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logarithm approximation of perturbative QCD, we analyze the structure of splitting diagrams as a source

of double parton perturbative correlations in the proton. The related phenomenological effects are

discussed for the conditions of the LHC experiments.
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I. INTRODUCTION

Strong interest has arisen [1] in the investigations and
measurements of the multiparton interactions in high en-
ergy hadron-hadron collisions. The analysis of final states
with four jets, �þ 3 jets, and W þ 2 jets, performed by
the AFS [2], UA2 [3], CDF [4,5], D0 [6], and ATLAS [7]
Collaborations, provides convincing evidence for the sig-
nificance of hard multiple parton interactions in these
collisions and thereby supplements our understanding of
the proton structure with new information. Studies of hard
double parton scattering (DPS) have a long history theo-
retically, with many references to prior work listed, for
instance, in the recent review [1]. A greater rate of events
containing multiple hard interactions is anticipated at the
LHC, with respect to the experiments mentioned above,
due to the much higher luminosity and greater energy of
the LHC. Moreover, the DPS processes can constitute an
important background [8,9] to signals from the Higgs and
other interesting processes. Besides, certain types of mul-
tiple interactions will have distinctive signatures [10–14],
facilitating a detailed investigation of these processes ex-
perimentally and revealing information about parton pair
correlations in the proton.

The inclusive cross section of a DPS process in a hadron
collision with the two hard parton subprocesses A and B
may be written in the factorized form [see, for instance,
Ref. [15], where Eq. (1) is derived in detail] as

�D
ðA;BÞ ¼

m

2

X
i;j;k;l

Z
�ijðx1; x2;q;Q2

1;Q
2
2Þ�̂A

ikðx1; x01Þ

� �̂B
jlðx2; x02Þ�klðx01; x02;�q;Q2

1;Q
2
2Þ

� dx1dx2dx
0
1dx

0
2

d2q

ð2�Þ2 : (1)

Here �ijðx1; x2;q;Q2
1; Q

2
2Þ are the generalized double par-

ton distribution functions, depending on the longitudinal
momentum fractions x1 and x2 of the two partons under-
going the hard processes A and B at the scales Q1 and Q2.
�̂A

ik and �̂B
jl are the parton-level subprocess cross sections.

The factor m=2 is a consequence of the symmetry of the
expression for interchanging parton species i and j. m ¼ 1
if A ¼ B andm ¼ 2 otherwise. Note that these distribution
functions also depend on the transverse vector q which is
equal to the difference of the momenta of partons from the
wave function of the colliding hadrons in the amplitude
and the amplitude conjugated. Such dependence arises
because the difference of parton transverse momenta
within the parton pair is not conserved. This transverse
momentum q is the Fourier conjugated variable of the
parton pair transverse separation. The starting cross section
formula (1) is somewhat similar to that usually used for
single parton scattering. It was found (derived) in many
works using the light-cone variables and the same approx-
imations as those applied to the processes with a single
hard scattering.
The main problem is to make the correct calculation of

the two-parton functions �ijðx1; x2;q;Q2
1; Q

2
2Þ without

[15–20] additional simplifying assumptions (the factoriza-
tion of the impact-parameter dependence and x depen-
dence that, by no means, should be treated as inviolate).
These functions and the corresponding evolution equations
were considered in the current literature [21–24] only for
q ¼ 0 in the collinear approximation. In this approxima-
tion the two-parton distribution functions,

�ijðx1; x2;q ¼ 0;Q2; Q2Þ ¼ Dij
h ðx1; x2;Q2; Q2Þ;

with the two hard scales set equal, satisfy the generalized
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-
lution equations, derived initially in Refs. [21,22].
Likewise, the single distributions satisfy more widely
known and often cited DGLAP equations [25–28]. The
functions in question have a specific interpretation in the
leading logarithm approximation of perturbative QCD:
they are the inclusive probabilities that in a hadron h one
finds two bare partons of types i and j with the given
longitudinal momentum fractions x1 and x2.
Based on these well-known collinear distributions, we

have recently suggested [16] a practical method which
makes it possible to estimate the inclusive cross section
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for a DPS process without the oversimplified additional

