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The QCD evolution of the unpolarized transverse momentum dependent (TMD) distribution functions

and of the Sivers functions have been discussed in recent papers. Following such results we reconsider

previous extractions of the Sivers functions from semi-inclusive deep inelastic scattering data and propose

a simple strategy which allows to take into account the Q2 dependence of the TMDs in comparison with

experimental findings. A clear evidence of the phenomenological success of the TMD-evolution equations

is given, mostly, by the newest COMPASS data off a transversely polarized proton target.
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I. INTRODUCTION AND FORMALISM

The exploration of the three-dimensional structure of the
nucleons, both in momentum and configuration space, is
one of the major issues in hadron high-energy physics, with
dedicated experimental and theoretical efforts. In particu-
lar, several semi-inclusive deep inelastic scattering (SIDIS)
experiments are either running or being planned. From the
measurements of azimuthal asymmetries, both with unpo-
larized and polarized nucleons, one obtains information on
the transverse momentum dependent parton distribution
functions (TMD PDFs) and on the transverse momentum
dependent fragmentation functions (TMD FFs). The TMD
PDFs and the TMD FFs are often globally referred to
simply as TMDs. The TMD PDFs convey information on
the momentum distributions of partons inside protons and
neutrons.

The analysis of the experimental data is based on the so-
called TMD factorization, which links measurable cross
sections and spin asymmetries to a convolution of TMDs.
In particular, the Sivers function, which describes the
number density of unpolarized quarks inside a transversely
polarized proton, has received much attention and has been
extracted from SIDIS data by several groups, with consis-
tent results [1–6]. However, all these phenomenological fits
of the Sivers function (and other TMDs) have been per-
formed so far using a simplified version of the TMD
factorization scheme, in which the QCD scale dependence
of the TMDs—which was unknown—is either neglected or
limited to the collinear part of the unpolarized PDFs.While
this might not be a serious numerical problem when con-
sidering only experimental data which cover limited ranges
of low Q2 values, it is not correct in principle, and taking
into account the appropriate Q2 evolution might be
numerically relevant for predictions at higher Q2 values,
like future electron-ion or electron-nucleon colliders and
Drell-Yan experiments.

Recently, the issue of the QCD evolution of unpolarized
TMDs and of the Sivers function has been studied in a
series of papers [7–9] and a complete TMD factorization
framework is now available for a consistent treatment of
SIDIS data and the extraction of TMDs. A first application
of the new TMD-evolution equations to some limited
samples of the HERMES and COMPASS data [10] has
indeed shown clear signs of the Q2 TMD evolution.
We follow here Refs. [8,9] adopting their formalism,

which includes the explicit Q2 dependence of the TMDs,
and apply it to the extraction of the Sivers function from
SIDIS data, exploiting the latest HERMES [11] and
COMPASS [12] results. In the remainder of this section
we present the explicit formalism: in Subsection IA we
describe the setup and structure of the TMD-evolution
equations, in Subsection I B we discuss the parametriza-
tions used for the unknown input functions, while in Sec. I C
we present analytical solutions of the TMD-evolution equa-
tions obtained under a specific approximation.
In Sec. II we perform a best fit of the SIDIS Sivers

asymmetries, taking into account the different Q2 values
of each data point and theQ2 dependence of the TMDs; we
compare our results with a similar analysis performed
without the TMD evolution. Differences between Sivers
functions extracted from data with and without the TMD
evolution are shown and commented. In all this we differ
from Ref. [10], which explicitly shows the evolution of an
existing fit of the Sivers SIDIS asymmetry [13] from the
average value hQ2i ¼ 2:4 GeV2 for HERMES data [11] to
the average value of hQ2i ¼ 3:8 GeV2 for the most recent
COMPASS data [12]. Further comments and conclusions
are given in Sec. III.

A. Formalism for transverse momentum
dependent Q2 dependence

In Refs. [7,8], Collins, Aybat and Rogers have proposed
a scheme to describe the Q2 evolution of the TMD
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unpolarized distribution and fragmentation functions:
within the framework of the Collins-Soper-Sterman facto-
rization formalism [14,15], they can describe the nonper-
turbative, low-transverse momentum region and, at the
same time, consistently include the perturbative correc-
tions affecting the region of larger energies and momentum
transfers. However, this formalism cannot be directly
applied to spin-dependent distribution functions, like the
Sivers function [16], for which the collinear limit does not
exist.

More recently, an extension of the unpolarized TMD-
evolution formalism was presented in Ref. [9] to provide a
framework in which also spin-correlated PDFs can be
accounted for. For our purposes, we will use Eq. (44) of
Ref. [9] which, compared to the unpolarized TMD-
evolution scheme, Eq. (26) of Ref. [8], requires the extra
aid of a phenomenological input function embedding the
missing information on the evolved function, that, in the
case of the Sivers function, is both of perturbative and
nonperturbative nature. Although the unpolarized PDF
and FF TMD-evolution equations are in principle known
[8], in this paper we adopt the simplified functional form of
the evolution equation, as proposed for the Sivers function
in Ref. [9], for all TMD functions, for consistency.

Thus, we strictly follow Ref. [9] and combine their
Eqs. (44), (43) and (30), taking, as suggested [9], the
renormalization scale �2 and the regulating parameters
�F and �D all equal to Q2. Then, the QCD evolution of
the TMDs in the coordinate space can be written as

~Fðx;bT ;QÞ¼ ~Fðx;bT ;Q0Þ

�exp

�
ln
Q

Q0

~KðbT ;Q0Þþ
Z Q

Q0

d�

�
�F

�
�;

Q2

�2

��
;

(1)

where ~F can be either the unpolarized parton distribution,
~Fðx; bT;QÞ ¼ ~fq=pðx; bT;QÞ, the unpolarized fragmenta-

tion function ~Fðx; bT ;QÞ ¼ ~Dh=qðz; bT;QÞ, or the first de-

rivative, with respect to the parton impact parameter bT , of

the Sivers function, ~Fðx; bT ;QÞ ¼ ~f0?f
1T ðx; bT ;QÞ. Notice

that throughout the paper bT-dependent distribution and
fragmentation functions will be denoted with a � on top.

