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We report on a high statistics lattice QCD calculation of the mass of the � and �0 mesons using

ASQTAD improved staggered fermions. The calculation used two ensembles with different lattice

spacings and pion masses. We also report results for �-�0 mixing. The results are in satisfactory

agreement with other lattice calculations using other fermion formulations and with experiment, given

the unphysical quark masses used. We see no evidence of abnormal behavior at the lattice spacings

studied.
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I. INTRODUCTION

The explanation for the large mass of the �0 meson
relative to the masses of the light pseudoscalar mesons
involves nonperturbative physics, such as topology and the
Uð1Þ anomaly [1–3], so these masses present an interesting
challenge for lattice QCD. There are many phenomeno-
logical applications that require knowledge of the proper-
ties of the � and �0 mesons, such as their decay constants.
For example, Di Donato et al. [4] have recently noted that a
theoretical description of �-�0 mixing is required for
understanding the CP asymmetries of charmed and bottom
mesons with � or �0 in the final state. Fleischer et al. [5]
have recently studied the dependence of �-�0 mixing on

the decay B0
s;d ! J=c�ð0Þ, and which could be used to look

for physics beyond the standard model. There is currently
an active experimental program [6] into the properties of
the � or �0 mesons at experiments such as WASA [7],
KLOE-2 [8], and MAMI [9]. Lattice QCD can in principle
compute the �-�0 mixing from first principles, so it should
be able to help interpret the experiments.

The improved staggered fermion formulation, known as
ASQTAD fermions [10,11], has resulted in some very
accurate lattice QCD calculations which have been vali-
dated against experiment with a high degree of precision
[12,13]. The results from the improved staggered fermions
physics program have been recently been reviewed by the
MILC collaboration [14].

Despite the success of the phenomenology from stag-
gered fermions, concerns have been expressed over the
theoretical basis of the formalism. The central issue arises

from the so-called ‘‘rooting’’of the staggered determinant
[15,16]. This is invoked in order to correct the number of
flavors/tastes of sea quarks which would otherwise arise.
These aspects of the staggered fermions formalism have
been reviewed by Dürr [17], Sharpe [18], Creutz [19], and
Kronfeld [20].
The physics of the �0 meson is sensitive to the topology

of QCD. Since some of the concerns about rooting the
staggered formalism are related to the topology [16,19],
the�0 could be a place where incorrect results are obtained.
The properties of the �0 meson are also thought to be
related to the eigenvalue spectrum of the Dirac operator.
The eigenvalue spectrum of a type of improved staggered
fermions called HISQ has recently been shown to agree
with continuum expectations [21–24], which is suggestive
that the physics of the �0 meson is correct with improved
staggered fermions. The recent paper by Donald et al. [23]
also contains a rebuttal of some previously raised theoreti-
cal concerns. A calculation of the properties of flavor
singlet mesons is a further and crucial test of the validity
of the improved staggered formalism.
The very successful physics program that uses improved

staggered fermions has largely been independent of
the properties of the � and �0 mesons [14]. The MILC
collaboration has recently used the properties of the �0 in
their study of the topological susceptibility [25]. The �
and �0 mesons could indirectly affect other lattice calcu-
lations. For example, the � and �0 mesons are common
decay products of hadrons that decay via the strong
force, such as the a0 meson [26,27] or the proposed exotic
hybrid mesons [28]. However the majority of lattice QCD
calculations performed by the MILC collaboration are
probably independent of the properties of the � and �0
mesons.
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In [29] we reported on methods to compute disconnected
diagrams with improved staggered fermions. In that study
we found that we needed much higher statistics than those
of a typical ensemble generated by the MILC collaboration
(at that time). This new work is based on generating many
more configurations in order to improve the statistics. We
have recently reported [30] results for the masses of the
2þþ, 0þþ, and 0�þ glueballs obtained as a by-product of
this calculation.

