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The relation between the baryon number in QCD at nonzero chemical potential and the spectral density

of the baryon number Dirac operator, �0ðDþmÞ, is examined. We show that extreme oscillations of the

spectral density, caused by the QCD sign problem, are essential for the formation of the average baryon

number when �>m�=2. We compute the oscillating region of the spectral density using chiral

perturbation theory. The extreme oscillations have a microscopic period and are resolved using random

matrix theory.
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I. INTRODUCTION

Lattice QCD [1] is our best nonperturbative tool to study
the phase structure of strongly interacting matter as a
function of temperature. At low temperature the formation
of the chiral condensate, which signals the spontaneous
breaking of chiral symmetry, can be read of from the
density of eigenvalues of the lattice Dirac operator at the
origin. This useful link between the chiral condensate and
the eigenvalues of the Dirac operator is known as the
Banks-Casher relation [2].

At nonzero chemical potential, �, the Monte Carlo
method, which forms the basis of Lattice QCD simulations,
is hampered by the sign problem: The fermion determinant
of the Dirac operator, and consequently the measure on
which we would like to perform Monte Carlo sampling,
takes complex values; see for example the reviews [3].
Also the Banks-Casher relation [2] breaks down at nonzero
chemical potential. The new relation [4,5], which replaces
the Banks-Casher relation, explicitly shows the intimate
connection between the sign problem and the spontaneous
breaking of chiral symmetry: it is a region with extreme
oscillations of the eigenvalue density of the Dirac operator
[6,7], caused by the sign problem, which leads to the
discontinuity of the chiral condensate in the chiral limit
at nonzero chemical potential. The oscillations have a
period of order the inverse volume and an amplitude which
is exponentially large in the volume. The region within
which the oscillations take part can be computed using the
mean field approximation in chiral perturbation theory [8]
but as the period of the oscillations are on the microscopic
scale, set by the inverse volume, one needs the exact
microscopic eigenvalue density [6,7] in order to resolve
them. For a review see e.g. [9].

The new relation [4,5], which replaces the Banks-Casher
relation, not only gives a direct insight in the way the chiral
condensate is formed in unquenched QCD at nonzero
chemical potential, it also solves the long standing problem
of how the eigenvalues of the Dirac operator,D, can have a
strong dependence on the chemical potential. While at low
temperature, the partition function is independent of the

chemical potential when � is less than a third of the
nucleon mass (in [10] this was coined the Silver Blaze
problem). The relation between a region of the eigenvalue
density with extreme oscillations and the spontaneous
breaking of chiral symmetry has also been established in
1dQCD [11] as well as in two color QCD with nondegen-
erate quark masses [12].
Here we show that the mechanism behind the new

relation [4,5] is not restricted to the chiral condensate
and the spectral density of D: It is the exact same mecha-
nism that links the baryon number density to the spectral
density of baryon number Dirac operator, �0ðDþmÞ.
The average baryon number is given by

VnBð�Þ ¼ d

d�
logZð�Þ ¼

�
Tr

1

D0ðmÞ þ�

�
; (1)

where the baryon number Dirac operator is, D0ðmÞ �
�0ðDþmÞ. The average trace in (1) can be expressed as
the integral

VnBð�Þ ¼
Z
C

d2�

�þ�
�ð�; ��Þ; (2)

where � are the eigenvalues of the baryon number Dirac
operator and � is the spectral density of the baryon number
Dirac operator.
We will compute the eigenvalue density of D0ðmÞ and

demonstrate that it is again a strongly oscillating region of
the unquenched eigenvalue density which ensures the cor-
rect physical behavior of the average baryon density. In
order to establish this result we will investigate the struc-
ture of the spectral density of the baryon number Dirac
spectrum using chiral perturbation theory (�PT) and
random matrix theory.
In quenched simulations a strongly oscillating region

of the eigenvalue density is not possible, since the
quenched theory is free from the sign problem. In such
simulations the baryon number density therefore be-
comes nonzero when the chemical potential reaches
half the pion mass rather than at a third of the baryon
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mass as expected for unquenched QCD. This early onset
of the baryon density in the quenched theory has been
observed on the lattice [13,14] and in a Uð1Þ model [15].
It was also understood analytically [16] within a random
matrix model (RMM).

Before we turn to the actual computation of the eigen-
value density of the baryon number Dirac operator we
give, in Sec. II, a simple example which illustrates the
mechanism involving a strongly oscillating density. Then
in Sec. III we will use a mean field approach to describe the
phase diagram of the spectrum. Finally, in Sec. IV, we will
use a RMM to show that the extreme oscillations of the
microscopic eigenvalue density lead to the expected
behavior of the average baryon number density.

II. AN EXAMPLE WITH OSCILLATING REGIONS

In this section wewill give a simple example to illustrate
the point that oscillations with a microscopic wavelength
can remove the unphysical early onset of the average
baryon number at � ¼ m�=2 observed in the quenched
theory.