In the above equation the function ~K is given in general
by [9]

~KðbT;�Þ ¼ ~Kðb�; �bÞ þ
�Z �b

�

d�0

�0 �Kð�0Þ
�
� gKðbTÞ;

(2)

with, at Oð�sÞ [14,15],

~Kðb�; �bÞ ¼ ��sCF

�
½lnðb2��2

bÞ � ln4þ 2�E� (3)

b�ðbTÞ � bTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2T=b

2
max

q �b ¼ C1

b�ðbTÞ � (4)

The first two terms in Eq. (2) are perturbative and
depend on the scale � through the coupling �sð�Þ, while
the last term is nonperturbative, but scale-independent.
C1 is a constant parameter that can be fixed to optimize
the perturbative expansion, as explained in Ref. [15].
References [8,9] adopt the particular choice C1 ¼ 2e��E

which automatically implies ~Kðb�; �bÞ ¼ 0, considerably
simplifying the bT dependence of the Collins-Soper-
Sterman kernel ~KðbT;�Þ, Eq. (2).
The anomalous dimensions �F and �K appearing re-

spectively in Eqs. (1) and (2), are given, again at order
Oð�sÞ, by [8,15]

�F

�
�;

Q2

�2

�
¼ �sð�ÞCF

�

�
3

2
� ln

Q2

�2

�

�Kð�Þ ¼ �sð�Þ 2CF

�
�

(5)

By making use of Eqs. (2)–(5), the evolution of
~Fðx; bT;QÞ in Eq. (1) can then be written as

~Fðx;bT ;QÞ¼ ~Fðx;bT ;Q0Þ ~RðQ;Q0;bTÞexp
�
�gKðbTÞlnQQ0

�
;

(6)

with

~RðQ;Q0; bTÞ

� exp

�
ln
Q

Q0

Z �b

Q0

d�0

�0 �Kð�0Þ þ
Z Q

Q0

d�

�
�F

�
�;

Q2

�2

��
�

(7)

The Q2 evolution is driven by the functions gKðbTÞ and
~RðQ;Q0; bTÞ. While the latter, Eq. (7), can be easily
evaluated, numerically or even analytically, the former is
essentially unknown and will need to be taken from inde-
pendent experimental inputs.
The explicit expression of the TMDs in the momentum

space, with the QCD Q2 dependence, can be obtained by
Fourier-transforming Eq. (6), obtaining [9]

f̂q=pðx; k?;QÞ ¼ 1

2�

Z 1

0
dbTbTJ0ðk?bTÞ~fq=pðx; bT ;QÞ

(8)

D̂h=qðz; p?;QÞ ¼ 1

2�

Z 1

0
dbTbTJ0ðkTbTÞ ~Dh=qðz; bT;QÞ

(9)

f̂?f
1T ðx; k?;QÞ ¼ �1

2�k?

Z 1

0
dbTbTJ1ðk?bTÞ~f0?q

1T ðx; bT ;QÞ;
(10)
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where J0 and J1 are Bessel functions. In this paper we
denote the distribution and fragmentation functions which
depend on the transverse momenta (TMDs) with a ‘‘wide

hat’’ on top. f̂q=p is the unpolarized TMD distribution

function for a parton of flavor q inside a proton, and

D̂h=q is the unpolarized TMD fragmentation function for

hadron h inside a parton q. f̂?q
1T is the Sivers distribution

defined, for unpolarized partons inside a transversely
polarized proton, as

f̂q=p" ðx;k?;S;QÞ

¼ f̂q=pðx;k?;QÞ� f̂?q
1T ðx;k?;QÞ�ijk

i
?S

j

Mp

(11)

¼ f̂q=pðx;k?;QÞþ1

2
�Nf̂q=p" ðx;k?;QÞ�ijk

i
?S

j

k?
� (12)

In our notation k? is the transverse momentum of the
parton with respect to the parent nucleon direction and p?
is the transverse momentum of the final hadron with respect
to the parent parton direction. Notice that in Refs. [8,9] all
transverse momenta are defined in a unique frame, the so-
called hadron frame, in which the measured hadrons have
zero transverse momentum. In this frame, the initial and the
final parton transverse momenta are denoted, respectively,
by k1T and k2T . They are related to our notation by:
k? ¼ k1T and, at leading order in p?, p? ¼ �zk2T .
This requires some attention when dealing with the
fragmentation functions. Usually, the TMD FFs are defined
in terms of the hadronic p?, i.e., the transverse momentum
of the final hadron h with respect to the direction of the
fragmenting parton q, while, following Refs. [8,9], the
Fourier transform (9) is performed from the impact parame-
ter space of the fragmenting parton (bT) into the corre-
sponding partonic transverse momentum (kT ¼ p?=z) in
the hadron frame. This will generate some extra z2 factors,
as explained in detail in Sec. I B.

B. Parametrization of unknown functions

Equations (8)–(10) can be adopted as the appropriate
functional forms, with the correct Q2 dependence induced
by Eqs. (6) and (7), to be used in the extraction of phe-
nomenological information on the unpolarized and Sivers
TMDs. In order to do so, one should start with a parame-
trization of the unknown functions inside Eq. (6): gKðbTÞ
and ~Fðx; bT ;Q0Þ. As already anticipated, gKðbTÞ is a non-
perturbative, but universal function, which in the literature
is usually parametrized in a quadratic form. As in
Refs. [9,10], we will adopt the results provided by a recent
fit of Drell-Yan data [17], and assume

gKðbTÞ ¼ 1

2
g2b

2
T with g2 ¼ 0:68 GeV2

corresponding to bmax ¼ 0:5 GeV�1:

(13)

We should now parametrize the function ~Fðx; bT ;Q0Þ in
configuration space. We wish to test the effect of the TMD
evolution in the extraction of the Sivers functions from
data; in particular, we will compare the extraction based on
TMD evolution with previous extractions which did not
take such an evolution into account. Then, we parametrize
the input function ~Fðx; bT;Q0Þ by requiring that its Fourier
transform, which gives the corresponding TMD function in
the transverse momentum space, coincides with the pre-
viously adopted k?-Gaussian form, with the x dependence
factorized out. That was also done in Refs. [8,9], assuming
for the unpolarized TMD PDF