Lattice QCD calculations of flavor singlet quantities are
not as well developed as those of flavor nonsinglet quan-
tities, because they are computationally more expensive.
There have been lattice QCD calculations of the �0 mesons
with 2þ 1 flavors of sea quarks, by the JLQCD collabo-
ration [31], RBC/UKQCD collaboration [32], Hadron
Spectrum Collaboration [33], and TWQCD and JLQCD
collaborations [34]. A preliminary study of the form fac-
tors for the semileptonic decay of Ds ! �s has been
carried out [35]. There is also a preliminary calculation
of the masses of � and �0 mesons, with 2þ 1þ 1 flavors
of sea quarks, from the ETM collaboration [36].

There have been a few lattice QCD calculations of the
flavor singlet pseudoscalar meson with nf ¼ 2 sea quarks.

However, the strange quarks in the sea play an essential
role in lattice QCD calculations of the mass of the �0
meson. For example Jansen et al. [37] found the ground
state of the flavor singlet pseudoscalar meson in nf ¼ 2 to

be 0.865(65)(65) GeV compared with the experimental
value of the � mass of 0.548 GeV which lattice QCD
calculations with 2þ 1 sea quarks should reproduce.

II. DETAILS OF THE LATTICE CALCULATIONS

We used the improved staggered fermion action called
ASQTAD [10,11] with the tadpole improved Symanzik
gauge action. We generated two ensembles at two lattice
spacings, using QCDOCmachines [38]. The basic parame-
ters of the lattice QCD calculations are in Table I. We

generated NðtotalÞ
cfg configurations, but base our final calcu-

lation on a subset of NðmeasÞ
cfg configurations. The RHMC

algorithm was used to generate the configurations [39,40].
The details of the tuning of the RHMC algorithm are
in [41].

The use of new measurement techniques has improved
the precision of many lattice QCD measurements.
However, for many applications of lattice QCD the use
of higher statistics is still an essential requirement.

In particular, this is so for glueball studies [42], or for
anything which includes the calculation of disconnected
diagrams.
Our aim was to generate 30,000 trajectories. For com-

parison the ETM collaboration has typically used ensemble
sizes of 5,000 or 10,000 trajectories [37]. The length of
simulation required also depends on the autocorrelation
time. There have been some recent high statistics lattice
QCD calculations using an anisotropic lattice [43].
In our methods paper [29] on the �0 we found that the

correlators did not have a Gaussian distribution. A similar
observation has been made by the ETM collaboration [37]
in their calculation with nf ¼ 2 flavors of sea quarks. In

this calculation we again observe a long tail in the distri-
bution of the disconnected correlators.
In [29] we pointed out that the long-tailed distribution is

an inherent challenge to measuring disconnected correla-
tors. Under the assumption (well-justified by numerical
observation) that the pseudoscalar fermion loop operators
fluctuate within a Gaussian distribution about zero,
the product of two loop operators, measurements discon-
nected correlator d must fall in a long-tailed distribution,
specified by

nðdÞ ¼ A expð�BdÞK0ðCjdjÞ; (1)

where K0 is a modified Bessel function of the second kind,
and A, B, and C are constants.
The distribution of disconnected correlator measure-

ments will always have its peak at zero, with the signal
coming from the asymmetry of the long tails. This behav-
ior may, however, be masked by any binning of measure-
ments. We show some histograms of disconnected
correlator measurements in Fig. 1.
The UKQCD/RBC collaboration has, however, not ob-

served any ‘‘large statistical excursions’’ in the distribution
of the disconnected correlators in an unquenched calcula-
tion with 2þ 1 flavors of sea quarks [32].
It might therefore be tempting to suggest that the long

tail in the distribution of the disconnected correlators is
caused by the lack of ‘‘lattice’’ chiral symmetry in the
staggered and twisted mass fermion operators, compared
to the domain wall formalism. However, we explicitly
checked that we used sufficient numbers of noise sources
so that our errors were dominated by the gauge noise. The
wall sources used by the RBC/UKQCD collaboration [32]
can be thought of as using a single noise source but with
partitioning in time. It might be that the distribution of
the errors on disconnected correlators in the latter case

TABLE I. Summary of ensembles used in this calculation. We use the same convention for the quark masses as used by the MILC
collaboration.

