Þ at
1:46Tc gives:

2�TD ¼ �T

3�00

b � 2: (43)

Clearly the estimate of the charm diffusion coefficient is
sensitive to the ansatz used for the fits. However, the charm
diffusion coefficient estimated from these two different
Ansätze are compatible.
When going to higher temperatures at 2.20 and 2:93Tc,

the interplay between the change of bound states and
diffusion part in the spectral function becomes compli-
cated, thus it is not convincing that one may get a reason-
able estimate of the charm diffusion coefficient by using
a simple ansatz consisting of only a transport peak.
Nevertheless in the following we will use these current
estimates at 1:46Tc as input for the default models that
have to be supplied to theMEM analysis. Further details on
the choice of default models are given in Appendix A.

V. SPECTRAL FUNCTIONS

In the previous subsections we found that the flatness and
the small deviation from unity of the ratios (G=Grecð�; TÞ,
Gdiff=Gdiff

rec ð�; TÞ and Gsub=Gsub
rec ð�; TÞ) do not necessarily

mean that thermal modifications of the ground states are
negligible. The more relevant quantities to look at are the
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sign of �Gð2Þ and the relative strength of �Gð4Þ, �Gð2Þ and
�Gð0Þ. However, from all these quantities, only a qualitative
understanding of the thermalmodifications of spectral func-
tions at temperatures from below to above Tc can be de-
duced. To really explore the properties of charmonium
states at different temperatures, one has to advance to a
direct analysis of spectral functions by using the Maximum
EntropyMethod. As in the vector channel, the contributions
from the bound states and the diffusion part are entangled, it
would also be helpful to provide information on the diffu-
sion part of the spectral function estimated in Sec. IVE into
the default model in MEM analyses.

In this section we start with a brief introduction to the
Maximum Entropy Method in subsection VA. We then
discuss charmonium spectral functions below and above
Tc from the Maximum Entropy Method in subsection VB.
The estimation on the value of the charm quark diffusion
coefficient from vector spectral functions at T > Tc will be
given in subsection VC.

A. Maximum entropy method

Inverting Eq. (13) to extract the spectral function is a
typical ill-posed problem. At finite temperature the inver-
sion is more complicated than at T ¼ 0, since the temporal
extent is always restricted to the temperature interval,
0< � � 1=T. The spectral functions we want to obtain
are continuous while the correlators are calculated at a
finite set of N� Euclidean time points which typically are
Oð10Þ. An infinite number of solutions thus exists. The
task then is to select the most likely solution which is
consistent with additional constraints. Because of the
positivity and the normalizability of the spectral function
it can be interpreted as a probability function. The guiding
principle for the selection thus can be the Bayesian statis-
tical inference, which is the basis for the Maximum
Entropy Method.

The Maximum EntropyMethod (MEM) is a widely used
tool for extracting spectral functions from correlation func-
tions. It was introduced to lattice QCD by Asakawa et al.
[54] and has been successfully applied to lattice QCD data
at zero temperature to extract the parameters of the ground
state and excited states of hadrons [55–60]. The application
to finite temperature lattice QCD has also been explored
[10–13,16,18–21,61,62]. Based on the Bayesian theorem,
MEM provides a way to select a unique spectral function
�ð!Þ and transfers the problem of specifying a parame-
terization of �ð!Þ into the problem of specifying a like-
lihood function and a prior probability. The most probable
spectral function �ð!Þ, given lattice data G and prior
information H, can be obtained by maximizing the condi-
tional probability

P½�jGH� ¼ expð�S½�� � L½��Þ; (44)

where L½�� is the standard likelihood function and the
Shannon-Jaynes entropy S½�� is defined as

S½��¼
Z 1

0

d!

2�

�
�ð!Þ�mð!Þ��ð!Þ log

�
�ð!Þ
mð!Þ

��
: (45)

Here mð!Þ is the default model which introduces the prior
information on the spectral function �ð!Þ as the input, e.g.
�ð!Þ is positive-definite; � is a real and positive parameter
which controls the relative weight of the entropy S and
the likelihood function L. The final spectral function is
expressed as an integral over �:

�ð!Þ ¼
Z

d���P½�jG�
�Z

d�P½�jG�; (46)

where P½�jG� is the posterior probability of � given data
G and �� is the most probable spectral function for a
certain �.
As pointed out in Ref. [62], the integral kernel Kð�;!Þ

diverges at vanishing !,

Kð�;!Þ ¼ 2T

!
þ

�
1

6T
� �þ T�2

�
!þO½!�3: (47)

In order to explore the low frequency behavior of spectral
functions, it thus is of advantage to introduce a modified
kernel that is free of this divergence and leads to a rede-
fined spectral function. Since Kð�;!Þ has the following
property,

XN��1

�¼0

Kð!; �Þ ¼ 1= tanhð!=2Þ; (48)

and lim!!1 tanhð!=2Þ ¼ 1, we implemented in our analy-
sis the following modified version of kernels and spectral
functions [19,63]

~Kð�;!Þ ¼ tanhð!=2ÞKð�;!Þ; (49)

~�ð!Þ ¼ cothð!=2Þ�ð!Þ: (50)

The modified kernel ~Kð�;!Þ cures the instability of MEM
at! � 0 and reproduces the behavior of the original kernel
in the large ! region.
Note that we have to specify the default model mð!Þ to

extract the spectral function from the correlator data. Thus
choosing the default model (DM) is an essential part of the
MEM analysis. Therefore all available prior information
needs to be included in the default model, as it can strongly
affect the output spectral function if the quality of the
correlator data is not sufficient. It is natural to choose a
default model which reproduces the behavior of the spec-
tral function in the large ! region. Note that Eq. (15)
describes the propagation of a free quark antiquark pair
in the continuum limit. On the lattice, the high frequency
part of the spectral function is strongly distorted due to
lattice cutoff effects [17,31], as seen from Fig. 1 in Sec. II.
Rather than growing as!2 the free lattice spectral function
vanishes above a maximal frequency. Thus when extract-
ing the spectral function from the correlation function
calculated on the lattice, it is reasonable to use the free
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lattice spectral function as the prior information in the
MEM analyses. The Breit-Wigner distribution, Eq. (19),
replaces the !�ð!Þ term and is also added into the default
model for the very low frequency region in our MEM
analyses at finite temperatures.