First, let us consider the nonoscillating eigenvalue den-
sity corresponding to the quenched case

�Q
Exðx; y;m�Þ ¼ 1

�
F2
�V

�
1þ 3m4

�

16x4

�
�ðjxj �m�=2Þ; (3)

where x and y are the real and imaginary part of the
eigenvalue �; see Fig. 1. This spectral density results,
through (2), in a baryon density, which is zero for
�<m�=2 and nonzero for �>m�=2,

VnEx;QB ð�Þ¼
Z
dx
Z
dy

1

xþiyþ�

� 1

�
F2
�V

�
1þ3m4

�

16x4

�
�ðjxj�m�=2Þ

¼F2
�V

Z
dxsignðxþ�Þ

�
1þ3m4

�

16x4

�
�ðjxj�m�=2Þ

¼2F2
�V

�
�� m4

�

16�3

�
�ðj�j�m�=2Þ: (4)

This is like the observed quenched baryon density; see
Fig. 2. Let us now illustrate the main point: The un-
quenched average baryon number is zero also when � is
in the range between half the pion mass and a third of the
nucleon mass because of two strongly oscillating regions.
In order to see how this works we extend the example as

�UnQ
Ex ðx;y;�;m�Þ¼�Q

Exðx;y;m�Þð1�eF
2
�VUðx;y;�;m�ÞÞ; (5)

with

Uðx; y;�;mÞ ¼ �ðyþ isignðxÞðjxj þ j�jÞÞ2 �m2
�

� ð4x2 �m2
�Þ�ðjxj �m�=2Þ; (6)

and where V is the four volume. Note that the amplitude
of the oscillations grows exponentially with V, and
that the period of the oscillations (determined by

e�2iysignxðjxjþj�jÞF2
�V) is of order 1=V.

The contribution to the average baryon density from the
oscillating part of the eigenvalue density can be evaluated
by a saddle point integration, in the large V limit. The
contour along the real y axis is deformed to go through the
saddle point y ¼ �isignðxÞðjxj þ j�jÞ. If the deformation

FIG. 1. Left panel: The phase diagram of the quenched baryon number Dirac spectrum in the complex eigenvalue �-plane. The
diagram has a strip of zero spectral density and width m� centered around the imaginary � axis. The normal phase is labeled by N and
� refers to pion condensed phase. The eigenvalue density is nonzero in the pion condensed phase. Right panel: Plot of the quenched
spectral density of the baryon number Dirac operator as a function of Re� (the density is independent of Im�). If m ¼ 0, the pion is
massless and the spectral density is represented by the dotted line.

J. R. IPSEN AND K. SPLITTORFF PHYSICAL REVIEW D 86, 014508 (2012)

014508-2



passes the pole at y ¼ iðxþ�Þ, then we add a contribution
for integration around the pole. We obtain

Z 1

�1
dy

eF
2
�VUðx;y;�;mÞ

xþ iyþ�
¼ 2�½�ð�Þ�ð�xÞ�ðxþ�Þ

� �ð��Þ�ðxÞ�ð�x��Þ�: (7)

It follows that the average baryon number is zero also for
�>m�=2

VnEx;UnQB ð�Þ ¼
Z dxdy

xþ iyþ�
�UnQ
Ex ðx; y;�;m�Þ ¼ 0: (8)

What we have learned from this example is that bounded
oscillating regions can remove the unphysical early onset
of the average baryon number at � ¼ m�=2. Below we
show, using �PT and random matrix theory, that this
mechanism is realized in unquenched QCD at nonzero �.

III. THE BOUNDARIES OF
THE OSCILLATING REGIONS

In this section we will investigate the phase diagram of
the baryon number Dirac spectrum by means of �PT at
mean field level. Our aim is to calculate the boundaries of
the oscillating regions. To do this we employ the replica
trick (see e.g. [17]), where n replica pairs consisting of
quarks and conjugate quarks have been introduced in the
partition function. The replica partition function is given
by the ensemble average of Nf quarks and n replica pairs,

ZNf;nð�;��;�;mÞ
¼hdetnðD0ðmÞþ�ÞdetnðD0ðmÞ���ÞdetNf ðD0ðmÞþ�Þi:

(9)

The spectral density of the baryon number Dirac operator
is obtained from the replica partition function by (see [18]

for a detailed explanation of how the density results from
the derivatives)

�Nf ð�;��;�;mÞ¼ lim
n!0

1

n
@�@�� logZNf;nð�;��;�;mÞ: (10)

Note that the chemical potential of the replica quarks, �,
corresponds to the eigenvalues of D0ðmÞ.
Wewill examine the partition functionZNf;nð�; ��; �;mÞ

to leading order in chiral perturbation theory. The chiral
Lagrangian to leading order is given by [19,20]

L eff ¼ �F2
�

4
TrD�UD�U

y ��

2
TrMðUþUyÞ; (11)

where� is the magnitude of the chiral condensate andF� is
the pion decay constant. The chemical potential enters
the QCD partition function as en external vector field,
B� ¼ 	�0B. To respect local invariance,B� can only appear
in the covariant derivative, see e.g. [21,22]

D�U ¼ @�Uþ i½U;B��: (12)

In the case where we have Nf quarks and n replica pairs

all with mass m and with chemical potential � and �,
respectively, then we have that

U 2 SUð2nþ NfÞ;
M ¼ mI2nþNf

and B ¼ diagð�In;���In; �INf
Þ:

(13)

A. The quenched theory

Here we look at the quenched theory, where Nf ¼ 0,

and the partition function (9) is given by the quenched
ensemble average of n replica pairs,

Znð�;��;mÞ¼ hdetnðD0ðmÞþ�ÞdetnðD0ðmÞ���Þi; (14)

where m is the mass of the replica quarks and � is the
complex chemical potential. The spectral density of the
baryon number Dirac operator is obtained as

�Nf¼0ð�; ��; mÞ ¼ lim
n!0

1

n
@�@�� logZnð�; ��; mÞ: (15)

In the mean field limit the free energy has a trivial linear
dependence on n. For this reason we can restrict ourselves
to n ¼ 1 in the following calculation. From (14) with
n ¼ 1 one sees that the chemical potential of replica quarks
corresponds to isospin chemical potential for real �. At low
temperature and �>m�=2 there will be a condensate of
quarks and conjugate quarks. One can interpret the quarks
and conjugate quarks as ‘‘up’’ and a ‘‘down’’ quarks, and
for this reason we will refer to the condensate of replica
quarks as the pion condensate.
The partition function Zn¼1ð�; ��; mÞ depends on the

chiral Lagrangian given in (11) and (12) with U2SUð2Þ,
M ¼ diagðm;mÞ and B ¼ diagð�;���Þ. The mean field
phase diagram, however, only depends on the static part
of the Lagrangian

FIG. 2. A plot of the quenched mean field baryon number
density (solid line). If m ¼ 0, then the pions are massless and
baryon density is represented by the dotted line.