Name � u0 L3 � T aml ams NðtotalÞ
cfg Ntraj NðmeasÞ

cfg r0=a

coarse 6.75 0.8675 243 � 64 0.006 0.03 5237 31422 4452 3.8122(74)

fine 7.095 0.8784 323 � 64 0.00775 0.031 2867 17202 2808 5.059(10)
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are not dominated by the gauge noise. This issue is dis-
cussed by Wilcox [44] and there is a recent study by
Alexandrou et al. [45].

Recently Endres et al. [46] have discussed heavy-tailed
correlator distributions in condensed matter simulations
and lattice QCD calculations [47], and started to develop
new techniques to extract physics in such situations.

We note that the width of the disconnected correlator
distribution increases with fuzzing of the sources. The
taste-singlet pseudoscalar operator in the staggered formu-
lation has the quark and antiquark separated by four links.
It is possible that the introduction of the gauge links in the
covariant shift or in the fuzzing increases the width of the
Gaussian distribution of the loop operators and hence
the width of distribution of the disconnected correlator
described by (1). In other formulations, the distributions
may possibly be narrower and less troublesome.

It can be difficult to make a good choice of strange quark
mass to use in a lattice QCD calculation, although the
choice is getting easier with increased experience of
2þ 1 calculations. In the original calculations by the
MILC collaboration, the estimate of the strange quark
mass turned out to be off by as much as 25% [14]. The
MILC collaboration then corrected for the mismatch of the
strange quark mass by using their extensive partially
quenched data sets and later unquenched runs. Their up-
dated estimates for the strange quark mass (in lattice units)
were 0.035(7) and 0.0261(7) on the coarse and fine ensem-
bles, respectively [14]. However we have used the new
value of ms that MILC used on the coarse [48], so as to
interpolate with their original value of the strange quark

mass. Indeed, our coarse ensemble has already been used
in an analysis of the strangeness content of the nucleon, by
the MILC collaboration [49].
We first discuss the interpolating operators and two-

point functions for flavor singlet pseudoscalar mesons us-
ing Wilson fermions with nf degenerate quarks. A longer

discussion can be found in our original paper [29]. Two-
point functions

Gðx0; xÞ ¼ hOðx0ÞOðxÞi (2)

are constructed using the interpolating operators

OðxÞ ¼ Xnf
i¼1

�c iðxÞ�5c iðxÞ: (3)

Using standard Wick contractions, the two-point func-
tion decomposes into a connected (C) and disconnected
(D) part

Gðx0; xÞ ¼ nfCðx0; xÞ � n2fDðx0; xÞ: (4)

In the staggered formalism the native four tastes of sea
quarks are reduced to n degenerate flavors through the
n
4 -rooting of the fermion matrix. The four valence tastes

manifest themselves in valence loops, which come in too
large by a factor of 4. A connected correlator is essentially
a single valence loop and requires normalizing by a factor
of 1

4 to get the single-flavor contribution. A disconnected

correlator contains two valence loops (along with an
arbitrary number of sea quark loops). Computing the
single-flavor disconnected contribution therefore requires
normalizing by two factors of 1

4 . This factor is sometimes

referred to as ‘‘valence rooting’’ [18]. We include these
factors implicitly in our definition of D and C.
In the staggered formulation we use the Kluberg-Stern

notation [50]. The Goldstone pion operators are (�5 � �5),
and the flavor singlet pion operators are (�5 � 1), where
the first index refers to spin and the second index to taste.
The signal to noise ratio for the flavor singlet pseudo-

scalar mesons rapidly falls with time, so it is important to
use spatially smeared operators to project onto the ground
and first excited state as soon as possible. We used the
fuzzing technique [51] with a fuzzing length of 4 (this must
be even to respect the symmetries of the staggered action).
We computed a variational correlator matrix C using four

basis states—light and strange quark pseudoscalar correla-
tors, combined with local and fuzzed sinks and sources:

C ðtÞij ¼ hOiðtÞOjð0Þyi: (5)

In Figs. 2 and 3 we show the effective mass plots for the
local and fuzzed smeared operators for the (�5 � 1) pion
operator. For the main�-�0 analysis, we use the factorizing
fit model [52] shown in Eq. (6),

C ðtÞij ¼
XN
k¼1

aikajk
2Ek

ðe�Ekt þ e�EkðT�tÞÞ (6)
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FIG. 1 (color online). Normalized histograms of raw discon-
nected correlator measurements with local (left) and fuzzed
(right) pseudoscalar source operators. Measurements are for
the light-light correlator on the coarse ensemble. Note that
symmetry increases with �t and the most likely value remains
at Dð�tÞ ¼ 0 for all �t. Histograms contain 335168 measure-
ments (5237 configs� 64 timeslices. The heavy dashed green
curve is a fit of Eq. (1) to the fuzzed �t ¼ 10 histogram.).
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where i, j run from 1 to 4. Here N is finite and all states are
treated as stable. In final fits we used no Bayesian
constraints.