B. Spectral functions at finite temperature

In this subsection we will discuss spectral functions
obtained from MEM analyses at temperatures below and
above Tc. We will mainly focus on the results from our
finest lattice, i.e. a ¼ 0:01 fm with � ¼ 7:793. When we
analyze correlation functions using MEM, we fix the num-
ber of points in the frequency space to N! ¼ 8000 and the
step length a�! ¼ 0:0005, i.e. we fix a!max � 4 or
!max � 76 GeV. If not mentioned otherwise we use the
free lattice spectral functions with quark mass am � 0:06
as part of default models in our MEM analyses, whereby
the value am � 0:06 corresponds to the value of mMSðmÞ
listed in Table III.

The lattice spectral function is subject to lattice cutoff
effects. These show up in the short distance behavior of
correlation function and manifest themselves in the large
energy behavior of spectral functions as shown in Fig. 1.
To reduce lattice cutoff effects we omit some correlator
data points at small distances, i.e. we use ~� ¼ �=a ¼
4; 5; 6; . . . ; N�=2 in the MEM analysis. In addition we
need to take into account a default model modification of
the large energy part of spectral functions that arises from
perturbative corrections to the free field behavior. When
using a free continuum spectral function as ansatz this is
usually done by multiplying the large energy part, which is
proportional to !2, with a suitably chosen constant. This
cannot be done with our ansatz for the default models
where we use at large energies the free lattice spectral
functions that are cut off at some maximal energy !max.

Instead we rescale the free lattice spectral function in the
default model DM such that the correlator GDMð�; TÞ,
calculated from the default model, agrees with the lattice
data at �=a ¼ 4, i.e. we demand GDMð�=a ¼ 4; TÞ=
Gð�=a ¼ 4; TÞ ¼ 1. To suppress the large ! rise, in gen-
eral we plot the spectral function �ð!Þ divided by !2 as a
function of !.
We first look into the left plot in Fig. 9, i.e. the Vii

channel below Tc. We test three different default models,
‘‘DM1’’ is a rescaled free lattice spectral function, ‘‘DM2’’
is a rescaled free lattice spectral function supplemented
with a resonance peak located in the low frequency region
and ‘‘DM3’’ is a rescaled free lattice spectral function
with a transport peak described by e.g. Eq. (19) in the
very low frequency region. In the very high frequency
region (! * 35 GeV), as seen from the left panel of the
left plot in Fig. 9, the MEM output just resembles the
behavior of the input default models. In the low frequency
region, as seen from the right panel of the left plot in Fig. 9,
spectral functions obtained from MEM have a unique form
that is different from that of the input default models, i.e.
results are independent of the default model and thus might
reflect stable features of the spectral function. We found
that the default model dependence of the first peak is very
weak. Though there are some variations in amplitudes of
peaks, the peak location of the first peak is always the
same, at ! � 3:48 GeV, which in turn is close to the value
of the screening mass obtained from the spatial correlator
quoted in Table V. Thus this peak can be interpreted as the
bound state peak of J=c . It remains stable and robust in
MEM analyses performed with quite different prior infor-
mation. However, the width of this peak cannot be directly
interpreted as the width of J=c due to the limited statistics
and small number of data points in the temporal direction.
The second and third peak in Fig. 9 could be a mixture of
higher excited states or MEM artifacts due to the finite
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lattice spacing and limited number of correlator points.1

The output spectral function ‘‘spf3,’’ which is obtained
from the default model ‘‘DM3,’’ has no transport peak
although such peak is implemented in the default model.
We thus conclude that at this temperature there is no
(smeared) zero mode contribution in the vector channel,
or in other words the charm diffusion coefficient is com-
patible with zero at 0:73Tc. We performed the same analy-
sis in the PS channel (the right plot of Fig. 9) and find that
results in the PS channel are similar to those in the Vii

channel. We did not observe a (smeared) zero mode
contribution in the PS channel as well. To analyze the
modification of bound states in the spectral function
with temperature the PS channel is therefore a good
candidate.

Spectral functions of P wave states are shown in Fig. 10.
The default model dependence of the output spectral func-
tions is small in both SC and Aii channels. We observed
stable P wave ground states. As in the case of PS and Vii

channels, no (smeared) zero mode contribution is observed
in the SC channel at 0:73Tc. In the Aii channel we always
found that some remnant of the input default model is
present at ! � 0 for all three spectral functions, although
the remnant is not obviously seen in the right plot of
Fig. 10. Because of the noise level, it is however not clear
whether this originates from the zero mode contribution or
insufficient quality of temporal correlator data.