~fq=pðx; bT ;Q0Þ ¼ fq=pðx;Q0Þ expf��2b2Tg; (14)

where fq=pðx;Q0Þ is the usual integrated PDF of parton q

inside proton p, evaluated atQ0; the value of �
2 is fixed by

requiring the desired behavior of the distribution function
in the transverse momentum space at the initial scale Q0:
taking �2 ¼ hk2?i=4 one recovers

f̂q=pðx; k?;Q0Þ ¼ fq=pðx;Q0Þ 1

�hk2?i
e�k2?=hk2?i; (15)

in agreement with Refs. [5,13,18].
Similar relations hold for the TMD FFs, with an addi-

tional z2 factor due to the fact that the Fourier transform (9)
leads from the impact parameter space of the fragmenting
parton in the hadron frame to the corresponding partonic
transverse momentum kT , while the TMD FFs are func-
tions of the transverse momentum p? ¼ zkT of the final
hadron with respect to the fragmenting parton direction.
This requires the initial parametrization

~Dh=qðz; bT ;Q0Þ ¼ 1

z2
Dh=qðz;Q0Þ expf��2b2Tg; (16)

where Dh=qðz;Q0Þ is the usual integrated FF evaluated at

the initial scale Q0, and �
2 ¼ hp2

?i=4z2 in order to recover
the previously adopted behavior [5,13,18] of the fragmen-
tation function in the p? transverse momentum space atQ0

D̂h=qðz; p?;Q0Þ ¼ Dh=qðz; Q0Þ 1

�hp2
?i

e�p2
?=hp2

?i: (17)

Analogously, we parametrize the Sivers function at the
initial scale Q0 as

~f0?1Tðx; bT ;Q0Þ ¼ �2�2f?1Tðx;Q0ÞbTe��2b2T ; (18)

which, when Fourier-transformed according to Eq. (10),
yields

f̂?1Tðx; k?;Q0Þ ¼ f?1Tðx;Q0Þ 1

4��2
e�k2?=4�

2

: (19)

Equation (19) agrees with our previous parametrization of
the Sivers function, at the initial scale Q0 [5,13,18], taking
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4�2 � hk2?iS ¼
M2

1hk2?i
M2

1 þ hk2?i
(20)

f?1Tðx;Q0Þ ¼ � Mp

2M1

ffiffiffiffiffi
2e

p
�Nfq=p" ðx;Q0Þ

hk2?iS
hk2?i

� (21)

M1 is a mass parameter, Mp the proton mass and

�Nfq=p" ðx;Q0Þ is the x-dependent term of the Sivers func-

tion, evaluated at the initial scale Q0 and written as
[5,13,18]

�Nfq=p" ðx;Q0Þ ¼ 2N qðxÞfq=pðx; Q0Þ; (22)

where N qðxÞ is a function of x, properly parametrized

(we will come back to details of the Sivers function
parametrization in Sec. II).

The final evolution equations of the unpolarized TMD
PDFs and TMD FFs, in the configuration space, are ob-
tained inserting Eqs. (14) and (16) into Eq. (6)

~fq=pðx; bT ;QÞ ¼ fq=pðx;Q0Þ ~RðQ;Q0; bTÞ
� exp

�
�b2T

�
�2 þ g2

2
ln
Q

Q0

��
(23)

~Dh=qðz; bT;QÞ ¼ 1

z2
Dh=qðz;Q0Þ ~RðQ;Q0; bTÞ

� exp

�
�b2T

�
�2 þ g2

2
ln
Q

Q0

��
; (24)

with �2 ¼ hk2?i=4, �2 ¼ hp2
?i=ð4z2Þ, g2 given in Eq. (13)

and ~RðQ;Q0; bTÞ in Eq. (7).
The evolution of the Sivers function is obtained through

its first derivative, inserting Eq. (18) into Eq. (6)

~f0?1Tðx; bT ;QÞ ¼ �2�2f?1Tðx;Q0Þ ~RðQ;Q0; bTÞbT
� exp

�
�b2T

�
�2 þ g2

2
ln
Q

Q0

��
(25)

with �2 and f?1Tðx;Q0Þ given in Eqs. (20)–(22).

Equations (23)–(25) show that the Q2 evolution is con-
trolled by the logarithmic Q dependence of the bT
Gaussian width, together with the factor ~RðQ;Q0; bTÞ:
for increasing values of Q2, they are responsible for the
typical broadening effect already observed in Refs. [8,9].
It is important to stress that although the structure of

Eq. (1) is general and holds over the whole range of bT
values, the input function ~Fðx; bT; Q0Þ is only designed to
work in the large-bT region, corresponding to low k?
values. Therefore, this formalism is perfectly suitable for
phenomenological applications in the kinematical region
we are interested in, but the parametrization of the input
function should be revised in the case one wishes to apply
it to a wider range of transverse momenta, like higher
Q2 processes where perturbative corrections become
important.

C. Analytical solution of the TMD evolution equations

The TMD evolution in Eqs. (23)–(25) implies, apart
from the explicit Gaussian dependence, a further nontrivial
dependence on the parton impact parameter bT through the
evolution kernel ~RðQ;Q0; bTÞ and the upper integration
limit �b, Eq. (4), which appears in Eq. (7); consequently,
it needs to be evaluated numerically. However, the evolu-
tion equations can be solved analytically by making a
simple approximation on this bT dependence. A close
examination of Eq. (4) shows that �b is a decreasing
function of bT that very rapidly freezes to the constant
value C1=bmax ¼ �bðbT ! 1Þ: more precisely, the ap-
proximation �b ¼ const holds for any bT * 1 GeV�1.
As very small values of bT correspond to very large values
of k?, this approximation is safe in our framework, where
the typical k? are less than 1 GeV. Neglecting the bT
dependence of�b, the factor ~RðQ;Q0; bTÞ does not depend
on bT anymore, see Eq. (7), and can even be integrated
analytically by using an explicit representation of �sðQÞ.
Hereafter we will refer to it as RðQ;Q0Þ, with RðQ;Q0Þ �
~RðQ;Q0; bT ! 1Þ. Fig. 1 shows the evolution factor
~RðQ;Q0; bTÞ plotted as a function of bT at two fixed values
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FIG. 1 (color online). In the left panel, the evolution factor RðQ;Q0; bTÞ is plotted as a function of bT at two fixed values of Q2. In
the right panel we show RðQ;Q0Þ � RðQ;Q0; bT ! 1Þ as a function of Q2. In both cases, Q2

0 ¼ 1 GeV2.
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of Q2 (left panel), and RðQ;Q0Þ as a function of Q2 (right
panel). It is clear that RðQ;Q0Þ settles to a constant value
for bT * 1 GeV�1. In both cases,Q2

0 ¼ 1 GeV2. Small bT
values, for which this approximation looses its validity, do
not contribute much to the Fourier transforms (8)–(10), as
it will be shown explicitly in our results (see Fig. 2). Such
an analytical solution is anyway of great help as it provides
a simple illustration of all the main features of the TMD
evolution.