factorization assumption for �ijðx1; x2;q ¼ 0;Q2
1; Q

2
2Þ ¼

Di
hðx1;Q2

1ÞDj
hðx2;Q2

2Þ (which, in general, is inconsistent

with the QCD evolution) but taking into account the
QCD evolution explicitly [29]. Afterwards, similar results
were obtained also in Ref. [30], with an emphasis on the
differential cross sections, and were partly supported in
Ref. [31], albeit with some diversity of opinion mainly
regarding a terminology. We found that single and double
perturbative splitting graphs can meaningfully contribute
to the inclusive cross section for a DPS process, in com-
parison with a ‘‘traditional’’ factorization component.

The main purpose of the present paper is to analytically
study the structure of these single and double perturbative
splitting diagrams as a source of parton pair perturba-
tive correlations in the proton. The paper is organized as

follows. In order to be clear and to introduce the denota-
tions, we briefly recall some basic formulas from our
previous work [16] in Sec. II. The double parton correla-
tions in the double logarithm approximation of perturba-
tive QCD are estimated in Sec. III. The possible
phenomenological issues at the LHC are discussed in
Sec. IV, together with conclusions.

II. INCLUSIVE CROSS SECTION IN TERMS
OF COLLINEAR DISTRIBUTIONS

The inclusive cross section for DPS can be presented in
the following form [16]:
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or in substantially shorter yet less transparent form,
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(5)

and for the combined (‘‘interference’’) contribution,
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Here �sðk2Þ is the QCD coupling, andDj1
j0
1
ðz; k2; Q2Þ are the

known single distribution functions (the Green’s functions
generated by the usual DGLAP kernels) at the parton level
with the specific �-like initial conditions at Q2 ¼ k2.
The one-parton distribution (before splitting into the two
branches at some scale k2) is given byDj0

h ðz1 þ z2;�
2; k2Þ.

The splitting functions

1

z1 þ z2
Pj0!j01j

0
2

�
z1

z1 þ z2

�

are the nonregularized one-loop well-known DGLAP
kernels without the ‘‘þ’’ prescription. The single parton
distribution functions Di

hðx1;�2; Q2
1Þ are the solutions of

the DGLAP equations with the given initial conditions
Di

hðx1;�2Þ at the reference scale �2 and may be expressed
via the Green’s functions Di

i0 ðz; k2; Q2Þ in the follow-
ing way:

Di
hðx;�2; Q2Þ ¼ X
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Z 1

x

dz
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Di0

hðz;�2ÞDi
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�
x

z
;�2; Q2

�
: (7)
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Let us first consider the 1� 1 component which
describes the two hard subprocesses A and B caused by
the interactions of two pairs of partons in two independent
branches of parton cascades. The probability of this double
parton interaction depends on the spatial distribution
(in the impact-parameter transverse plane) of these two
branches of the parton cascade. In the momentum repre-
sentation the spatial distribution is regulated by the two-
parton (in a low x region this is mainly the two-gluon) form
factor F2gðqÞ. After the integration over q it gives the factor

Z
F4
2gðqÞ

d2q

ð2�Þ2 ¼
1

�eff

which characterizes the transverse area occupied by the
partons participating in hard collision and is often denoted
as an effective cross section, �eff .

Thus the value of the DPS cross section depends on the
spatial correlations between the two partons in the incom-
ing proton (hadron) wave function. Because of a strong k?
ordering during the DGLAP evolution, the position of the
parton in the impact-parameter, bt, plane is frozen, and the
form factor F2g describes the initial bt distribution formed

in the nonperturbative region somewhere at a low scale,
less than �2, where the DGLAP evolution starts.

However, there is another sort of correlation caused by
the splitting of one branch of the parton cascade into two
branches. A splitting at the scale k2 produces two branches
placed rather close to each other, with the spatial separa-
tion �b2t � 1=k2. This effect is of perturbative origin and it
may noticeably enlarge the DPS cross section, leading to a
lower mean value of �eff .