BARYON NUMBER DIRAC SPECTRUM IN QCD PHYSICAL REVIEW D 86, 014508 (2012)

014508-3



Lstat ¼ F2
�

4
Tr½U;B�½Uy; B� ��

2
TrMðUþUyÞ: (16)

To find the mean field structure we use the ansatz,

U ¼ cos
 sin


� sin
 cos


 !
; (17)

which results in an effective Lagrangian

L stat ¼ �F2
�

2
ð�þ ��Þ2sin2
� 2m�cos
: (18)

The minima of this Lagrangian are easily found to be at
sin
 ¼ 0 and cos
 ¼ 2m�=F2

�ð�þ ��Þ2. This yields the
free energies

VLN
stat ¼ �2m�V;

VL�
stat ¼ �F2

�V

2
ð�þ ��Þ2 � 2m2�2V2

F2
�Vð�þ ��Þ2 ; (19)

for the normal and pion phase, respectively. The boundary
between the two phases is given by

ðRe�Þ2 ¼ 2m�

4F2
�

¼
�
m�

2

�
2
; (20)

where we used the Gell-Mann-Oakes-Renner relation for
the Goldstone mass [23], m2

� ¼ 2m�=F2
�. Using (15) we

find that the spectral density is zero in the normal phase and
given by

��ð�; ��; mÞ ¼ F2
�V þ 12m2�2V

F2
�ð�þ ��Þ4

¼ F2
�V

�
1þ 3m4

�

ð�þ ��Þ4
�
; (21)

in the pion phase. This structure is consistent with that
obtained from a RMM in [24,25]. Note that the phases of
the replicated partition function are directly linked to the
behavior of the eigenvalue density, hence we speak of the
phase diagram of the baryon number Dirac spectrum.
In terms of the microscopic parameters m̂ ¼ m�V and

�̂ ¼ �F�

ffiffiffiffi
V

p
we have

��ðx̂; m̂Þ ¼ F2
�V

�
1þ 3

4

m̂2

x̂4

�
; (22)

where x � Re�. A plot of the quenched phase diagram and
the spectral density is given in Fig. 1.

We will now look at the quenched average baryon
number,

VnMF;Q
B ð�;mÞ ¼

Z
C
d2�

�Q
MFð�; ��; mÞ
�þ�

; (23)

where � is the eigenvalues of D0ðmÞ, and the quenched
mean field spectral density is given by

�Q
MFð�; ��; mÞ ¼ F2

�V

�
1þ 3

4

m̂2

x̂4

�
�ðjxj �m�=2Þ: (24)

This is precisely the quenched density we used in the
example and again integrating over the real and imaginary
part of � leads to

VnMF;Q
B ð�̂Þ ¼ F2

�V
Z

dx̂
Z

dŷ
1

x̂þ iŷþ �̂

�
�
1þ 3m̂2

4x̂4

�
�ðjxj �m�=2Þ

¼ F2
�V

�
�̂� m̂2

4�̂3

�
�ðj�j �m�=2Þ: (25)

On Fig. 2 one sees that the quenched theory predicts a
nonzero baryon density for �>m�=2 as mentioned in the
introduction. For m ¼ 0 the mass of the Goldstone bosons
are zero. In this case the spectral density is a constant and
the average baryon density is linear (see Fig. 2).

B. The unquenched theory

We now consider the unquenched case. Just as in the
quenched theory the phases of the replicated partition
function are directly linked to the behavior of the eigen-
value density of the baryon number Dirac operator. In
mean field �PT the boundaries between the phases in the
unquenched phase diagram of the baryon number Dirac
spectrum are independent of the number of quark flavors
and replicas. For this reason we will concentrate on the
case n ¼ 1 and Nf ¼ 1. The replica partition function is

given by

ZNf¼1;n¼1ð�; ��; �;mÞ
¼ hdetðD0ðmÞ þ �Þ detðD0ðmÞ � ��Þ detðD0ðmÞ þ�Þi;

(26)

where m is the mass of both ordinary quarks and replicas,
� is the ordinary chemical potential and � is the replica
chemical potential. Because of the similarity with the
phase diagram of the (u, d, s) quark triplet [26], we will
refer to the condensate of ordinary quarks with replicas as
the kaon condensate. The masses of the Goldstone bosons
(pion and kaon) are in this case equal

m2
� ¼ m2

K ¼ 2m�=F2
�: (27)

The static chiral Lagrangian to lowest order is the same as
in equation (16) but with M ¼ mI3, B ¼ diagð�;���; �Þ
and of U 2 SUð3Þ. In this case we make an ansatz for the
Goldstone fields given by

U ¼ R1ð
ÞR3ð�Þ; (28)

where Rjð
Þ is a rotation by 
 about the j axis. This

implies that the static Lagrangian becomes
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Lstat ¼ �F2
�

4
½ð2ð�� þ�Þ2 þ ð�þ ��Þð�� � �þ 2�Þsin2�Þsin2
þ ð�þ ��Þ2sin2�ð1þ cos2
Þ�

�m�ðcos�þ cos
ð1þ cos�ÞÞ: (29)

We will focus on the minima with �> 0 and x ¼ Re� > 0, since the rest of the phase diagram is given by symmetry. For

 ¼ 0 there are two minima:

sin� ¼ 0 and cos� ¼ 2m�=F2
�ð�þ ��Þ2: (30)

These minima give the free energy of the normal and pion condensed phases

VLN
stat ¼ �3m�V; VL�

stat ¼ �m�V � F2
�Vð�þ ��Þ2

2
� 2m2�2V2

F2
�Vð�þ ��Þ2 ; ðx2 � m�=2F2

�Þ: (31a)

Note that the � and �� dependence at these minima are
exactly as in the quenched case, cf. (19). When these
minima are dominant the density is therefore identical
to that found in the quenched case. The unquenched
theory has a third minimum given by 
 ¼ �=2 and
cos� ¼ 2m�=F2

�ð�� þ�Þ2, which implies the free energy

VLK
stat ¼ �m�V � F2

�Vð�þ ��Þ2
2

� 2m2�2V2

F2
�Vð�þ ��Þ2 :

(31b)

The phase boundaries occur where the real part of the free
energy of two different phases are equal. The boundary
between the normal and pion condensed phase is given by
half the pion mass, just as in the quenched case. The formal
expression of the normal-kaon and the pion-kaon bounda-
ries are both given by a cubic equation in ŷ2 � Re�̂2 with

one real root and two complex conjugate roots. The struc-
ture of the kaon boundary can be seen on Figs. 3 and 4. For
�<m�=2 the unquenched phase diagram is identical to
the quenched case (see Fig. 1). This is exactly what is
expected, since the quenched theory trivially gives correct
predictions for the average baryon density as long as
�<m�=2. For �>m�=2 the kaon phase appears in the
unquenched spectral phase diagram; see Fig. 3. We expect
that the eigenvalue density is strongly oscillating within the
kaon region and that these oscillations cure the unphysical
behavior of the quenched baryon density, just as in the
example in Sec. II. A diagram which shows the phase
boundaries for �>m�=2 of the kaon condensed phase
are given in Fig. 4. The details of the oscillations of the
eigenvalue density are not resolved at the mean field level
because the period of the oscillations is of order 1=V.
Rather at mean field level one finds simply � ¼ 0 in the
kaon phase. In Sec. IVAwe will compute the microscopic
eigenvalue density using a RMM and show that the kaon
condensed phase is indeed a strongly oscillating region,
which exactly cancels the unphysical early onset of the
average baryon density observed in the quenched case.

C. The massless case

In the limit of zero quark mass an additional saddle point
is present. Here we analyze this case. In Sec. IVA will
compute the microscopic spectral density using a RMM
of massless quarks, and the results of the present subsec-
tion will allow us to compare directly between �PT and
the RMM.
At m ¼ 0 the static part of the chiral Lagrangian (16) is

given by

Lstat ¼ �F2
�

4
½ð2ð�� þ�Þ2 þ ð�þ ��Þ

� ð�� � �þ 2�Þsin2�Þsin2

þ ð�þ ��Þ2sin2�ð1þ cos2
Þ�; (32)

which has four minima. The minima and corresponding
free energies are

FIG. 3. Unquenched phase diagram in the Re�–� plane. The
labels N, �, and K refer to the normal, pion, and kaon condensed
phases. The dashed line marks the boundary between the normal
and kaon phase. To the right of the full line in the kaon phase the
eigenvalue density is expected to be strongly oscillating. Note
that the kaon condensed phase is introduced in the spectrum at
� ¼ m�=2, which is exactly where the unphysical behavior of
the quenched theory occurs.
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Phase 
 � Free energy, VLð
;�Þ
N 0 0 0

� 0 �
2 �2x̂2

K �
2 0 � 1

2 ðx̂� iŷþ �̂Þ2
~K �

2
�
2 � 1

2 ð�3x̂2 � ðŷþ i�̂Þ2Þ
The first three free energies can be found from the massive
mean field results (31) by setting m ¼ 0; the additional
minimum of the massless theory exist since all minima
trivially fulfill the constraints j cos
j � 1 and j cos�j � 1.

The free energy of the normal phase is never a global
minimum in the theory of massless quarks. The phase
diagram of the quenched theory is therefore everywhere
dominated by the condensate of the (massless) pions.
Unquenching introduces condensation between replica
and physical flavors. The phase boundary between these
phases and the pion condensed phase can be seen in the
right-hand panel of Fig. 4 as the solid lines. The circular
region is given by the boundary between pion and the ~K
phase, and in Sec. IVA we will show that this phase is
dominated by strong oscillations, which exactly cancels
the unphysical behavior of the quenched theory. In case of
massless quarks the kaon condensed phase is a false
minimum coming from the incomplete description of the
fermionic replica trick. For a critical discussion of the
replica method see [27,28]. The problem becomes explicit
within the supersymmetric technique (see [29,30] for an
introduction) where one obtains the density from

�Nf ð�;��;�;mÞ¼ lim
�0!�

@�@�� logZNfþ2j2ð�;��;�0;�0�;�;mÞ;
(33)

where

ZNfþ2j2ð�;��;�0;�0�;�;mÞ

¼
�
detðD0ðmÞþ�ÞdetðD0ðmÞ���Þ
detðD0ðmÞþ�0ÞdetðD0ðmÞ��0�Þdet

Nf ðD0ðmÞþ�Þ
�
:

(34)