Thus, in this approximation, the TMD-evolution Eq. (6)
only depends on bT through the nonperturbative function
gKðbTÞ, which has been chosen to be a quadratic function
of bT , Eq. (13), and through the bT dependence of the
initial input function ~Fðx; bT ;Q0Þ which has been chosen
to be Gaussian. It results in a bT-Gaussian form, with a
width which depends logarithmically on Q=Q0, for the
TMD-evolution equation. For the unpolarized TMD
PDFs one has

~fq=pðx; bT;QÞ ¼ fq=pðx;Q0ÞRðQ;Q0Þ

� exp

�
�b2T

4

�
hk2?i þ 2g2 ln

Q

Q0

��
: (26)

Its Fourier transform, Eq. (8), delivers a Gaussian distri-
bution in the transverse momentum space as well

f̂q=pðx; k?;QÞ ¼ fq=pðx;Q0ÞRðQ;Q0Þ e
�k2?=w

2

�w2
; (27)

where fq=pðx;Q0Þ is the usual integrated PDF evaluated at

the initial scaleQ0 and, most importantly, w2 � w2ðQ;Q0Þ
is the ‘‘evolving’’ Gaussian width, defined as

w2ðQ;Q0Þ ¼ hk2?i þ 2g2 ln
Q

Q0

� (28)

It is worth noticing that theQ2 evolution of the TMD PDFs
is now determined by the overall factor RðQ;Q0Þ and, most
crucially, by the Q2-dependent Gaussian width wðQ;Q0Þ.
The TMD FFs evolve in a similar way, Eq. (24),

~Dh=qðz;bT ;QÞ¼ 1

z2
Dh=qðz;Q0ÞRðQ;Q0Þ

�exp

�
� b2T
4z2

�
hp2

?iþ2z2g2 ln
Q

Q0

��
; (29)

leading to the TMD FF in momentum space

D̂ h=qðz; p?;QÞ ¼ Dh=qðz; Q0ÞRðQ;Q0Þ e
�p2

?=w
2
F

�w2
F

; (30)

with an evolving and z-dependent Gaussian width
wF � wFðQ;Q0Þ given by

w2
F � w2

FðQ;Q0Þ ¼ hp2
?i þ 2z2g2 ln

Q

Q0

� (31)

For the Sivers distribution function, by Fourier-
transforming Eq. (25) (with ~R ! R) as prescribed by
Eq. (10), we obtain [see also Eqs. (11), (12), (20), and (21)]:

�Nf̂q=p" ðx;k?;QÞ

¼ k?
M1

ffiffiffiffiffi
2e

p hk2?i2S
hk2?i

�Nfq=p" ðx;Q0ÞRðQ;Q0Þe
�k2?=w

2
S

�w4
S

; (32)

with

w2
SðQ;Q0Þ ¼ hk2?iS þ 2g2 ln

Q

Q0

� (33)

It is interesting to notice that the evolution factor
RðQ;Q0Þ, controlling the TMD evolution according
to Eqs. (27), (30), and (32) is the same for all
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FIG. 2 (color online). The left panel shows the unpolarized TMD PDF, f̂u=p, evolved from the initial scale, Q2
0 ¼ 1 GeV2, to

Q2 ¼ 2:4 GeV2, using TMD evolution (red, solid line), DGLAP evolution (blue, dashed line) and the analytical approximated TMD
evolution (green, dot-dashed line). The right panel shows the same functions at the scale Q2 ¼ 20 GeV2. Notice that, while there is
hardly any difference between the DGLAP-evolved lines at Q2 ¼ 2:4 and Q2 ¼ 20 GeV2, the TMD evolution induces a fast decrease
in size of the TMD PDF functions at large Q2 and a simultaneous widening of its Gaussian width. Here the analytical approximated
evolution gives results in good agreement with the exact calculation even at large Q2 and k?.
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functions (TMD PDFs, TMD FFs and Sivers) and is
flavor-independent; consequently it will appear, squared,
in both numerator and denominator of the Sivers azimuthal
asymmetry and, approximately, cancel out. Therefore, we
can safely conclude that most of the TMD evolution of
azimuthal asymmetries is controlled by the logarithmic
Q dependence of the k? Gaussian widths w2ðQ;Q0Þ,
Eqs. (28), (31), and (33). We will come back to this
in Sec. II.

To illustrate the features of this new TMD-evolution, we
compare it with the results obtained evolving only the col-
linear part, fq=pðx;QÞ, of the unpolarized TMDPDF accord-

ing to the usual Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) equations and assuming the k?-dependent term
of this function to be unaffected by evolution. In the left
panel of Fig. 2 we show the k? behavior of the unpolarized

TMD PDF f̂u=pðx; k?; Q2Þ, at the fixed value x ¼ 0:1,

evaluated at the scale Q2 ¼ 2:4 GeV2 (the average Q2

value for the HERMES experiment). In the right panel we
show the same function at a higher scale, Q2 ¼ 20 GeV2

(which is the highest bin average Q2 detected in the
COMPASS experiment). In both cases the chosen initial
scale is Q2

0 ¼ 1 GeV2. The red, solid line corresponds to

the k? distribution of the TMD PDF found by using the
TMD evolution of Eq. (23) while the blue, dashed line
represents the result obtained by using DGLAP evolution
equations. At the initial scale, Q2

0 ¼ 1 GeV2, solid and

dashed curves coincide, by definition. However, while the
DGLAP evolution is so slow that there is hardly any differ-
ence between the DGLAP-evolved lines atQ2 ¼ 2:4 GeV2

and Q2 ¼ 20 GeV2, the TMD evolution induces a fast
decrease of the maximum values of the TMD PDF function
with growing Q2, and a simultaneous broadening of its
Gaussian width, as observed in Refs. [8,9]. It is interesting
to notice that the approximated evolution of Eq. (27),

corresponding to the green, dot-dashed line works really
well, even for large Q2 values.
A similar study is performed in Fig. 3 for the Sivers

function. Here, by DGLAP evolution we mean that the
Sivers function evolves like an unpolarized collinear PDF,
only through the factor fq=pðx;QÞ contained in its parame-

trization, Eq. (22). The parameters used for the plots are
those given in Sec. II, although any set of realistic parame-
ters would lead to the same conclusions. The left panel
shows the ratio between the Sivers function and the TMD