Physics can also be extracted from the measured varia-
tional matrix using the generalized eigenvalue method
[53–55].

C ðtÞvnðt; t0Þ ¼ �nðt; t0ÞCðt0Þvnðt; t0Þ (7)

where vnðt; t0Þ are the generalized eigenvectors. Typically
a small time t0 is chosen.

The energies are extracted from the generalized eigen-
values

�nðt; t0Þ ¼ e�Enðt�t0Þ: (8)

We use the effective mass from Eq. (8) as a check on the
masses from the fits to Eq. (6).

We used the recently updated value of r0 ¼
0:4661ð38Þ fm [56] to determine the lattice spacing from
our measurements of r0=a [30]. The inverse lattice spacing

determined from r0 is 1.61 and 2.14 GeV for the coarse and
fine ensembles, respectively. With our estimates of the
lattice spacing we find the value of the Goldstone pion
mass on the coarse and fine ensemble to be 295 and
349 MeV, respectively.
The mass of the connected strange-strange pseudoscalar

meson m�s
¼ 0:6858ð40Þ GeV, has recently been deter-

mined by the HPQCD collaboration [56]. By using
m2

�s
/ ms we find that the mass of the strange quark is

mistuned by �20% on the coarse ensemble and þ5% on
the fine ensemble.
The masses in Table II can be used to check the reduc-

tion of taste breaking as the lattice spacing is reduced [26].
Defining

d � ðm2
ð�5�1Þ �m2

ð�5��5ÞÞr20; (9)

we find dfine=dcoarse ¼ 0:39ð1Þ. The MILC collaboration
obtained [26] dfine=dcoarse ¼ 0:38ð3Þ at similar parameters.
Note that MILC use r1 in Eq. (9), but the conversion
between r1 and r0 drops out in the ratio.

III. ANALYSIS OF DISCONNECTED LOOPS

In [29] we reported on methods to compute disconnected
diagrams with improved staggered fermions.We found that
the technique proposed by Kilcup and Venkataraman [57]
was the most efficient one of those we tested for computing
the disconnected diagrams of (�5 � 1) and (1� 1) opera-
tors. We therefore used that with 32 Gaussian noise vectors
in this calculation.
The integrated autocorrelation time for the light and

strange (�5 � 1) loops are 42(7) and 24(3) in units of
trajectories, respectively. This can be compared with the
autocorrelation times of the connected correlators for
Euclidean time separation 3 of 14(4) and 12(5) for the
light and strange quarks, respectively.

A. Ratio of disconnected to connected diagrams

An important test of the staggered formalism is to check
the long time behavior of the DðtÞ=CðtÞ ratio of the corre-
lators in Eq. (4). In quenched QCD, the DðtÞ=CðtÞ ratio
rises linearly with time but, in unquenched QCD, the ratio
should tend to 1 for large times. This test was performed
for clover fermions in [58]. In our earlier study [29], the
statistics were not large enough to determine the large time
behavior of the ratio in unquenched QCD. In Fig. 4 we plot
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FIG. 3 (color online). Effective mass plot for the connected
part of (�5 � 1) operators for the coarse ensemble.

TABLE II. Masses for pseudoscalar mesons in lattice units
from the connected correlators.