The presence of both fermionic and bosonic determinants
leads to both ordinary and fermionic Goldstone modes in
the effective �PT formulation. Integrating out the non-
commuting variables gives a partially quenched partition
function of the form

ZNfþ2j2 ¼
Z

d�F

Z
d�BPe

�SFe�SB ; (35)

where d�F (d�B) is the integration measure of the com-
muting variables related to the fermionic (bosonic) quarks,
SF (SB) is the fermionic (bosonic) action, and P is a
prefactor depending on all variables. Evaluating the par-
tially quenched partition function (35) at the saddle points,
it may happen that the prefactor P is zero at some saddle
points, such that these saddles must be disregarded. In this
case the replica method can lead to wrong results, since
the replica method contain only the fermionic part of
the description and is ignorant to the prefactor P. In the
Appendix, the occurrence of this phenomenon will be
shown in the case of partially quenched theory of massless
Wilson fermions.
To summarize, we have computed the boundaries of the

oscillating regions of the eigenvalue density of the baryon
number Dirac operator within mean field chiral perturba-
tion theory. As suggested in the example of Sec. II we
expect that the unphysical early onset of the average
baryon number (see Fig. 2) will disappear due to oscilla-
tions inside the regions marked by K on Fig. 4. In the

FIG. 4. Left panel: Phase diagram for the spectrum of the baryon number Dirac operator with �>m�=2. The labels N, �, and K
refer to the normal, pion, and kaon condensed phases. The density is expected to be strongly oscillating within the regions marked by

K, which crosses the real axis at x ¼ � 1
2 ð��þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ 2m2
�

p Þ and x ¼ ��. Within the regions indicated by thin dashed lines, the

oscillations are expected to be exponentially suppressed. Right panel: Phase diagram for the spectrum of the baryon number Dirac
operator with massless quarks (m ¼ 0). The circular region contain strong oscillations (see Sec. IVA) and has radius �. The
noncircular border is an effect of the incomplete description of the replica method and indicates the boundary between the false
minimum and the pion phase.
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following section we show, using a RMM, that this is
indeed the case.

IV. THE OSCILLATIONS ON
THE MICROSCOPIC SCALE

The strong oscillations have a period of order 1=V and
we therefore need to compute the eigenvalue density on the
microscopic scale in order to resolve them. Here we carry
out this computation using a random matrix model for the
spectrum of the baryon number Dirac operator similar to
that of [24,25]. On the microscopic scale the random
matrix model is fully equivalent to chiral perturbation
theory, see e.g. [31] for a review of random matrix theory
at nonzero chemical potential.

The RMM partition function with Nf quark flavors, all

of massm, in a sector of zero topological charge is given by

Z
Nf;n
N ðf�fg;mÞ¼

Z
CN�N

d�ðWÞwðWÞYNf

f¼1

detðD0ðmÞþ�fÞ;

(36)

where �f are the chemical potentials of the different

flavors (which at the end all will be set equal to �), W is
a complexN � N matrix, andwðWÞ is the Gaussian weight
function

wðWÞ ¼ exp½�N TrWWy�: (37)

The baryon number Dirac operator, D0ðmÞ, is given by

D0ðmÞ ¼ iW mIN
mIN iWy

" #
; (38)

with IN the identity matrix. The equivalence between the
RMM and �PT holds in the microscopic limit of QCD
with nonzero chemical potential, where the microscopic
quantities

m̂ � mN and �̂ � �
ffiffiffiffi
N

p
(39)

are kept fixed in the thermodynamic limit, N ! 1,
see for example the review [31]. After the standard
Hubbard-Stratonovitvich transformation and saddle point
integration one sees that the RMM is equivalent to
the chiral partition function in microscopic limit, except

for an overall factor of eNfN�2
(see e.g. [24]), under the

identifications

m̂ ¼ mN $ m�V and �̂2 ¼ �2N $ �2F2
�V: (40)

It turns out to be a challenging task to write the partition
function (36) as an integral over the joint probability
density function of the eigenvalues of D0ðmÞ. For this

reason we will focus on the case of massless quarks, where
the oscillations are expected to be maximally important
and where we can immediately write down the joint proba-
bility density function of the eigenvalues of D0.

A. The RMM for massless quarks

The partition function (36) simplifies in the massless
limit,

Z
Nf

N ðf�fg;m ¼ 0Þ ¼
Z

d�ðWÞwðWÞYNf

f¼1

detðiW þ�fÞ

� detðiWy þ�fÞ: (41)

For Nf ¼ 0 we immediately recognize this as the partition

function for the ensemble originally solved by Ginibre
[32]. If we denote the eigenvalues of W by f�kg. The
eigenvalues of the baryon number Dirac operator � are
related to the eigenvalues � of W as � ¼ i�. The partition
function can be written as

Z
Nf¼0
N ¼ N 0

YN
k¼1

Z
d2�ke

�Nj�kj2 j�Nð�Þj2

¼ N
YN
k¼1

Z
d2�ke

�Nj�kj2 det
1�i;j�N

½KNð�i; �
�
j Þ�;

(42)

where N 0 and N are normalization constants, �Nð�Þ is
the Vandermonde determinant and the kernel KNðx; yÞ is
defined from the orthogonal polynomials pkðxÞ as

KNðx; yÞ ¼
XN�1

k¼0

pkðxÞpkðyÞ; with pkðxÞ ¼ ð ffiffiffiffi
N

p
xÞkffiffiffiffiffi
k!

p :

(43)

The polynomials pk are orthonormal with respect to the
Ginibre weight, i.e.