PDF,�Nf̂u=p" ðx; k?;QÞ=ð2f̂u=pðx; k?;QÞÞ, evaluated at the
scaleQ2 ¼ 2:4 GeV2. Again, the red, solid line is obtained
using the TMD evolution of Eqs. (23) and (25), while the
blue, dashed line is given by the DGLAP evolution. The
green, dot-dashed line represents the results obtained using
the approximated analytical TMD evolution of Eqs. (27)
and (32). The right panel shows the same functions at the
scale Q2 ¼ 20 GeV2. Similarly to the case of TMD PDFs,
while there is no difference between the DGLAP-evolved
lines at Q2 ¼ 2:4 and Q2 ¼ 20 GeV2, the TMD evolution
induces a fast decrease in the size of the TMD Sivers
functions with growing Q2 and a simultaneous widening
of its Gaussian width. It is interesting to point out that the
analytical TMD approximation, for the Sivers function
visibly breaks down for large values of k?.

II. SIDIS DATA AND TMD VERSUS
NON-TMD EVOLUTION

Having established the phenomenological formalism
necessary to implement the TMD evolution, as given in
Refs. [7–9], we apply it to the Sivers function. This TMD

distribution, �Nf̂q=p" ðx; k?; QÞ ¼ ð�2k?=MpÞf̂?1T , can be

extracted from HERMES and COMPASS ‘p ! hX SIDIS

data on the azimuthal moment A
sinð�h��SÞ
UT , defined as
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FIG. 3 (color online). The left panel shows the ratio Sivers/PDF, �Nf̂u=p"=2f̂u=p, evolved from the initial scale, Q2
0 ¼ 1 GeV2, to

Q2 ¼ 2:4 GeV2, using TMD evolution (red, solid line), DGLAP evolution (blue, dashed line) and the analytical approximated TMD
evolution (green, dot-dashed line). The right panel shows the same functions at the scale Q2 ¼ 20 GeV2. Notice that, while there is
almost no difference between the DGLAP-evolved lines atQ2 ¼ 2:4 andQ2 ¼ 20 GeV2, the TMD evolution induces a fast decrease in
size of the ratio Sivers/PDF functions with growing Q2 and a simultaneous widening of its Gaussian width. It is interesting to point out
that the analytical approximation, for the Sivers function, visibly breaks down at large values of k?.
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A
sinð�h��SÞ
UT ¼ 2

R
d�Sd�h½d	" � d	#� sinð�h ��SÞR

d�Sd�h½d	" þ d	#� �
(34)

This transverse single spin asymmetry embeds the azi-
muthal modulation triggered by the correlation between
the nucleon spin and the quark intrinsic transverse

momentum. The ‘‘weighting’’ factor sinð�h ��SÞ in
Eq. (34) is appropriately chosen to single out, among
the various azimuthal dependent terms appearing in
½d	" � d	#�, only the contribution of the Sivers mecha-
nism [18,19]. By properly taking into account all intrin-
sic motions this transverse single spin asymmetry can be
written as [1]

A
sinð�h��SÞ
UT ¼

P
q

R
d�Sd�hd

2k?�Nf̂q=p" ðx; k?; QÞ sinð’��SÞ d	̂‘q!‘q

dQ2 D̂h
qðz; p?; QÞ sinð�h ��SÞP

q

R
d�Sd�hd

2k?f̂q=pðx; k?; QÞ d	̂‘q!‘q

dQ2 D̂h
qðz; p?; QÞ � (35)

With respect to the leptonic plane, �S and �h are the
azimuthal angles identifying the transverse directions of
the proton spin S and of the outgoing hadron h respec-
tively, while ’ defines the direction of the incoming
(and outgoing) quark transverse momentum, k? ¼
k?ðcos’; sin’; 0Þ; d	̂‘q!‘q=dQ2 is the unpolarized cross
section for the elementary scattering ‘q ! ‘q.

The aim of our paper is to analyze the available polar-
ized SIDIS data from the HERMES and COMPASS
Collaborations in order to understand whether or not they
show signs of the TMD evolution proposed in Ref. [9] and
described in Sec. I A. Our general strategy is that of adopt-
ing the TMD evolution in the extraction of the Sivers
functions, with the same parametrization and input func-
tions as in Refs. [5,13], and see if that can improve the
quality of the fits. In doing so we will make use of the
HERMES reanalysis of SIDIS experimental data on Sivers
asymmetries for pion and kaon production and the newest
SIDIS COMPASS data off a proton target, which cover a
wider range of Q2 values, thus giving a better opportunity
to check the TMD evolution.

In particular we perform three different data fits:
(i) a fit (TMD fit) in which we adopt the TMD-evolution

equation discussed in Secs. I A and IB, Eqs. (23)–(25)
and (8)–(10);

(ii) a second fit (TMD analytical fit) in which we apply
the same TMD evolution, but using the analytical
approximation discussed in Sec. I C, Eqs. (27), (30),
and (32);

(iii) a fit (DGLAP fit) in which we follow our previous
work, as done so far in Ref. [5,13], using the
DGLAP evolution equation only in the collinear
part of the TMDs.