� light strange

(�5 � �5) (�5 � 1) (�5 � �5) (�5 � 1)

6.75 0.183(1) 0.325(2) 0.387(2) 0.4683(8)

7.095 0.1632(7) 0.206(1) 0.3283(7) 0.3505(6)

0 5 10
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
M

ef
f

LL.QQ
FF.QQ
LL.SS
FF.SS
LL.QS
FF.QS

FIG. 2 (color online). Effective mass plot for the connected
part of (�5 � 1) operators for the fine ensemble.
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the DðtÞ=CðtÞ ratio for the coarse and fine ensembles
respectively, as well as a quenched ensemble with the
same lattice spacing as the coarse ensemble.

With the higher statistics afforded by the two new
ensembles there is now a clearer difference between the
quenched and unquenched DðtÞ=CðtÞ ratios. The DðtÞ=CðtÞ
ratio for the two unquenched seem to be reaching a plateau
close to 1. As explained in Sec. II, the staggered ratio
depends on the ‘‘valence rooting’’ factors of 1=4, so this
is a good test of the staggered formalism.

B. Fit results for the masses

We plot the fit results against the effective masses from
the variational method (8) in Figs. 5 and 6. Here, we set

� ¼ t� t0 ¼ 2 in (8). The parameters from the final fac-
torizing fits are in given Table III. In arriving at these, we
varied tmin and Nexp looking for a sweet spot of stability

with respect to these, for �2=dof & 1, and for error bars
small enough to distinguish three states. Plateaux in tmin

were small due to the competition between excited states at
small t and the onset of large noise/signal at larger t. An
SVD cut of around 10�5 was necessary to get fits with
reasonable confidence levels.
Note that the statistical errors on the final mass parame-

ters deduced from these correlated fits are generally some-
what less than the individual variational effective masses
calculated at each value of t, even though the same number
of configurations were used. The global factorizing fits
include all the data from the different flavor and fuzzing
channels simultaneously, and from a large range of
t-values. They also take correlations into account. The
individual effective mass estimates from (8), on the other
hand, are each determined by relatively small samples of
this data set—uncorrelated measurements from two time-
slices yield independent estimates for each eigenvalue.
We found it necessary to restrict tmax to moderate values

(16 and 20) since, at larger values, the correlators can
fluctuate below zero. We do not attribute this large-t be-
havior to unphysical effects. Rather, the unique statistical
properties of disconnected correlators mean that a small
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FIG. 4 (color online). DðtÞ=CðtÞ ratio for the coarse and fine
ensembles. We also include the result from a quenched lattice
QCD calculation [29] with a lattice spacing close to the coarse
ensemble.
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FIG. 5 (color online). Comparison of fit results (horizontal
bands) to effective masses (with �t ¼ t� t0 ¼ 2) from the
variational method for a 4� 4 correlator matrix on the coarse
ensemble.
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FIG. 6 (color online). Comparison of fit results (horizontal
bands) to effective masses (with �t ¼ t� t0 ¼ 2) from the
variational method for a 4� 4 correlator matrix on the fine
ensemble.

TABLE III. Masses for taste singlet pseudoscalar mesons in
lattice units. The errors are from the jackknife method. The
corresponding fit methods are described in the text.

� am� am�0 Nexp tmin-tmax SVD cut �2=dof

6.75 0.410(3) 0.52(1) 4 5–16 10�5 1.1

7.095 0.296(3) 0.46(2) 4 6–20 10�5 0.73
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number of configurations at the tail of the distribution can
cause large fluctuations of the mean, as discussed in [29].

We associate the lowest state with � and the first excited
state with the �0.

IV. COMPARISON WITH EXPERIMENTAND
OTHER LATTICE CALCULATIONS

Given that we only have two masses at two different
lattice spacings, we cannot make a controlled continuum or
chiral extrapolation. However, we do wish to check that the
resulting parameters are physically reasonable.

In lattice QCD calculations with two flavors of sea
quarks, it was found that the mass of the �2 light flavor
singlet pseudoscalar meson had very little mass depen-
dence [37].

In Fig. 7 we plot our results for the masses of the � and
�0 mesons as a function of the square of the pion mass. We
also include the recent results from the UKQCD/RBC
collaboration [32] and the hadron spectrum collaboration
[33]. Note that while the lattice spacing is larger for the
coarse ensemble than the fine ensembles, the light quark
mass is smaller for the coarse ensemble than the fine.