Depending on the kinematics of the DPS process and
experimental cuts, we may concentrate on the two-parton
correlations coming from the nonperturbative region, that
is, on the 1� 1 contribution or on the correlations of
perturbative origin, like that in the 2� 2 term.

The contribution of the combined component (1� 2) is
regulated by the form factor F2gðqÞ [17,32] from the side of

one incoming proton and by the perturbative splitting on
another side. Since the form factor F2gðqÞ already provides
the convergence of the q integral in the low q2 <�2

region, here we mainly deal with the ‘‘long distance’’
correlations from the nonperturbative region.

The nonperturbative correlations corresponding to a low
q2 were discussed in detail in Refs. [17,30], where it was
proposed to consider the DPS events with small transverse
momenta of the systems A and B produced by the hard
subprocesses. This would be a very interesting study, albeit
such cuts select a very small part of the total DPS cross
section. An alternative possibility to study the correlations
at a low scale q2 is to measure the asymmetric DPS
processes where one ‘‘hard’’ scale Q2

1 is relatively low,
say, the �c-meson and high-ET dijet DPS processes. Since
q2 <Q2

1 (Q1 is a relatively low scale corresponding to �c

production) we have practically no space for pQCD split-
ting, and the 1� 1 configuration will dominate.
There is some discussion in the current literature

[19,30,31,33] concerning the 2� 2 component. This con-
tribution incorporates the two splitting functions and the
integration over q without the strong suppression factor
F2gðqÞ. Formally, in the region of not too small x, within

the collinear approach this contribution should be consid-
ered as a result of the interaction of one pair of partons with
the 2 ! 4 hard subprocess [19,30,31,33], since the domi-
nant contribution to the phase space integral comes from a
large q2 �minðQ2

1; Q
2
2Þ. However, as we argue in Ref. [16]

there may be configurations with a rather large interval
between the splitting point ðk2; z1 þ z2Þ and the (momen-
tum) coordinates ðQ2

i ; xiÞ of the hard subprocess. In such a
case the interval will be filled by the evolution [either
DGLAP when k2 � Q2

i or Balitsky-Fadin-Kuraev-
Lipatov (BFKL) [34–37] when z1 þ z2 � xi] which will
produce additional secondaries. The corresponding process
cannot be described by the 2 ! 4 hard matrix element.
Here we have to use our formulas (2) and (4), especially in
the case of a configuration with two quite different scales
(for instance, Q2

1 � Q2
2).

In order to understand the structure of these additional
contributions (1� 2 and 2� 2) better, we consider them in
the double logarithm approximation, which allows us to
obtain some analytical estimations.

III. DOUBLE LOGARITHM APPROXIMATION

Let us write down all the integrations with splitting
functions separately to make the analysis more transparent,
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�
: (8)

Because of the strong suppression factor F2
2gðqÞ in a

single splitting diagram (1� 2 contribution), this integral

Dij
h2ðx1; x2;q2; Q2

1; Q
2
2Þ can be estimated at the reference

scale q2 ¼ �2 and can be considered as the QCD evolution
correction to the factorized double parton distribution
functions. For double splitting diagrams (2� 2 contribu-
tion) we should keep the further nonlogarithmic integra-
tion over q in mind.
In the double logarithm approximation we can restrict

ourselves to the main gluon contribution only and rewrite
the integral under consideration in the following form [38]:
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Dgg
h2ðx1;x2;q2;Q2

1;Q
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2Þ

¼
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1
;Q2

2
Þ
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dk2
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Dg
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�Pg!ggðzÞDg

g

�
x1
uz

;k2;Q2
1

�
Dg

g

�
x2

uð1�zÞ;k
2;Q2

2

�
; (9)

where u ¼ z1 þ z2 and z ¼ z1=u.
The limits in the u and z integrations are x1 < uz, x2 <

uð1� zÞ, u < 1, and z < 1. The Green’s functions (gluon
distributions at the parton level) in the double logarithm
approximation (see, for instance, [27,34]) read

xDg
gðx; tÞ ’ 4Nctv

�3=2 exp½v� at�= ffiffiffiffiffiffiffi
2�

p
; (10)

where v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Nct lnð1=xÞ

p
, a ¼ 11

6 Nc þ 1
3 nf=N

2
c ,

tðQ2Þ ¼ 2

�
ln

"
lnðQ2

�2Þ
lnð�2

�2Þ

#
; (11)

and where � ¼ ð11Nc � 2nfÞ=3, with the number of

active flavors nf, � is the dimensional QCD parameter,

and Nc ¼ 3 is the color number. Recall that in Eq. (11) the
one-loop running QCD coupling