As a result of the fit we will have explicit expressions of all
the Sivers functions and their parameters. However, the
goal of the paper is not that of obtaining a new extraction of
the Sivers distributions, although we will show, for com-
ment and illustration purposes, the Sivers functions for u
and d valence quarks, with the relative parameters. The
procedure followed here aims at testing the effect of the
TMD evolution, as compared with the simple DGLAP

evolution so far adopted, in fitting the TMD SIDIS data.
If it turns out, as it will, that this improves the quality of the
fit, then a new extraction of the Sivers distributions, en-
tirely guided by the TMD evolution, will be necessary.
That will require a different approach from the very begin-
ning, with different input functions and parametrizations.
Here, we parametrize the Sivers function at the initial

scaleQ0 ¼ 1 GeV, as in Ref. [5,13], in the following form:

�Nf̂q=p" ðx; k?; Q0Þ ¼ 2N qðxÞhðk?Þf̂q=pðx; k?; Q0Þ;
(36)

with

N qðxÞ ¼ Nqx
�qð1� xÞ�q

ð�q þ �qÞð�qþ�qÞ

�
�q
q �

�q
q

; (37)

hðk?Þ ¼
ffiffiffiffiffi
2e

p k?
M1

e�k2?=M
2
1 ; (38)

where f̂q=pðx; k?; Q0Þ is defined in Eq. (15) andNq, �q, �q

and M1 (GeV) are (scale-independent) free parameters to
be determined by fitting the experimental data. Since
hðk?Þ � 1 for any k? and jN qðxÞj � 1 for any x (notice

that we allow the constant parameterNq to vary only inside

the range ½�1; 1�), the positivity bound for the Sivers
function,

j�Nf̂q=p" ðx; k?Þj
2f̂q=pðx; k?Þ

� 1; (39)

is automatically fulfilled. Similarly to PDFs, the FFs at
the initial scale are parametrized with a Gaussian shape,
Eq. (17).
As in Refs. [5,20], the average values of k? and p? are

fixed as

hk2?i ¼ 0:25 GeV2 hp2
?i ¼ 0:20 GeV2: (40)

We take the unpolarized distributions fq=pðx;Q2
0Þ from

Ref. [21] and the unpolarized fragmentation functions
Dh=qðz;Q2

0Þ from Ref. [22], with Q2
0 ¼ 1:0 GeV. As in

Ref. [5], we adopt 11 free parameters,
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TABLE I. 
2 contributions corresponding to the TMD fit, the TMD analytical fit and the DGLAP fit, for each experimental data set
of HERMES and COMPASS experiments.

TMD evolution (exact) TMD evolution (analytical) DGLAP evolution


2
tot ¼ 255:8 
2

tot ¼ 275:7 
2
tot ¼ 315:6

Experiment Hadron N. points 
2
d:o:f ¼ 1:02 
2

d:o:f ¼ 1:10 
2
d:o:f ¼ 1:26

7 
2
x ¼ 10:7 
2

x ¼ 12:9 
2
x ¼ 27:5

�þ 7 
2
z ¼ 4:3 
2

z ¼ 4:3 
2
z ¼ 8:6

7 
2
PT

¼ 9:1 
2
PT

¼ 10:5 
2
PT

¼ 22:5

7 
2
x ¼ 17:0 
2

x ¼ 16:5 
2
x ¼ 14:8

�� 7 
2
z ¼ 2:4 
2

z ¼ 2:4 
2
z ¼ 3:3

7 
2
PT

¼ 6:4 
2
PT

¼ 6:3 
2
PT

¼ 6:2

7 
2
x ¼ 5:9 
2

x ¼ 5:8 
2
x ¼ 5:6

HERMES �0 7 
2
z ¼ 8:0 
2

z ¼ 8:1 
2
z ¼ 6:9

7 
2
PT

¼ 6:8 
2
PT

¼ 7:0 
2
PT

¼ 6:6

7 
2
x ¼ 4:7 
2

x ¼ 4:8 
2
x ¼ 4:4

Kþ 7 
2
z ¼ 9:3 
2

z ¼ 9:8 
2
z ¼ 4:3

7 
2
PT

¼ 4:6 
2
PT

¼ 5:3 
2
PT

¼ 2:8

7 
2
x ¼ 2:4 
2

x ¼ 2:4 
2
x ¼ 2:9

K� 7 
2
z ¼ 7:2 
2

z ¼ 7:0 
2
z ¼ 5:5

7 
2
PT

¼ 3:4 
2
PT

¼ 3:3 
2
PT

¼ 3:7

9 
2
x ¼ 6:7 
2

x ¼ 11:2 
2
x ¼ 29:2

hþ 8 
2
z ¼ 17:8 
2

z ¼ 18:5 
2
z ¼ 16:6

COMPASS-p 9 
2
PT

¼ 12:4 
2
PT

¼ 24:2 
2
PT

¼ 11:8

9 
2
x ¼ 7:6 
2

x ¼ 7:7 
2
x ¼ 11:9

h� 8 
2
z ¼ 9:7 
2

z ¼ 9:6 
2
z ¼ 14:1

9 
2
PT

¼ 8:1 
2
PT

¼ 8:1 
2
PT

¼ 9:9

9 
2
x ¼ 7:3 
2

x ¼ 7:1 
2
x ¼ 5:3

�þ 8 
2
z ¼ 5:4 
2

z ¼ 5:3 
2
z ¼ 7:9

9 
2
PT

¼ 5:4 
2
PT

¼ 5:2 
2
PT

¼ 5:5

9 
2
x ¼ 4:4 
2

x ¼ 4:4 
2
x ¼ 5:0

�� 8 
2
z ¼ 10:9 
2

z ¼ 10:7 
2
z ¼ 13:9

COMPASS-d 9 
2
PT

¼ 4:5 
2
PT

¼ 4:8 
2
PT

¼ 4:4

9 
2
x ¼ 6:5 
2

x ¼ 6:5 
2
x ¼ 5:8

Kþ 8 
2
z ¼ 7:7 
2

z ¼ 7:7 
2
z ¼ 7:2

9 
2
PT

¼ 4:8 
2
PT

¼ 4:9 
2
PT

¼ 4:7

9 
2
x ¼ 12:1 
2

x ¼ 12:4 
2
x ¼ 13:1

K� 8 
2
z ¼ 8:9 
2

z ¼ 9:0 
2
z ¼ 9:4

9 
2
PT

¼ 13:5 
2
PT

¼ 12:0 
2
PT

¼ 14:4

M. ANSELMINO, M. BOGLIONE, AND S. MELIS PHYSICAL REVIEW D 86, 014028 (2012)

014028-8



Nuv Ndv Ns N �u N �d N �s

�uv �dv �sea � M1ðGeVÞ;
(41)

where the subscript v denotes valence contributions. In this
choice we differ from Ref. [5], where valence and sea
contributions were not separated.

We perform best fits of 11 experimental data sets:
HERMES [11] data for SIDIS production of pions
(�þ, ��, �0) and kaons (Kþ and K�), COMPASS data
for SIDIS pion (�þ, ��) and kaon (Kþ and K�) produc-
tion from a LiD (deuteron) target [23], and the preliminary
COMPASS data for charged hadron production from an
NH3 (proton) target [12]. The results of these three fits are
presented in Table I in terms of their 
2s.