The mass from the ð�5; 1Þ pion operator is different from
the Goldstone ð�5; �5Þ pion operator, because of taste
breaking. In Fig. 8 we plot, as a function of the square of
the lattice spacing, the masses of the � and �0 mesons
along with the mass splitting between the ð�5; 1Þ and
ð�5; �5Þ pions.

V. �-�0 MIXING

In a quantum mechanics analysis of the mixing of the �
and �0 [59,60], the starting point is two bare flavor singlet
pseudoscalar mesons. As interactions are introduced, the

two flavor singlet mesons mix and a mixing angle is
introduced. This mixing angle is a parameter in the various
decays of the � and �0 mesons.
In unquenched lattice QCD calculations it is not clear

how to start from unmixed states. It is possible to estimate
the elements of the mixing matrix in quenched and
partially quenched QCD [61,62]. We also note that the
properties of the connected strange-strange pseudoscalar
meson determined by the HPQCD collaboration [56] are
also useful for developing a partially quenched mixing
analysis [61].
In QCD, the mixing between the � and �0 mesons is

understood at the amplitude level. In phenomenological
analysis of decays, the mixing is parametrized in terms of
decay constants and 1 or 2 angles. Many of the analyses of
the decays also include additional strong interaction phys-
ics, such as form factors [63].
Di Donato et al. [4,5] Fleischer et al. have recently

discussed the importance of the mixing of� and�0 mesons
on various decays. Shore and collaborators [2] have de-
rived equations relating the masses and decay constants of
the � and �0 to the topological susceptibility.
The phenomenological analysis of �-�0 mixing is usu-

ally described in terms of the axial decay constants [1]. To
study the decay constants of flavor singlet meson operators
with staggered fermions requires the ð�4�5; 1Þ pion opera-
tors. These were not included in our calculation. Since
there is no Ward identity for the ð�4�5; 1Þ operators, re-
normalization factors would need to be computed [64].
The connection between �-�0 mixing with axial currents
or pseudoscalar currents is discussed in Sec. 3.8 of
Feldmann’s review [1]. To first order the mixing angle is
the same with axial or pseudoscalar currents.
There are two popular bases in which to express �=�0

states. One basis is the SUð3Þ basis:
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j�0i ¼ 1ffiffiffi
3

p ðju �ui þ jd �di þ js�siÞ

j�8i ¼ 1ffiffiffi
6

p ðju �ui þ jd �di � 2js�siÞ:
(10)

The � and �0 mesons states are then linear combinations of
the basis states:

j�i
j�0i

 !
¼ cos�P � sin�P

sin�P cos�P

 ! j�8i
j�0i

 !
: (11)

The � and �0 mesons can also be described using the quark
flavor basis:

j�qi ¼ 1ffiffiffi
2

p ðju �ui þ jd �diÞ j�si ¼ js�si (12)

j�i
j�0i

 !
¼ cos�P � sin�P

sin�P cos�P

 ! j�qi
j�si

 !
: (13)

The two mixing angles are related to each other:

�P ¼ �P � arctan
ffiffiffi
2

p ¼ �P � 54:7�: (14)

In lattice QCD calculations it is not possible to start from
pure basis states such as j�qi and j�si. Instead the mixing

is described in terms of amplitudes. For example, we can
define an amplitude a�8� via

a�8� ¼ h0j�8j�i: (15)

Other amplitudes, for different interpolating operators and
mesons, are similarly defined. For example, the amplitudes
a�q� and a�s� are parameters in the fit model in Eq. (6),

with numerical indices replaced by the names of the meson
or interpolating operator.

With two possible interpolating operators and two states,
there are in principle four possible decay constants. The
discussion of mixing in quantum mechanics suggests that
these four amplitudes can be parametrized in terms of two
decay constants and a mixing angle.