�sðQ2Þ ¼ 4�

� lnðQ2=�2Þ (12)

was used. After that, the integral (9) may be rewritten as

x1x2D
gg
h2ðx1; x2;	;T1; T2Þ

�
Z minðT1;T2Þ

	
dt

Z
dzPg!ggðzÞ

Z
dy exp½ ffiffiffiffiffiffiffiffiffi

8Nc

p
dðt; y; zÞ�;

(13)

where

dðt; y; zÞ ¼ ffiffiffiffiffi
ty

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT1 � tÞðY1 � yÞ

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT2 � tÞðY2 � yÞ

q
(14)

with t ¼ tðk2Þ, T1 ¼ tðQ2
1Þ, T2 ¼ tðQ2

2Þ, 	 ¼ tðq2Þ; and
y ¼ lnð1=uÞ, Y1 ¼ lnð1=x1Þ � lnð1=zÞ, Y2 ¼ lnð1=x2Þ �
lnð1=ð1� zÞÞ.

In Eq. (13) we keep the leading exponential terms only,
which have the same structure both at the parton level and
at the hadron level under smooth enough initial conditions
at the reference scale. Indeed, in the double logarithm
approximation Eq. (7) reads

xDg
hðx;TÞ ’

Z Y

0
dy0½z0Dg

hðz0; 0Þ�j1=z0¼expy0

� exp½ ffiffiffiffiffiffiffiffiffi
8Nc

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TðY � y0Þ

q
�

� exp½ ffiffiffiffiffiffiffiffiffi
8Nc

p ffiffiffiffiffiffiffi
TY

p � (15)

with T ¼ tðQ2Þ and Y ¼ lnð1=xÞ. The y0 integration is not a
saddle-point type, and therefore, one of the edges, namely

y0 ! 0 (z0 ! 1), dominates, provided that the initial gluon
distribution does not grow too much as z0 decreases. In
fact, one needs z0Dg

hðz0; 0Þ � ð1=z0Þa at z0 ! 0 with a < A,

where A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NcT=Y

p
> 0. Note that the parametrization

of the initial gluon distributions usually used satisfies this
condition (e.g., the CTEQ parametrization from Ref. [39]).
We are interested in the domain with large enough T1,

T2, lnð1=x1Þ, and lnð1=x2Þ, when the exponential factors are
large in comparison with 1 and where the approximations
above are justified. In this case the integration over the
rapidity y has a saddle-point structure in the wide interval
of z integration not near the kinematic boundaries. The
saddle-point equation reads

ffiffi
t

p
ffiffiffiffiffi
y0

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT1 � tÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðY1 � y0Þ

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT2 � tÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðY2 � y0Þ

p ¼ 0: (16)

It may be solved explicitly in the simplest case of the two
hard scales set equal, T1 ¼ T2 ¼ T, and at Y1 ’ Y2 ’ Y ¼
lnð1=xÞ, i.e., in the z region where lnð1=zÞ � lnð1=xÞ and
lnð1=ð1� zÞÞ � lnð1=xÞ [40]. Then the saddle point is
equal to

y0 ¼ Yt=ð4T � 3tÞ (17)

and Eq. (13) reduces to

x2Dgg
h2ðx;x;	;T;TÞ

�
Z T

	
dt
Z 1�x

x
dzPg!ggðzÞexp½

ffiffiffiffiffiffiffiffiffi
8Nc

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yð4T�3tÞ

p
�: (18)

The t integration is not a saddle-point type, and therefore,
one of the edges, namely t ! 	, dominates. That is,

x2Dgg
h2ðx; x; 	; T; TÞ � exp½ ffiffiffiffiffiffiffiffiffi

8Nc

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yð4T � 3	Þ

p
�: (19)