Z
C
d2�e�Nj�j2pið�Þpjð��Þ ¼ �	ij

N
: (44)

Methods to solve matrix models such as (41), where
characteristic polynomials are evaluated in a known
ensemble, have been given in [33]. The trick is to use the
identity

�KþLðxÞ ¼ �KðxÞ�LðyÞ
YK
k¼1

YL
‘¼1

ðxk � y‘Þ;

with y‘ ¼ xKþ‘: (45)

With this trick at hand it is straightforward to carry out the
integration in (41). Up to irrelevant factors of normalization,
we have
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Z
Nf

N ðf�fgÞ ¼ N 0

YN
k¼1

Z
d2�ke

�Nj�kj2 j�Nð�Þj2
YNf

f¼1

ði�k þ�fÞði��
k þ�fÞ

¼ N 0

�Nf
ðfi�fgÞ2

YN
k¼1

Z
dxkdyk�NþNf

ðxÞ�NþNf
ðyÞe�Nxkyk

	 1

�Nf
ðfi�fgÞ2

YN
k¼1

Z
dxkdyke

�Nxkyk det
1�i;j�NþNf

½KNþNf
ðxi; yjÞ�

	 1

�Nf
ðfi�fgÞ2

det
1�i;j�Nf

½KNþNf
ði�i; i�jÞ�; (46)

where the kernel K is defined in Eq. (43) and ðx; yÞ is defined as

xk ¼
�
�k for k � N
i�k�N for k > N

and yk ¼
�
��
k for k � N

i�k�N for k > N
: (47)

From (46) one sees that the eigenvalue density is given by

�Nf ð�;��;f�fgÞ¼
�XN
k¼1

	2ð�k��Þ
�
¼N 0 e�Nj�j2

Z
Nf

N ðf�fgÞ�Nf
ðfi�fgÞ2

��������������������

KNþNf
ð�;��Þ 


 KNþNf

ð�;i�Nf
Þ

..

. ..
.

KNþNf
ði�Nf

;��Þ 


 KNþNf
ði�Nf

;i�Nf
Þ

��������������������
; (48)

where N 0 is a normalization constant to be canceled by
the normalization constant in Z

Nf

N ðf�fgÞ. The spectral den-
sity (48) is written in terms of �, the eigenvalues ofW, but
as mentioned previously these eigenvalues are related to
the eigenvalues of the baryon number Dirac operator by
� ¼ i�. The spectral densities for � and � are related by a
rotation by � in the complex plane, such that baryon
spectral density is easily obtained from (48). Some calcu-
lations are more compact in terms of the � eigenvalues,
and we will for this reason keep on writing expressions in
terms of � in the following section.

The complex structure of the spectral density (48)
introduces oscillations with a microscopic period. In the
following section we show that the oscillations are
bounded within the region predicted in Sec. III by mean
field �PT. Furthermore we will explicitly demonstrate the
crucial role of the oscillations.

B. The average baryon density from the
oscillating eigenvalue density

For a chemical potential less than a third of the nucleon
mass, the theory is dominated by pions and the partition
function is therefore independent of the chemical potential
at low temperature. In this section we will show how the
�-independence enters the RMM. Exactly as in the
example of Sec. II, the baryon number Dirac spectrum
has a strong dependence on � (cf. Fig. 5), even though
the average baryon density does not. As for the calculation
for the chiral condensate [5,7], the �-independence of the
observable is obtained from a strongly oscillating region of
the eigenvalue density.

As already mentioned, the quenched spectral density
(seen in the top panel of Fig. 5) is the Ginibre distribution,

�Qð�;��Þ ¼ e�Nj�j2KNð�;��Þ ¼ �ðN;Nj�j2Þ
�ðNÞ : (49)

The one flavor partition function (46), is given by the
kernel,

Z
Nf¼1
N ð�Þ ¼ KNþ1ði�; i�Þ; (50)

and agrees with the result derived in [25] by a different
method. The one flavor spectral density is given by (48),

�Nf¼1ð�;��; �Þ ¼ 2e�Nj�j2
�
KNþ1ð�;��Þ

� KNþ1ð�; i�ÞKNþ1ði�; ��Þ
KNþ1ði�; i�Þ

	
: (51)

One can easily check that the spectral density (51) contain
a circular region of radius � with strong oscillation,
exactly as predicted in Sec. III. The lower panel of Fig. 5
illustrates this.
Here we will show that the oscillations due to the second

term in (51) exactly cancel the unphysical early onset of
the quenched baryon density. The baryon density is defined
from the partition function as

Vn
Nf¼1
B ð�Þ ¼ d

d�
log½ZNf¼1

N ð�Þ� ¼ dKNþ1ði�; i�Þ=d�
KNþ1ði�; i�Þ :

(52)

We will now compute the average baryon number starting
from the eigenvalue density, (51) using

Vn
Nf¼1
B ð�Þ ¼

Z
C
d2�

1

i�þ�
�Nf¼1ð�;��; �Þ; (53)

and show that the oscillating nature is essential in order to
get agreement with (52).
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After addition and subtraction of a kernel KNþ1ði�; ��Þ
the one flavor spectral density given in (51) can be
written as

1

2
�Nf¼1ð�;��;�Þ

¼ wð�;��Þ½KNþ1ð�;��Þ �KNþ1ði�;��Þ�

�wð�;��Þ
�
KNþ1ði�;��Þ
KNþ1ði�; i�Þ ðKNþ1ð�; i�Þ

�KNþ1ði�; i�ÞÞ
	
; (54)

with the weight wð�;��Þ ¼ e�N���
. Integration over the

first term of the spectral density,

Z
d2�

wð�;��Þ
i�þ�

½KNþ1ð�;��Þ � KNþ1ði�; ��Þ�

¼ �i
Z

d2�wð�;��ÞXN
k¼0

pkð�Þ � pkði�Þ
�� i�

pkð��Þ;