It has been found that, with SUð3Þ-breaking, there can-
not be one single mixing angle in the SUð3Þ basis [65]. For
example, from a review of the literature, Feldmann [1]
notes a spread of 10 degrees in the mixing angles extracted
from experiment. In the SUð3Þ flavor basis the mixing of
decay constants is expressed by

a8� a0�

a8�0 a0�0

 !
¼ f8 cos�8 �f0 sin�0

f8 sin�8 f0 cos�0

 !
: (16)

The decay constants can also be computed in the quark
basis:

aq� as�

aq�0 as�0

 !
¼ fq cos�q �fs sin�s

fq sin�q fs cos�s

 !
: (17)

To extract the mixing angles from the matrix in Eq. (17),
the following combinations can be used:

tan�est
q ¼ aq�0

aq�
(18)

tan�est
s ¼ � as�

as�0
: (19)

There are arguments [1,66] that suggest �q � �s.

Feldmann [1] reviews the determination of the mixing
angles from various processes and he finds j�q ��sj<
5 degrees. The UKQCD/RBC collaborations use perturba-
tion theory to identify conditions where there is only one
angle [32].
In Fig. 9 we show the fit amplitudes plotted in couplets

ða�; a�0 Þ demonstrating the mixing angles in the quark

flavor basis as in Eq. (17).
Because of SUð3Þ symmetry breaking, fq is not equal to

fs in Eq. (17), hence a rotation of the interpolating basis
from the quark to the flavor basis will no longer give a
matrix of the same form as Eq. (17). The use of mixing
angles to parametrize the mixing matrix is similar to the
polar decomposition of a matrix [67], where a matrix can
be written as the product of a Hermitian matrix and a
unitary matrix. In this application the Hermitian matrix is
actually diagonal.
The RBC/UKQCD and Hadron Spectrum Collaboration

extract a single angle by computing the following angle

q

s

φ

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
aη

-0.05

0

0.05

0.1

0.15

0.2

a η’ coarse local      q
coarse local      s
coarse fuzzed   q
coarse fuzzed   s
fine local          q
fine local          s
fine fuzzed       q
fine fuzzed       s
φ = 34 deg

FIG. 9 (color online). The fit amplitudes plotted in couplets,
ða�; a�0 Þ, with the � amplitude as the horizontal coordinate and

the �0 amplitude as the vertical component, is a graphical
representation of Eq. (17). This illustrates several nontrivial
results, including the consistency of the mixing angles from
local (open) and fuzzed (filled) sources, and the consistency of
mixing angles from coarse and fine simulations. The extent to
which the light quark and strange quark branches lie at right
angles to each other is a measure of the aptness of the single
mixing angle description. We use lattice units; the inclusion of
renormalization factors will not change the angular distribution.
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tan 2�est ¼ �aq�0as�
aq�as�0

; (20)

so that tan�est is the geometric mean of tan�est
q and tan�est

s .

The relation�q � �s is an assumption, under which the

four possible parameters are reduced to three, hence it is
interesting to test it using lattice QCD.We have determined
the mixing angles using different methods and present the
results in Table IV. The angles �est

q , �est
s , and �est were

obtained from the fits to Eq. (6), using Eqs. (18)–(20).
Local operators were used for this. We also found similar
results using fuzzed operators.

The angle �fit, in Table IV, was determined by simulta-
neously fitting the smeared and local matrix of amplitudes
in Eq. (17) using a single angle �fit ¼ �q ¼ �s, with two

decay constants for the local matrix, and two decay con-
stants for the fuzzed correlators.

One cannot confidently conclude from the results in
Table IV, that a single mixing angle does not describe the
data. As an exercise we ignored the statistical errors on the
amplitudes from the � ¼ 7:095 ensemble and rotated
the matrix in Eq. (17) by an angle � in the interpolating
operator basis and computed �est

q and �est
s . Around

9 degrees from the quark basis we found �est
q ¼ �est

s as a

function of �. This shows as expected that the quark basis

is a good basis for having a single mixing angle. This
method can be used with future more precise lattice
QCD calculations, to determine the optimal basis of inter-
polating operators, such that the amplitudes can be de-
scribed by a single mixing angle.
In Fig. 10 we plot the mixing angle in the quark basis

(�fit), obtained using the fit method, as a function of the
square of the pion mass. We also include some experimen-
tal numbers for the mixing angle from the summary in [4].
We see that our results from staggered fermions are quali-
tatively in agreement with the results of the other two
lattice groups and experiment.