In the following we present the results for charmonium
spectral functions above Tc. In Appendix A we give a
detailed analysis of the default model dependence of our
results and also quantify the influence of distance windows,
the lattice cutoff etc. We found that the outputs from
various default models are all compatible with those ob-
tained by using the free lattice spectral functions with an
added transport peak as default models. Consequently all
MEM results shown in the following are obtained by using

such default models. Since we found some excess of the
spectral function in the low frequency region in the Aii

channel, we use in that case the massless free lattice
spectral function with a Breit-Wigner-like peak at low
frequencies as the default model.
We now focus on the statistical error analysis of the

spectral functions. This is done by using the Jackknife
method. In the literature statistical errors are often given
on the mean of �ð!Þ over a certain! region in the spectral
function plot [10,12,13,16]. Here we rather perform MEM
analyses on Jackknife blocks and calculate the Jackknife
error of the amplitude of each point in the spectral func-
tion. MEM cannot reproduce the correct width of the
resonance, however, it gives a stable and reliable peak
locations of the spectral functions. We thus also estimate
the statistical errors of the peak location of the first peak of
the spectral function at 0:73Tc and 1:46Tc (see Table VII).
A signal for the dissociation of charmonium states then is a
shift of the peak location and the relative broadening of the
peak at different temperatures.
We show the statistical significance of output spectral

functions at ! * 2 GeV in PS (left) and Vii (right) chan-
nels in Fig. 11. The shaded areas are statistical uncertain-
ties of amplitudes of output spectral functions from
Jackknife analyses and the solid lines inside the shaded
areas are mean values of spectral functions. From the left
plot of Fig. 11 it is apparent that at 0:73Tc the spectral
function in the PS channel has large uncertainties in the
amplitude at the pointwhich corresponds to the ground state
peak location in the mean spectral function. However, even
at the lower end of the error band, the amplitude is still
larger than the peak amplitudes at the higher temperatures
within the errors. We also show the statistical uncertainties
of the first peak location of the spectral function at 0:73Tc

and 1:46Tc as horizontal error bars in the left plot of Fig. 11.
Unlike the large uncertainties shown in the amplitude of the
peak height, the peak location of the ground state peak at
0:73Tc is well determined. A Jackknife analysis yields
m�c

¼ 3:31ð4Þ GeV (see Table VII). At 1:46Tc this peak
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FIG. 10 (color online). Same as Fig. 9 but for SC (left) and Aii (right) channels.

1We discuss this in more detail in connection with Fig. 16 in
Appendix A.
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is shifted by about 0.8 GeV to around 4.1 GeV, as is seen
from Table VII. At 2:23Tc there is hardly a peak structure
that can be identified within the statistical uncertainties.
At 2:93Tc the spectral function flattens further. Thus this
picture, together with the systematic uncertainties dis-
cussed in the Appendix, suggests that �c is melted already
at 1:46Tc.

In the right plot of Fig. 11, we focus on the resonance part
of the spectral function in the Vii channel. One sees that the
peak location of the spectral function at 0:73Tc does not
have an overlap with the peak location of the spectral
function at 1:46Tc and the amplitudes between these two
differ a lot (see horizontal error bars and also values in
Table VII). At both 2:20Tc and 2:93Tc there is hardly any
peak structure. Together with the study of systematic un-
certainties discussed in Appendix A, this picture indicates
that also J=c is already dissociated at 1:46Tc.

The statistical errors on P wave spectral functions are
shown in Fig. 12. Here the results for the SC channel are
shown in the left plot. When going to temperatures above
Tc, the structure of the ground state peak is basically gone
and results in a rather flat spectral function. This signals the
melting of �c0 at T � 1:46Tc.

The right plot of Fig. 12 shows the result for the Aii

channel. As temperature increases from 0:73Tc to 1:46Tc,
it becomes apparent that the location of the fist peak is
shifted to the larger energy region. The bump seen at
1:46Tc becomes much broader at 2:20Tc and flattens at
2:93Tc. An enhancement of the small energy part (2 GeV &
! & 4 GeV) in the spectral functions is also observed at the
two highest temperatures. This originates from our choice
of the default model in the Aii channel where we did not
introduce a quark mass threshold in the free lattice spectral
function. The systematic uncertainties arising from the
choice of the quark mass cutoff have been discussed in
the Appendix in connection with Fig. 19. The change of
structures of spectral functions in the Aii channels suggests
that �c1 is dissociated already at 1:46Tc.

C. Charm quark diffusion coefficient estimated
from spectral functions

We now focus on the very low frequency part of the
spectral function given in the vector channel, i.e. !=T �
2:5 or ! & 1–2 GeV at T=Tc � 1:5–3. The statistical
uncertainties of the transport peaks observed in the vector
channel are shown in the left plot of Fig. 13. The statistical
uncertainties on the amplitude of the peak are relatively
small. The charm diffusion coefficient is related to the
amplitude of the transport peak at vanishing frequency
through the Kubo formula [Eq. (9)]. The current estimate
for the charm diffusion coefficient D is summarized in the
right plot of Fig. 13. The boxes stand for the statistical
uncertainties and the error bars reflect systematic uncer-
tainties obtained from the analyses discussed in the
Appendix. The bound for the systematic uncertainties for
charm diffusion coefficients at all temperatures is obtained

FIG. 11 (color online). Statistical uncertainties of output spectral functions in PS (left) and Vii (right) channels at all available
temperatures. The shaded areas are statistical errors of amplitudes of output spectral functions from Jackknife analyses and the solid
lines inside the shaded areas are mean values of spectral functions. The horizontal error bars at the first peaks of spectral functions at
0:73Tc and 1:46Tc stand for the statistical uncertainties of the peak location obtained from Jackknife analyses.

TABLE VII. The locations of the first peaks in different chan-
nels obtained from MEM. Errors are estimated from the
Jackknife analyses. The numbers for peak locations are in units
of GeV.