(55)

is zero due to orthogonality. In evaluation of the nonzero
integral we will exploit that the eigenvalues of the baryon
number Dirac operator come in pairs ði�; i��Þ combined
with the fact that the weight wðx; yÞ and the kernel Knðx; yÞ
only depend on the product xy to write,

Vn
Nf¼1
B ð�Þ¼þi

Z
d2�wð�;��ÞKNþ1ði�;��Þ

KNþ1ði�;i�Þ
�KNþ1ð�;i�Þ�KNþ1ði�;i�Þ

�� i�

� i
Z
d2�wð�;��ÞKNþ1ð�;�i�Þ

KNþ1ði�;i�Þ
�KNþ1ð�i�;��Þ�KNþ1ði�;i�Þ

��þ i�
: (56)

The first integral only has a contribution from � ¼ i� and
the second only from �� ¼ �i�. The reason for this is that
KNþ1ði�; ��Þ and KNþ1ð�;�i�Þ are reproducing kernels
in the space of polynomials of order less than N, and thus
in a way are equivalent to delta functions 	2ð�� i�Þ and
	2ð�� þ i�Þ, respectively. Using this we see that the
average baryon number can be written as

Vn
Nf¼1
B ð�Þ

¼ þi
lim�!i�

KNþ1ði�; i�Þ
KNþ1ð�; i�Þ � KNþ1ði�; i�Þ

�� i�

� i
lim��!�i�

KNþ1ði�; i�Þ
KNþ1ð�i�; ��Þ � KNþ1ði�; i�Þ

�� þ i�

¼ þdKNþ1ði�; i�Þ=d�
KNþ1ði�; i�Þ : (57)

This is precisely the result we found in (52), and the
computation demonstrates directly the crucial role of the
strong oscillations. Note that this result is true for all values
of N. It therefore automatically applies in the microscopic
limit, where the RMM is equivalent to �PT.
As mentioned above the RMM partition function and the

�PT partition function differ by a trivial overall factor

eNf�̂
2
in the microscopic limit. If one wants to show the

�-independence of average baryon density, one needs to
multiply this trivial factor on the RMM partition function
before further calculation. The one flavor baryon density is
therefore given by

1

0

1

1

0

1

0.0

0.5

1.0

1.5

2.0

1

0

1

1

0

1

0.0

0.5

1.0

1.5

2.0

FIG. 5 (color online). Top panel: The quenched spectral den-
sity with N ¼ 36. This density is identical to the Ginibre
distribution. Bottom panel: The Nf ¼ 1 spectral density with

N ¼ 36 and � ¼ 0:45. One sees how unquenching introduces a
strongly oscillating region. The amplitude of the oscillations
grows exponentially with N and the period is proportional to
1=N. The peaks of the oscillations have been cut; the maximum
amplitude is more than a hundred orders of magnitude larger
than the scale displayed.
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Vn
Nf¼1
B ð�Þ ¼ d

d�
log½ZNf¼1

N ð�ÞeN�2�

¼ dKNþ1ði�; i�Þ=d�
KNþ1ði�; i�Þ þ 2N�: (58)

To evaluate the average baryon density (58) in the large N
microscopic limit, we write the partition function as

Z
Nf¼1
N ð�ÞeN�2 ¼ �ðN þ 1;�N�2Þ

�ðN þ 1Þ
¼ 1

ðN � 1Þ!
Z 1

��2
dteNðlogt�tÞ: (59)

This integral can be evaluated with saddle point integration.
There are two local maxima: one at t ¼ 1 and one at
t ¼ ��2. The critical value of the chemical potential �c,
which decides which maximum is the global one, is given
by [16]

�2
c þ log�2

c þ 1 ¼ 0: (60)

For j�j<�c the integral is dominated by t ¼ 1 and parti-
tion function is independent of�, hence the average baryon
number is zero. For j�j>�c the average baryon number is

given by Vn
Nf¼1
B � 2Nð�þ��1Þ. This is shown on Fig. 6.

The critical �c is thus the RMM analog of a third of the
nucleon mass [34]. Beyond the critical chemical potential
the system is no longer dominated by the Goldstone bosons
and the equivalence of the RMM and �PT breaks down.

Finally, let us note that the spectrum of the baryon
number Dirac operator has a 2�nT-periodicity along the
imaginary axis, where T is the temperature. This is a
manifestation of the fact that if c is an eigenfunction of

D0ðmÞ with eigenvalue �, then ei!nx0c is an eigenfunction
with eigenvalue �þ i!n [10]. From the boundary condi-
tion of c in the time direction it follows that!n ¼ 2�inT,
where n is an integer [35]. This periodicity is related to the
periodicity of imaginary chemical potential, see [36], but is
not seen in the microscopic limit, since the eigenvalues
scale as �	 T2.