VI. CONCLUSIONS

We have reported a lattice QCD calculation of the
masses and mixing of the �-�0 mesons. Our key results
for the masses (Fig. 8) and mixing angles (Fig. 10), and the
ratio plot (Fig. 4) do not give any grounds for concern over
the validity of the staggered fermion formulation. Our
results are qualitatively in agreement with experiment
and with lattice analyses using other formulations.
Using a technique specific to staggered fermions [57] we

were able to compute the disconnected diagrams at a cost
roughly 10 times the cost of the connected correlators.
However, as always, higher statistics are required for
lattice QCD calculations which require disconnected
diagrams.
The main shortcoming of the calculation is that we have

used only one quark mass at each of two different lattice
spacings. It is clearly important to extrapolate the masses
of the � and �0 mesons to the physical quark masses and to
take the continuum limit. To do this, it may be better to use
a staggered fermion formalism with reduced flavor sym-
metry breaking. The MILC collaboration [68] and HOT
collaboration [69] have started to simulate the HISQ [70]
fermion action, which uses an additional level of fat links
over the ASQTAD action so reducing the mass splitting
between the masses of the (�5 � 1) and (�5 � �5) pions.
The stout link staggered action used by Aoki et al.

[71,72] could also be used, since this formalism has re-
duced taste splitting compared to ASQTAD and the quark
masses are within 10% of the physical light and strange
masses.
For the phenomenology of � and �0 it is important to

study the decay constants and mixing angle of the � and �0
mesons. Although staggered fermions are computationally
cheap and have a Ward identity for the Goldstone pion
operator, it is not clear whether we can obtain a strong
enough signal for the (�4�5 � 1) operator to be able to
extract decay constants [64].
Even more challenging would be to study the mixing of

the the �0 and � with the pseudoscalar glueball. This
requires an extension of the formalism for mixing de-
scribed in Sec. V. In principle, the mixing angle between
the � and �0 and the pseudoscalar glueball can be obtained

TABLE IV. �-�0 mixing angles in degrees defined and deter-
mined as described in the text.

� �est
q �est

s �est �fit �2=dof

6.75 25(4) 36(2) 31(4) 34(3) 8:2=3
7.095 40(5) 34(2) 37(3) 34(2) 3:7=3

0 0.1 0.2 0.3 0.4 0.5

Mπ
2
 (GeV)

2

30

35

40

45

50

55

φ  
(d

eg
)

quadratic GMO
radiative decays
radiative decays +  glueball mixing
charm-eta production
photon fusion
UKQCD/RBC
HSC
UKQCD (2000)
UKQCD 2011 (this work)

FIG. 10 (color online). A summary of �-�0 mixing angles as a
function of the square of pion mass. We also include data from
the UKQCD/RBC [32], Hadron Spectrum Collaboration [33],
and UKQCD collaborations [61]. The UKQCD/RBC number is
quoted in the SUð3Þ basis, so we have used Eq. (14) to convert it
to the quark basis.
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by fitting various branching ratios. However, a clear picture
from the phenomenological approach has yet to emerge
[4,5,73,74], so a first principle calculation from lattice
QCD would be valuable. The KLOE experiment [8] has
analyzed their branching fraction data for vector meson
radiative decay to pseudoscalar mesons with a model and
obtained an estimate of �0-glueball mixing which is three
sigma from zero. The KLOE-2 experiment plans to reduce
the experimental errors on the analysis [8]. Given that we
have already published [30] a study of the pseudoscalar
glueball on these ensembles, we could at the very least
include the gluonic and fermionic pseudoscalar interpolat-
ing operators in a single variational calculation (as was
done for scalar operators in [75]).

This calculation would be interesting from a nonpertur-
bative QCD perspective, but also would be important for
exploringCP violation in the decays of B and Bs mesons to
final states that include the � and �0.

Lattice QCD calculations of the � and �0 mesons in-
volve an interesting mixture of: toplogy, anamolies, mixing
via quark loops, and have important applications to

phenomenology. The relatively high cost of lattice QCD
calculations of the � and�0 mesons has meant that they are
not as highly developed as the calculation of flavor non-
singlet hadrons [14]. Since the computational costs are
becoming less exorbitant, we expect that lattice calcula-
tions of the � and �0 mesons may soon become precision
studies.
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