As is clear from the first line of Table I, the best total 
2
tot,

which amounts to 256, is obtained by using the TMD
evolution, followed by a slightly higher
2

tot of the analytical

approximation, and a definitely larger 
2
tot ’ 316

corresponding to the DGLAP fit. To examine the origin
of this difference between TMD and DGLAP evolution, we
show the individual contributions to 
2

tot of each experi-
ment (HERMES, COMPASS on NH3 and on LiD targets),
for all types of detected hadrons and for all variables
observed (x, z andPT). A global look at the numbers reported
in Table I shows that the difference of about 60 
2 points
between the TMD and the DGLAP fits is not equally distrib-
uted among all 
2s per data point; rather, it is heavily
concentrated in three particular cases, namely in the asym-
metry for �þ production at HERMES and for hþ and h�
production at COMPASS off a proton target, especially when
this asymmetry is observed as a function of the x variable.
It is important to stress that, as x is directly proportional

to Q2 through the kinematical relation Q2 ¼ xys, the x
behavior of the asymmetries is intimately connected to
their Q2 evolution. While the HERMES experimental
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FIG. 4 (color online). The results obtained from our fit of the SIDIS Asinð�h��SÞ
UT Sivers asymmetries applying TMD evolution (red,

solid lines) are compared with the analogous results found by using DGLAP-evolution equations (blue, dashed lines). The green, dash-
dotted lines correspond to the results obtained by using the approximated analytical TMD evolution (see text for further details). The
experimental data are from HERMES [11] (left panel) and COMPASS [12] (right panel) Collaborations.

TABLE II. Best values of the free parameters, Eq. (41), for the Sivers functions of u and d
valence quarks, as obtained from our TMD fit, TMD analytical fit and DGLAP fit, at
Q0 ¼ 1 GeV. The errors reported in this table correspond to the maximum and minimum
values of each parameter in a restricted parameter space constrained by the condition �
2 ¼ 20,
corresponding to 95.45% confidence level. They correspond to the shaded area in Fig. 7.

TMD evolution (exact) TMD evolution (analytical) DGLAP evolution

Nuv ¼ 0:77þ0:23
�0:19 Nuv ¼ 0:75þ0:25

�0:21 Nuv ¼ 0:45þ0:25
�0:17

Ndv ¼ �1:00þ0:75
�0:00 Ndv ¼ �1:00þ0:82

�0:00 Ndv ¼ �1:00þ0:85
�0:00

�uv ¼ 0:68þ0:57
�0:40 �uv ¼ 0:82þ0:51

�0:48 �uv ¼ 1:08þ0:68
�0:62

�dv ¼ 1:11þ1:39
�0:91 �dv ¼ 1:36þ1:24

�1:00 �dv ¼ 1:7þ1:15
�0:91

� ¼ 3:1þ4:7
�2:6 � ¼ 4:0þ4:5

�2:8 � ¼ 6:9þ6:4
�4:1

M2
1 ¼ 0:40þ1:5

�0:23 GeV2 M2
1 ¼ 0:34þ1:36

�0:19 GeV2 M2
1 ¼ 0:19þ0:77

�0:10 GeV2
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bins cover a very modest range of Q2 values, from
1:3 GeV2 to 6:2 GeV2, COMPASS data raise to a
maximumQ2 of 20:5 GeV2, enabling to test more severely
the TMD Q2 evolution in SIDIS.

These aspects are illustrated in Fig. 4, where the SIDIS

Sivers asymmetries Asinð�h��SÞ
UT obtained in the 3 fits are

shown in the same plot. It is evident that the DGLAP evolu-
tion seems to be unable to describe the correct x trend, i.e., the
right Q2 behavior, while the TMD evolution (red, solid line)
follows much better the large Q2 data points, corresponding
to the last x bins measured by COMPASS. The approximate

analytical TMD evolution (green, dash-dotted line) works
very well for low to moderate values of Q2 while it starts
to deviate from the exact behavior at large Q2 values.
In Figs. 5 we show, as an illustration of their qualities,

our best fits (red, solid lines) of the HERMES experimental
data [11] on the Sivers asymmetries for pion production.
Those on the left panels are obtained adopting the new
TMD evolution, while those on the right use the simplified
DGLAP volution. Similar results are shown, for the recent
COMPASS data off a proton target [12] for charged hadron
production, in Fig. 6.
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FIG. 5 (color online). The results obtained from the TMD-evolution fit (left panel) and from the DGLAP-evolution fit (right panel) of

the SIDIS Asinð�h��SÞ
UT Sivers asymmetries (red, solid lines) are compared with the HERMES experimental data [11] for charged and

neutral pion production. The shaded area corresponds to the statistical uncertainty of the parameters, see Appendix A of Ref. [5] for
further details.
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UT Sivers asymmetries (red, solid lines) are compared with the COMPASS-p experimental data [12] for charged

hadron production. The shaded area corresponds to the statistical uncertainty of the parameters, see Appendix A of Ref. [5] for further
details.
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The shaded area represents the statistical uncertainty of
the fit parameters corresponding to a �
2 ¼ 20 (i.e.) to
95.45% confidence level for 11 degrees of freedom, see
Appendix A of Ref. [5] for further details). Notice that, in
general, the error bands corresponding to the TMD evolu-
tion fit are thinner than those corresponding to the DGLAP
fit: this is caused by the fact that the TMD evolution
implies a ratio Sivers/PDF which becomes smaller with
growing Q2, as shown in Fig. 3, constraining the free
parameters much more tightly than in the DGLAP evolu-
tion fit, where the Sivers/PDF ratio remains roughly con-
stant as Q2 raises from low to large values.

In Fig. 7 we compare, for illustration purposes, the
Sivers function—actually, its first moment, defined in
Ref. [5]—at the initial scaleQ0 for u and d valence quarks,
as obtained in our best fits with the TMD (left panel) and
the DGLAP (right panel) evolution, Table II. Notice that
for this analysis we have chosen to separate valence from
sea quark contributions, while in Ref. [5] the u and d
flavors included all contributions.