V. CONCLUSIONS

In QCD with nonzero chemical potential the sign prob-
lem manifest itself in the physical observables. This is true
for the average baryon number as well as for the chiral
condensate. If one neglects the phase factor of the fermion
determinant, the baryon density will have an unphysical
early onset at � ¼ m�=2 and the chiral condensate will
rotate into a pion condenssate.
In this paper the correct physical behavior of the

unquenched average baryon number has been linked to
strong oscillations of the eigenvalue density of the baryon
number Dirac operator. The oscillations have a period on
the microscopic scale and were shown to be dominant
within bounded regions of the complex eigenvalue plane.
The mechanism which links the oscillations of the baryon
number Dirac spectrum to the baryon number density is in
exact correspondence with the mechanism between the
chiral condensate and the Dirac spectrum. This shows the
general nature of this mechanism, when a sign problem is
present. The boundaries of the oscillating regions of the
baryon number Dirac spectrum were computed within
mean field chiral perturbation theory, and using a random
matrix model, it was shown exactly how the oscillations
are responsible for the �-independence of the average
baryon density.
In conclusion, we have shown that the mechanism which

links physical observables in unquenched QCD to strong
oscillations of the corresponding eigenvalue density is not
restricted to the chiral condensate; it also holds for the
average baryon number. This solves the Sliver Blaze prob-
lem [10] for the baryon number Dirac operator. The oscil-
lations have a period of order 1=V and an amplitude that
grows exponentially with V. Moreover, in both cases one
must integrate over at least V periods of the oscillations to
approach the correct physical behavior. This demonstrates
how severe the sign problem is for�>m�=2; see also [37].
It is an appealing mathematical challenge to generalize

the computation carried out here within the random matrix
framework to the case of a nonzero quark mass. The direct
supersymmetric computation of the microscopic spectral
density is extremely demanding in this case, but perhaps it
can be simplified through the use of integrable structures as
in [38,39].
It would be interesting to extend this study to the 1dQCD

baryon number Dirac operator. In this context the complex
Langevin approach has been shown to be able to deal with the
extreme oscillations [40] responsible for the discontinuity of

FIG. 6. Plot of the baryon density in the RMM for N ¼ 36 and
m ¼ 0 (which implies m� ¼ 0) as a function of the chemical
potential. The dotted line indicates the large N limit. The baryon
density is seen to be zero below the phase transition at
�c ¼ 0:527 . . . [16] which is the RMM analog of a third of
the nucleon mass.
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the chiral condensate at zero quark mass. Finally, it would
also be most interesting to study the results of the present
paper within the approach of [41].
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APPENDIX: PARTIALLY QUENCHED
WILSON FERMIONS

In Sec. III it was mentioned that saddle point integration
within the replica method may give saddle points that
should be neglected. This happens when the corresponding
saddle point in the partially quenched theory has a prefac-
tor identical to zero. In this appendix we show an example
of this phenomenon in the effective theory of QCD with
Wilson fermions.

The partition function describing QCD with Nf flavors

of Wilson fermions in a sector with zero topological
charge is

ZNf
ðM;aÞ ¼

Z
UðNfÞ

dUe�SðU;M;aÞ: (A1)

In the microscopic limit the action is given as

SðU;M; aÞ ¼ � 1

2
�V TrMðUþUyÞ

� a2W6V½TrðUþUyÞ�2
� a2W7V½TrðU�UyÞ�2
� a2W8V TrðU2 þUy2Þ; (A2)

where M is the mass matrix, a is the lattice spacing, � is
the chiral condensate, and Wi are low energy constants
which determine the leading order discretization errors of
Wilson fermions [42]. Here we will focus on the special
case where W6 ¼ W7 ¼ 0. The scaled variables,

M̂ ¼ M�V and â28 ¼ a2W8V, are kept at order unity in

the microscopic limit. One finds the partially quenched
partition function [43–45]

ZNfþ1j1ðM;a8Þ ¼
Z

dUeði=2ÞStrM̂ðU�U�1Þþâ28ðU2þU�2Þ: (A3)

The integration is over the maximum Riemannian subma-
nifold of GlðNf þ 1j1Þ. For Nf ¼ 0 we can parametrize

the graded manifold as [46]

U ¼ ei� 0

0 es

 !
exp

0 


� 0

 !
; (A4)

where 
 and � are Grassmann variables. Setting M ¼ mI
and integrating out the Grassmann variables gives

Z1j1ðm;a8Þ
¼ 1

2�

Z 1

�1
ds
Z �

��
d�Pðm;a;�; sÞe�Sfðm;a8;�Þe�Sbðm;a8;sÞ;

(A5)

with

Sfðm; a8; �Þ ¼ þm̂ sin�þ 2â28 cos2�; (A6)

Sbðm; a8; �Þ ¼ þim̂ sinhs� 2â28 cosh2s; (A7)

Pðm; a8; �; sÞ ¼ � m̂

2
sin�þ i

m̂

2
sinhs

þ 2â28ðcos2�þ cosh2sþ 2 cos� coshs

� 2i sin� sinhsÞ: (A8)

Numerically, one can easily verify that the partition func-
tion (A5) equals one as it should, independently of m̂ and
â8, since we work at equal fermion and boson sources.
Here we want to calculate (A5) with saddle point integra-
tion. The saddle points are given by

s ¼ 0; cos� ¼ 0; (A9a)

s ¼ 0; sin� ¼ � m̂2

8â28
: (A9b)

In general both saddle points will contribute to the partition
function, but note that the prefactor P evaluated at the
saddle point (A9a) is

P

�
m̂; â8; � ¼ ��

2
; s ¼ 0

�
¼ m̂

2
; (A10)

such that the prefactor becomes zero in the massless limit.
Calculating the partition function (A5) in massless limit
with saddle point integration one only needs to include the
saddle point (A9b),

Z�
1j1ðm ¼ 0; a8Þ ¼ Pða; �; sÞe�Sfða8;�Þe�Sbða8;sÞ

jS00fða8; �ÞS00bða8; sÞj
���������¼s¼0

¼ 1:

(A11)

This behavior is in complete analogue to the be-
havior of the massless theory mentioned in Sec. III. In
such cases the mean field replica method can lead to wrong
results.
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