Channel

T PS Vii SC Aii

0:73Tc 3.31(4) 3.48(9) 4.5(1) 4.26(5)

1:46Tc 4.1(5) 4.7(3) 7(1) 5.1(2)
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from the analysis of the default model dependence dis-
cussed in the Appendix and is taken from the lowest and
highest values in Figs. 14, 15, 18, and 19. The resulting
numbers are listed in Table VIII. We find that the mean
value of 2�TD is around two at all three temperatures
above Tc. As the quark number susceptibility �00 increases
faster with temperature than the amplitude of the transport
peak, the mean values of 2�TD increases only slightly
with temperature. The charm diffusion coefficient obtained
at 1:46Tc is the most reliable one among the three tem-
peratures above Tc since more prior information is known
at this temperature as discussed in Sec. IVE. At 2:20Tc and
2:93Tc, due to the lack of precise prior information and a
fewer number of data points that can be used in the MEM

analyses, the uncertainties on the charm diffusion coeffi-
cient thus might be underestimated.
To close this section, we have studied charmonium

spectral functions in different channels at temperatures
below and above Tc. The general properties of ground
states at T < Tc can be reproduced by the MEM analysis
of temporal correlation functions. The extracted peak
location of the ground state is close to the physical value
and is very reliable. However, the width of the ground state
peak cannot be reproduced in the MEM analysis with
the current quality of the temporal correlator data. Thus
the signature for the dissociation of charmonium states
is the shift of the first peak location and relative broad-
ening of the first peak. Comparing spectral functions
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FIG. 13 (color online). Left: statistical uncertainties of transport peaks at T > Tc. Right: the resulting charm diffusion coefficients.
The boxes stand for statistical error estimated from Jackknife method while the bars stand for systematic uncertainties from MEM
analyses. The numbers for charm diffusion coefficients are listed in Table VIII.

FIG. 12 (color online). Same as Fig. 11 but for SC (left) and Aii (right) channels.
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below and above Tc, our MEM analyses suggest that both
the Swave states (�c and J=c ) and P wave states (�c0 and
�c1) are melted already at 1:46Tc. The charm diffusion
coefficient is found to be compatible with zero at T < Tc

and around 1=�T at our available temperatures above Tc.

VI. CONCLUSIONS

We have investigated the properties of charmonium
states at finite temperature in quenched QCD on large
isotropic lattices. The standard Wilson plaquette action
for the gauge field and the nonperturbatively OðaÞ im-
proved clover fermion action for charm quarks were used
in the simulation. In the current study lattices with three
different lattice spacings were used to control cutoff effects
in the charmonium correlators and spectral functions.
Since the use of a temporal extent with a large number of
Euclidean time slices is a very important ingredient in the
current study, we calculated charmonium correlators on the
finest lattices (a ¼ 0:01 fm) with relatively large lattice
sizes of 1283 � 96, 1283 � 48, 1283 � 32 and 1283 � 24
at 0:73Tc, 1:46Tc, 2:20Tc and 2:93Tc, respectively.

At T & 0:73Tc we found stable and reliable ground state
peaks of charmonium states from MEM analyses, in which
the peak locations are almost the same as the correspond-
ing hadron masses determined from the large distance
behavior of spatial correlation functions at the same tem-
perature. However, the width of the ground state peak still
cannot be interpreted as the physical width of hadron
states. Thus the dissociation of the ground states in the
current study is signaled by the shift of the peak locations
and the relative broadening of the width. At T > Tc we first
calculated the reconstructed correlation function directly
from the correlator data at T < Tc. The curvatures of the
differences between the measured correlators and the re-
constructed correlators indicate that there are obvious ther-
mal modifications to spectral functions at T � 1:46Tc in all
channels. However, it is hardly possible to distinguish the
zero mode contribution and the thermal modification of
the bound states in the spectral function from the study at
the correlator level alone. We then advanced to the analysis
on the spectral functions using the MEM. We utilized an
improved integral kernel to avoid the instability of MEM in
the very low frequency region. We compared the output

spectral functions from lattices with three different lattice
spacings and concluded that cutoff effects are small.
Results on our finest lattice, which are the most reliable
ones, thus should not be affected by severe cutoff effects.
Using the correlation functions on the finest lattices, we
studied the variation of the output spectral functions using
different default models both below and above Tc. We
checked the systematic uncertainties arising from the num-
ber of data points used in the MEM analysis, the lattice
cutoff effects present at short distances, and the depen-
dence on the quark mass threshold of the free lattice
spectral functions. Statistical errors of the spectral func-
tions are estimated using a Jackknife analysis. By compar-
ing the spectral functions below and above Tc, our analyses
suggest that both P wave states (�c0 and �c1) and S wave
states (J=c and �c) are dissociated already at 1:46Tc.
The determination of dissociation of J=c and �c al-

ready at 1:46Tc is quite different from previous lattice
QCD studies [10–16], which predicted the 1S charmonium
states to be dissociated at T * 2Tc. Since most of the
previous results are obtained on anisotropic lattices
[11–16], lattice cutoff effects may strongly affect the phys-
ics deduced from the correlation functions. The variational
method approach used in Ref. [14,15] is a good way to
enhance signals of hadron states which are well known to
be there, e.g. the ground and excited hadron states at zero
temperature, and will also contribute to a spectral decom-
position of thermal correlation functions. However, the
crucial question at finite temperature is not whether these
states do contribute. Most important is the magnitude of
such a contribution. This does get modified in a variational
approach and it is thus difficult to draw firm conclusions on
charmonium melting from variational approaches. Several
earlier studies based on the MEM analysis implemented an
unimproved integral kernel, which introduces an instability
in the MEM algorithm in both low and high frequencies
[10,11,16]. Most importantly, we have doubled the number
of points in the temporal direction compared to our pre-
vious study on an isotropic lattice [10], and have reduced
the spatial lattice spacing by about a factor of 4 or more
compared to studies performed on anisotropic lattices
[11–16]. Comparing the number of points in the temporal
direction in our study to the studies on anisotropic lattices,
N� in our study is about 1.5 times larger than that in
Ref. [11–15] and compatible with that in Ref. [16].
Moreover, a very detailed MEM analysis on the default
model dependences and the systematic/statistical uncer-
tainties has been performed in the current study. All this
supports a better control over systematic effects in our
analysis that suggests that both S and P wave states dis-
appear at T � 1:46Tc. Obviously it does not necessarily
mean that all the charmonium states are dissociated at the
same temperature. The magnitude of thermal effects in the
spectral functions is observed to vary in different chan-
nels. This may indicate that the charmonium states will

TABLE VIII. Charm diffusion coefficients and quark number
susceptibilities �00 above Tc. The ‘‘stat.’’ stands for statistical
errors estimated from Jackknife method and the ‘‘sys.’’ denotes
systematic uncertainties obtained from MEM analyses in
Appendix A.