This result deserves some comments. The comparison
shows that the extracted u and d valence contributions, at
the initial scale Q0 ¼ 1 GeV, are definitely larger for the
TMD-evolution fit. This reflects the TMD-evolution prop-
erty, according to which the Sivers functions are strongly
suppressed with increasingQ2, which is not the case for the
almost static collinear DGLAP evolution. Thus, in order to
fit the same data atQ2 bins ranging from 1.3 to 20:5 GeV2,
the TMD-evolving Sivers functions must start from higher
values at Q0 ¼ 1 GeV. The Sivers distributions previously

extracted, with the DGLAP evolution, in Refs. [5,13] were
given at Q2 ¼ 2:4 GeV2; one should notice that if we
TMD evolve the Sivers distributions on the left side of
Fig. 7 up to Q2 ¼ 2:4 GeV2 we would obtain a result very
close to that of Refs. [5,13] (and to that of the right side
of Fig. 7).

III. CONCLUSIONS AND FURTHER REMARKS

We have addressed the issue of testing whether or not the
recently proposed Q2 evolution of the TMDs (TMD evo-
lution) can already be observed in the available SIDIS data
on the Sivers asymmetry. It is a first crucial step towards
the implementation, based on the TMD-evolution equa-
tions of Refs. [7–9], of a consistent QCD framework in
which to study the TMDs and their full Q2 dependence.
That would put the study of TMDs—and the related
reconstruction of the three-dimensional parton momentum
structure of the nucleons—on a firm basis, comparable to
that used for the integrated PDFs.
Previous extractions of the Sivers functions from

SIDIS data included some simplified treatment of the
Q2 evolution, which essentially amounted to consider
the evolution of the collinear and factorized part of the
distribution and fragmentation functions (DGLAP evolu-
tion). It induced modest effects, because of the slow Q2

evolution and of the limited Q2 range spanned by the
available data. The situation has recently much pro-
gressed, for two reasons: the new TMD evolution [8,9]
shows a strong variation with Q2 of the functional form
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FIG. 7 (color online). The first moment of the valence u and d Sivers functions, evaluated at Q ¼ Q0, obtained from our best fits of

the A
sinð�h��SÞ
UT azimuthal moments as measured by HERMES [11] and COMPASS [12,23] Collaborations. The extraction of the Sivers

functions on the left side takes into account the TMD evolution (left column of Table II), while for those on the right side it does not
(right column of Table II). The shaded area corresponds to the statistical uncertainty of the parameters, see Appendix A of Ref. [5] for
further details.
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of the unpolarized and Sivers TMDs, as functions of
the intrinsic momentum k?; in addition, some new
COMPASS results give access to Sivers asymmetries at
larger Q2 values.

It appears then possible to test the new TMD evolution.
In order to do so one has to implement the full machinery
of the TMD-evolution equations in a viable phenomeno-
logical scheme. We have done so, following Ref. [9], and
the simplified version of the TMD evolution given in
Eqs. (6) and (7). We have used them in our previous
procedure adopted for the extraction of the Sivers functions
[5,13,18], with the same input parameters; moreover, we
have considered also the updated HERMES [11] and the
new COMPASS [12] data.

A definite statement resulting from our analysis is that
the best fit of all SIDIS data on the Sivers asymmetry using
TMD evolution, when compared with the same analysis
performed with the simplified DGLAP evolution, exhibits
a smaller value of the total 
2, as shown in Table I. Not
only, but when analyzing the partial contributions to the
total 
2 value of the single subsets of data, one realizes that
such a smaller value mostly originates from the large Q2

COMPASS data, which are greatly affected by the TMD
evolution. We consider this as an indication in favor of the
TMD evolution.

A more comprehensive study of the TMD evolution and
its phenomenological implications is now necessary. Both
the general scheme and its application to physical pro-
cesses need improvements. The recovery of the usual col-
linear DGLAP evolution equations, after integration of the
TMD evolution results over the intrinsic momenta, has to
be understood. Consider, as an example, the simple ex-
pression of the evolution of the unpolarized TMD PDF, as
given in Eq. (27). Such an evolution describes how the
TMD dependence on k? changes with Q2, but does not
induce any change in the x dependence, which, at this
order, remains fixed and factorized. The question whether
or not one can recover the usual DGLAP evolution, which
changes the x dependence, for the integrated PDFs arises
naturally at this point. A naive integration of Eq. (27)
on k?, over the full integration range, would give
fq=pðx;QÞ ¼ fq=pðx;Q0ÞRðQ;Q0Þ which is not the correct

PDF evolution. However, the k? integration should have
upper limits which depend on x and Q2, and the full TMD
evolution is more complicated than the simplified version

used here, as explained at the beginning of Sec. I A. These
issues were also recently addressed, within a soft-collinear
effective theory framework, in Ref. [24].
We have made a safe phenomenological use of the

TMD-evolution equations; it is true that they induce a
strong change in the k? dependence of the unpolarized
and Sivers TMDs, leaving unchanged the x-dependent
shape, thus neglecting the collinear DGLAP evolution,
but this should not be a problem. In fact, as we have shown
explicitly in Fig. 2 (dashed curve), the collinear DGLAP
evolution is negligible in the Q2 region considered; Fig. 2
is drawn for x ¼ 0:1, but a similar conclusion holds for all
x values involved in the SIDIS data used in the paper.
Moreover, the extra factors RðQ;Q0Þ, arising in the TMD
evolution, cancel out, as already explained, in the expres-
sion of the Sivers asymmetries.
Further help to the study of the TMD evolution of the

Sivers function, valid at larger k? values, might possibly
come from its evolution written in terms of the twist-3
Efremov-Teryaev-Qiu-Sterman function Tq;F, as in

Eq. (47) of Ref. [9]; this function is related to the first
k?-moment of the quark Sivers function [25]. An extraction
of Tq;F, from data on single spin asymmetries in single

inclusive large PT hadron production in pp collisions, is
available in the literature [26]. However, a ‘‘sign-mismatch’’
problem [27] between the twist-3 function frompp data and
the Sivers function from SIDIS data has recently been
pointed out, and we do not pursue this point further.
A fresh analysis of TMD-dependent data, both in polar-

ized and unpolarized, SIDIS and Drell-Yan processes, has
to be carefully performed including TMD evolution from
the beginning in an unbiased way. Most importantly so,
should predictions for future high-energy experiments, like
the planned electron-ion/electron-nucleon colliders, be
considered or reconsidered.
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