T=Tc 2�TD �00=T
2

1.46 1:8	 0:7ðstatÞþ1:3
�0:5ðsysÞ 0.20894(1)

2.20 2:0	 0:4ðstatÞþ0:6
�1:2ðsysÞ 0.46900(2)

2.93 2:3	 0:4ðstatÞþ0:2
�1:1ðsysÞ 0.66112(4)
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dissociate at different temperatures. The fate of charmo-
nium states at temperatures between 0:73Tc and 1:46Tc,
however, remains unknown for us due to the lack of lattice
data sets with appropriate temperature values in our study.
A lattice QCD study of the screening masses extracted
from spatial charmonium correlation functions suggests
that �c and J=c may survive at T & 1:5Tc in the hot
medium [64,65]. Furthermore, several lattice QCD studies
of charmonia suggest that �c0 and �c1 melt just above Tc

[10,12,13]. The sequential suppression scenario [66–68]
thus is not in contradiction to our results and, in fact,
appears to be in accordance with the disappearance of
bound states in the bottomonium ‘‘spectral function’’
from the latest experiment results [69]. Thus lattice
calculations of the temporal correlation function of char-
monia at lower temperatures would be interesting and
crucial to locate the dissociation temperatures.

For the first time the charm diffusion coefficient has
been estimated on the lattice directly from an analysis of
spectral functions. The charm diffusion coefficient D is
found to be compatible with zero at T < Tc and is about
two times larger than the results from AdS/CFT calcula-
tions, 1=2�T at T > Tc. However, more efforts are needed
to reduce the current uncertainties on the charm diffusion
coefficient obtained from lattice QCD calculations espe-
cially at higher temperatures. The pQCD results seem to
approach to our findings when higher order corrections are
included [25]. The heavy quark diffusion coefficients ob-
tained from a T-Matrix approach with the internal energy,
on the other hand, are close to our results [70]. Recently
another approach to calculate the heavy quark diffusion on
the lattice [71] has been suggested and an exploratory
study has been carried out in Ref. [72]. Further progress
along this line has been made in Ref. [73,74], in which
the heavy quark diffusion constant multiplied by 2�T,
i.e. 2�TD, is obtained to be in the range of (3.5–5) at
T � 1:5Tc. It is quite impressive to see that this estimate
for the heavy quark diffusion coefficient is close to our
estimate of the charm diffusion coefficient, although to-
tally different approaches have been used. Besides the
Maximum Entropy Method, a Fourier method especially
designed for addressing the low frequency behavior of
spectral functions has been introduced and has been used to
estimate the electrical conductivity [75,76]. It would be
interesting to implement this method also for the heavy
quark sector.

In this study the effects of dynamical quarks are not
included. The general picture concerning the properties of
charmonium states might not change significantly as con-
cluded from the study of charmonium states in two flavor
QCD [12]. However, in the medium with sea quarks there
exists a D �D threshold and one might expect charmonium
states to dissociate at lower temperatures. Moreover, it is
difficult to predict how the dissociation temperatures are
influenced by the change of the pseudo critical temperature

Tc, as Tc becomes smaller when dynamical quarks are
included in the system [77]. For the charm diffusion coef-
ficient, one knows that at sufficiently high temperature
where perturbative QCD calculations are applicable
2�TD becomes smaller when sea quarks are included
[25]. So far there are no studies that explore the charm
diffusion coefficient in lattice QCD with dynamical quarks
included.
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APPENDIX A: UNCERTAINTIES OF THE
SPECTRAL FUNCTIONS

In the appendix we show the default model dependences
and various systematic uncertainties of the charmonium
spectral functions. For illustration we will only focus on
the Vii channel as the uncertainties in the other channels
are very similar. The basic settings of MEM used here are
the same as what we mentioned in Sec. V if without addi-
tional description. As mentioned in Sec. V, MEM cannot
reproduce the correct width of the resonance but gives a
stable and reliable ground state peak location of the spec-
tral functions, so the signal for the dissociation of charmo-
nium states is the shift of the peak location and relative
broadening of the peak at different temperatures.
The appendix is organized as follows: we will first show

the default model dependences of output spectral functions
in Appendix A 1. The main point to check is that how the
first peak location of the output spectral function changes
when resonance peaks with different peak locations are
provided in the default model. Then we will study the
systematic uncertainties of the output spectral function
from MEM in Appendix A 2.

1. Default model dependences

Because of the limited number of correlator data points
in the temporal direction, the MEM analysis becomes more
difficult at temperatures above Tc. As has been done at
temperatures below Tc, to check the reliability of the out-
put spectral functions from the MEM analysis, the default
model dependence test is always the first thing one needs to
do. In principle one should put as much physical informa-
tion into default models as possible. This rule leads to a
very straightforward default model dependence test for the
spectral functions above Tc. That is to fully benefit from
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the two limits which we already know quite well: the free
lattice spectral function at very high temperature and the
spectral function obtained from MEM at a temperature
below Tc. To put these pieces of information into the default
model, one might be able to check to which limit, free or
confinement limit, the output spectral function is closer.
However, due to the fact that the spectral function at
T < Tc has a sharp ground state peak and the quality of
correlator data at temperature above Tc is not sufficient, the
MEM output basically reproduces the spectral function
below Tc with negligible changes at all three available
temperatures above Tc. Thus in the following default model
dependence test we will not use the full information of the
spectral function at T < Tc into the default model but rather
the information of the peak location of the ground state
(‘‘DM2’’s in the following analyses). Besides this, we will
also use the free lattice spectral functions with some addi-
tional resonance peaks and/or transport peaks. The signature
for the dissociation of resonances is then characterized by
the shift of resonance peak location and relative broadening
of the peak at different temperatures. The default modes
used in the current study are summarized in Table IX.

Because of the existence of a diffusion contribution to
the Vii channel one has to check the dependences both on
variations of the resonance part and diffusion part in the
default models. Then for the default model dependence test
we first fix the large ! behavior of the default model by
using the rescaled free lattice spectral function and vary the
information on the very small! part, i.e. the transport peak
described in Eq. (19). The default models used here cor-
respond to ‘‘DM1,’’ ‘‘DM2’’ and ‘‘DM3’’ in Table IX
without resonance parts. We show the result in Fig. 14.
The upper panel of Fig. 14 shows �ð!; TÞ=!2 as a function
of ! in the large ! region while the lower panel of Fig. 14
shows �ð!; TÞ=ð!TÞ as a function of !=T in the very low
frequency region. ‘‘DM’’s are the input default models
while ‘‘spf’’s are the corresponding MEM outputs. In
particular, the transport parts of ‘‘DM1’’ in the MEM
analysis at 1:46Tc are parameterized in the Breit-Wigner
form with 2�TD ¼ 3:6 and M ¼ 1:8 GeV obtained from

the fit to the difference between the measured correlator
and the reconstructed correlator by using a Breit-Wigner
ansatz discussed in Sec. IVE. Because of the interplay
between the contributions from the diffusion and resonance
parts it is difficult to make an estimate of the charm
diffusion constant directly on the correlator level at the
two highest temperatures. Here we simply apply the same
value of charm diffusion D estimated at 1:46Tc to the
default models at 2.20 and 2:93Tc. Looking at the output
spectral functions at each temperature, we find that the
variation of the very small ! part of the default model
gives negligible effects to the intermediate ! part (reso-
nance part) of the output spectral functions. Concerning the
temperature dependence of the resonance peak, the upper
panel of Fig. 14 shows that, already at 1:46Tc, the ground
state peak becomes much broader and its peak location is
shifted to larger energies compared to that at 0:73Tc (see
Fig. 9). When going to the higher temperature of 2:20Tc

one can hardly see a bump in the interesting ! region. At
our highest temperature available, 2:93Tc, we find that the
large! part more or less resembles the shape of free lattice
spectral functions and no peak structure is observed. For
the transport peak shown in the lower panel of Fig. 14, the
prior information of charm diffusion D estimated from
Gð1=2Þ �Grecð1=2Þ is put into very low frequency part
of the default models. MEM shows the sensitivity to the
very low frequency part and the output spectral functions
differ from the default model in this very small energy
region. We observe that the output transport peak has a
weak dependence on the input default models at all three
temperatures above Tc. And the amplitude of the transport
peak at vanishing energy increases with temperature.
After studying default model dependences by varying

the transport peak in the default model on the output
spectral function in the intermediate ! (resonance peak)
region in Fig. 14, we now fix the very low frequency
(transport peak) part of the default model and vary the
intermediate ! (resonance part) behavior of the default
models. The default models in the very low frequency part
are fixed to have the same behavior as ‘‘DM1’’ in Fig. 14 at
each temperature. Again note that the transport part
of ‘‘DM1’’ is parametrized as 2�TD ¼ 3:6 and M ¼
1:8 GeV as discussed in Sec. IVE. We test four different
default models as listed in Table IX: ‘‘DM1’’ is a rescaled
free spectral function with a transport peak, ‘‘DM2’’ is a
rescaled free spectral function with a transport peak sup-
plemented with a resonance peak whose peak location is
the same as that of the spectral function at 0:73Tc, ‘‘DM3’’
and ‘‘DM4’’ are basically the same as ‘‘DM2’’ but with a
resonance peak whose peak location is smaller and larger
than that of the spectral function at T < Tc, respectively.
We show the default models and their corresponding out-
put spectral functions (‘‘spf’’s) divided by !2 as functions
of ! in the upper panel of Fig. 15. At 1:46Tc there is a
minor default model dependence of the output spectral

TABLE IX. The default models investigated in the current
section. ‘‘flspf’’ stands for the free lattice spectral function,
‘‘res’’ stands for the resonance peak structure according to
the relativistic Breit-Wigner distribution, ‘‘res1’’, ‘‘res2’’ and
‘‘res3’’ are resonance peaks with the peak locations equal,
smaller and larger than the corresponding resonance peak loca-
tions in each channel at T < Tc. ‘‘BW’’ is a Breit-Wigner like
distribution according to Eq. (19) and may vary in the width and
amplitude in different default models.

Default model Channel Vii

DM1 flspf þ BW
DM2 flspf þ BWþ res1
DM3 flspf þ BWþ res2
DM4 flspf þ BWþ res3
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functions, but the trend is similar: the peak location is
shifted to a location larger than the peak location of the
spectral function at 0:73Tc (peak location shown in
‘‘DM2’’) and the width becomes larger. At 2:20Tc the
default model dependence is a little stronger. This may
be due to the smaller number of data points in the temporal
direction and lower statistics. However, outputs from
MEM still have unique differences from input default
models and they all have a trend to resemble the shape of
the free spectral function. At 2:93Tc we have only 9 points
in the analysis and together with the issue of the transport
peak, the default model dependence is considerably
stronger than that in the analysis at the other temperatures.
Based on the results from 1.46 and 2:20Tc we do not expect
the peak location of the resonance peak at 2:93Tc shifts to
smaller energies compared to the case at 0:73Tc and would
rather expect that the spectral function at this temperature
is much closer to the spectral function in the noninteracting
case. In the lower panel of Fig. 15 we enlarge the very low
frequency part of the upper panel in Fig. 15 and show

�ð!Þ=ð!TÞ as a function of !=T. Unlike the case in the
lower panel of Fig. 14, the change of the default model in
the intermediate ! part (resonance part) has a relatively
large effect on the output in the very low frequency region.
It could be mainly due to the compensation of the very low
frequency part to the changes of corresponding resonance
parts. Without the quantitative description of the transport
peak we can observe a trend that the amplitude of the
transport peak becomes larger with increasing temperature.
In a short summary, in this subsection we have checked

the reliability of the output spectral function in the Vii

channel from the MEM analysis by varying the resonance
part and the transport part of input default models. At
1:46Tc, the default model dependence of the resonance
part is relatively weak and the resonance peak observed
at T < Tc generally shifts to high frequency region and
becomes much broader. At higher temperatures, the default
model dependences of the resonance part becomes stronger
due to the insufficient qualify of the temporal data, how-
ever, the general trend is that no clear peak structures are
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FIG. 14 (color online). Default model dependences (varying the transport peak) of spectral functions in the Vii channel at
temperatures above Tc. At each temperature the very large ! part of the default model is fixed to the behavior of the free lattice
spectral function. Upper panel: �ð!; TÞ=!2 as a function of !, Lower Panel: a blowup of plots in the upper panel in the very low
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MEM outputs.
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found and the spectral function gets closer to the
noninteracting case. In the very low frequency region,
we supplied the transport peak parameterized by
the estimation in Sec. IVE. MEM showed certain sensi-
tivity to the transport peak. The transport peak in the Vii

channel has weak dependence in the default models when
only the transport peak in the default model is changed
while it has relatively large default model dependence
when only the resonance part in the default model is
changed. The general trend is that the amplitude of
the transport peak is increasing with the increasing
temperature.

2. Systematic uncertainties

In this subsection we explore the systematic uncertain-
ties of the spectral function from the MEM analyses. This
study includes lattice spacing dependencies, a comparison
of the spectral function below and above Tc for a same
number of data points used to extract the spectral function,
lattice cutoff effects at small distances and the dependence

on the threshold of the free spectral function used in the
default model.
First we look into the lattice spacing dependence of the

output spectral function on our available lattices. We show
spectral functions from the Vii channel at temperatures
below Tc in Fig. 16. The results are obtained from the
lattices with a�1 ¼ 18:97 GeV (� ¼ 7:793, 1283 � 96),
a�1 ¼ 12:86 GeV (� ¼ 7:457, 1283�64) and a�1 ¼
6:43 GeV (� ¼ 6:872, 1283 � 32). The plot shows the
behavior of spectral functions in the low frequency region
(2 � ! � 10 GeV) while the small plot inside shows the
behavior in the whole frequency region. One can observe
that with smaller lattice spacing the lattice cutoff effects
(the cusps in the high frequency region) can be well
separated from the physically interesting frequency
region. As seen from the low frequency region, the width
of the ground state peak becomes narrower with decreasing
lattice spacing. We also find that the second peak should be
lattice or MEM artifacts since its locations varies a lot
from lattice spacings and details in this frequency region
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Upper panel: �ð!; TÞ=!2 as a function of !, Lower Panel: a blowup of plots in the upper panel in the very low frequency region but
plotted as �ð!; TÞ=ð!TÞ versus !=T. ‘‘DM’’s are the input default models while ‘‘spf’’s are the corresponding MEM outputs.
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can not be resolved on the coarsest lattices used in
this study.

One always has to compare spectral functions at T > Tc

to those at T < Tc to study temperature effects. As number
of correlator data points at higher temperatures is reduced,
we study the dependence of output spectral functions
on the number of data points used in the MEM analysis
at T < Tc, we use the same number of data points below
and above Tc to have similar systematic uncertainties and
to analyze thermal modifications. Here we restrict the
default model to have the behavior of the free lattice

spectral function. At T ¼ 0:73Tc we select the data points
in the temporal direction as to start at ~�min ¼ 4 and
be separated by a step length of �~�. For instance when
�~� ¼ 2we select data points of ~� ¼ 4; 6; 8; . . . ; 48, in total
13 points. So the number of data points used with �~� ¼ 2,
3, 4 at 0:73Tc corresponds to the number of data points
used at 1:46Tc, 2:20Tc and 2:93Tc, respectively. We show
the results for the Vii channels in the left plot of Fig. 17.
‘‘DM’’ labels the input default model and the other lines
are the output spectral functions with different values of
�~�. We observe negligible dependences on the number
of data points used in the interesting frequency region.
There are minor changes on the amplitudes of the ground
state peak but the ground state peak location always
remains the same.
To remove the discretization effects, we normally omit

some data points at very small distances. However, it is not
very certain how many data points should be omitted or up
to what value of ~�min (the shortest time slice ~� used in the
MEM analyses) the physics about the bound states is
concerned. Thus we check the dependence of the output
spectral function on ~�min. We vary ~�min to be 4, 7, 16, 24
and 36 at 0:73Tc to check the effects for the same default
model. The default models are fixed in each channel. The
results for the Vii channel are shown in the right plot of
Fig. 17. ‘‘DM’’ labels the input default model and the other
lines are output spectral functions corresponding different
values of ~�min. We observe that the large ! (! * 5 GeV)
behavior of the output spectral functions, which is most
sensitive to the small distance part of the correlation func-
tion, changes with ~�min and in the small ! region (! &
5 GeV) the peak location of the ground state peak stays
almost unchanged even with ~�min ¼ 36. Thus the ~�min

dependence of the spectral function in the Vii channel in
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FIG. 17 (color online). Left: the dependence of the output spectral function on the number of correlator data points used in the MEM
analysis at T ¼ 0:73Tc. All the points included start at ~�min ¼ 4. �~� is the step size between the neighboring data points selected. For
instance, �~� ¼ 4means ~� ¼ 4; 8; 12; . . . ; 48 are used. Right: the ~�min (number of data points omitted in the short distance) dependence
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functions with different values of �~�.
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the interesting frequency region is very small at T < Tc on
our finest lattice.

After exploring the uncertainties that can be learned
from correlators at T < Tc, we then move on to study the
uncertainties of output spectral functions at T > Tc.
Following the spirit we have done at T < Tc, we will
also check the dependences on the number of data points
omitted from the short distances. Besides that we will
check the dependences on the threshold of the continuum
through the charm quark mass am.

We first show the results for the dependence of the
output spectral function on the number of correlator data
points omitted at short distances ~�min in Fig. 18. The upper
panel shows �ð!Þ=!2 as a function of ! at three available
temperatures above Tc while the lower panel focuses on the
transport behavior of the spectral function in the low
frequency region and has �ð!Þ=ð!TÞ as function of
!=T. The default models (‘‘DM’’) are the same in the
whole frequency region at each temperature. ‘‘DM’’ is
provided by a rescaled free lattice spectral function and
an additional transport peak. ‘‘DM’’ is also the same as

‘‘DM1’’ in Fig. 14 at each temperature. Note that the
transport part of ‘‘DM’’ is parameterized in the Breit-
Wigner form with 2�TD ¼ 3:6 and M ¼ 1:8 GeV. As
seen from the upper plot of Fig. 18, at 1:46Tc, from ~�min¼4
to ~�min ¼ 7 and 10, the peak location of the ground state
peak seems to move a little further to larger energy while at
both 2:20Tc and 2:93Tc the output spectral functions show
negligible changes due to the variation of ~�min ¼ 4, 6, and
7. In the lower panel of Fig. 18 the very low frequency
behavior of the spectral function is shown. Note that
‘‘DM’’ in the current frequency region is also fixed at
each temperature. At all three temperatures the output
transport peaks show minor dependences on ~�min, which
indicates that the information of the transport peak is
mainly enclosed in the large distance part of the correlation
function.
Because of the insensitivity of MEM on the very large!

behavior of the spectral function, as we observed from, e.g.
the left panels of Fig. 9, the outputs always reproduce the
very large ! behavior of the input default models, which
in our case normally is the free lattice spectral function
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multiplied by a certain constant to reproduce the value of
Gð~�minÞ. However, we do not really know the exact behav-
ior of the large ! part as well as the onset point of the
continuum. We thus check the effects caused by different
quark masses in the default models. The different quark
masses am have an effect on the threshold and the structure
of the free spectral function. In Fig. 19 we show the
dependence of the output spectral function in the Vii chan-
nel on the quark mass am at T > Tc. The upper panel of
Fig. 19 shows the large ! behavior of the spectral function
and the lower panel highlights the transport peak part.
Here we test with free lattice spectral functions having
am ¼ 0:06 (‘‘DM1’’), am ¼ 0:04 (‘‘DM2’’) and am ¼ 0
(‘‘DM3’’) such that GDMð~� ¼ 4; TÞ=Gð~� ¼ 4; TÞ ¼ 1.
Here am ¼ 0:06 is the quark mass obtained from the
running quark mass on the lattice (see Table III) and
‘‘DM1’’ is the same as ‘‘DM1’’ in Fig. 18. The rising
side of the ground state peak starts to be nonzero following
the trend of the default model already at 1:46Tc and the
amplitude of the ground state peak also changes with
different values of am. However, the location of the first

peak remains almost the same and it is much larger than the
ground state peak location at 0:73Tc. At 2:20Tc, the output
spectral functions ‘‘spf2’’ and ‘‘spf3’’ from the default
models ‘‘DM2’’ and ‘‘DM3’’ have a small bump structure
other than ‘‘spf1’’. At 2:93Tc, ‘‘spf1,’’ ‘‘spf2’’ and ‘‘spf3’’
have negligible differences when ! * 3 GeV. As seen
from the lower panel of Fig. 19, with decreasing am, in
general the transport peak’s amplitude becomes smaller
and its width becomes larger at all the three temperatures.
At 1:46Tc the change of the transport peak of ‘‘spf1’’ is
very small, and when going to higher temperatures, 2.20
and 2:93Tc, the deviations become larger, probably as a
consequence of the larger differences of ‘‘spf’’s in the
frequency region of 1 & ! & 7 GeV.
In a short summary of this subsection, we have studied

the dependence of output spectral functions on the lattice
spacing and conclude that our finest lattice gives the most
reliable results. To better compare the spectral function
below and above Tc, we used the same number of data
points at below and above Tc in the MEM analysis and
observed negligible difference between the cases with and
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without the same number of data points used. We checked
lattice cutoff effects by removing several data points from
the short distance and found small dependences of low
frequency part of spectral function on the short distance of
the correlation function. It supports that spectral functions
in the resonance and transport peak region extracted from
MEM using our finest lattice really are physical and show
no major cutoff dependencies. We also checked the depen-
dences on the threshold of input free lattice spectral

function and found minor dependences in the resonance
part of the spectral function. So one basically sees that the
general picture in the Vii channel is not changed with
various different default models and different ways of
implementing the correlator data. The transport peak in
the Vii channel has a weak dependence on the threshold of
the free lattice spectral function at 1:46Tc and the depen-
dences at T > 1:46Tc become somewhat stronger due to
the limited available distances.
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