IV. DISCUSSION AND CONCLUSIONS

Now let us discuss in more detail what follows from our
estimation of splitting integrals in the double logarithm
approximation by the saddle-point method [41].
For single splitting diagrams (1� 2 contribution) the

lower limit for the t integration in the estimation (18) may
be taken at the reference scale, i.e., 	 ¼ tðq2Þjq¼� ¼ 0, due

to the strong suppression factor F2
2gðqÞ. The characteristic

value of q is of the order of the ‘‘effective gluon mass’’
mg �� in the further q integration. Thus, one obtains for

this contribution the following estimation:

x2Dgg
h2ðx; x; 0; T; TÞ � exp½ ffiffiffiffiffiffiffiffiffi

8Nc

p ð ffiffiffiffiffiffiffi
YT

p þ ffiffiffiffiffiffiffi
YT

p Þ�: (20)

This means that the splitting takes place at the ‘‘character-
istic point’’ with the scale k2 close to �2 and with the
longitudinal momentum fraction u� 1 (the saddle point
y0 � t� 	� 0 in this case). After splitting, one has
two independent ladders with the well-developed BFKL
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[34–37] and DGLAP [25–28] evolutions. Every ladder
contributes to the cross section with the large exponential

factor exp½ ffiffiffiffiffiffiffiffiffi
8Nc

p ffiffiffiffiffiffiffi
YT

p �, which is just the same as for single
distributions [compare Eq. (20) with Eq. (10)]. Therefore,
in the double logarithm approximation single splitting
diagrams (9) have, in fact, the factorization property if
one takes only the leading exponential factors into consid-
eration. However, the contributions to the cross section
from single splitting diagrams and from the factorization
component differ in nonexponential factors omitted here,
especially in the different ‘‘normalization’’ at the reference
scale: one ‘‘nonperturbative’’ parton for single splitting
diagrams and two initial independent ‘‘nonperturbative’’
partons for the factorization component.

The factorization property for the integral Dij
h2ðx1; x2;

�2; Q2
1; Q

2
2Þ (8) was found also in Ref. [42] in the double

logarithm limit based on other techniques.
For double splitting (2� 2) diagrams the leading expo-

nential contribution arises from the lower limits of t inte-
gration and either lower or upper limits of q integrations,
depending on the available rapidity interval Y. There is
competition between the exponential factor caused by the
evolution, which prefers a small 	, and the phase space
factor in the q2 integral. Because of the nonlogarithmic
character of the integration over d2q for a not sufficiently
large Y, the contribution from the upper limit of q may
dominate. Indeed, let us consider the production of
two b �b pairs in a central rapidity (
� 0) region. That
is, we take T1 ¼ T2 ¼ T, Y1 ¼ Y2 ¼ Y and keep just
the leading exponential factors in the double parton
distributions,

x2Dh2ðx; x; q2; Q2; Q2Þ � exp

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8NcYð4T � 3	Þ

q

� 2aT þ a	

�
; (21)

where for better accuracy we keep the term �at in the
exponent of Eq. (10) [recall that here tðq2Þ ¼ 	].

Thus the logarithmic dq2=q2 integral takes the form

Z dq2

q2
exp

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8NcYð4T � 3	Þ

q
� 4aT þ 2a	

�
q2; (22)

with lnðq2=�2Þ ¼ L ¼ lnð�2=�2Þe�	=2. The L behavior of
the integrand of Eq. (22),

fðLÞ ¼ exp

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8NcYð4T � 3	Þ

q
� 4aT þ 2a	

�

� exp

�
ln

�
�2

�2

�
e�	=2

�
; (23)

is shown in Fig. 1 in the case of Y ¼ 5 and Y ¼ 2,
corresponding to the LHC energy

ffiffiffi
s

p ¼ 14 TeV and

the Relativistic Heavy Ion Collider (RHIC) energyffiffiffi
s

p ¼ 500 GeV (to be more or less realistic, here Y is
calculated as Y ¼ lnðx0=xÞ with x0 � 0:2). For this numeri-
cal estimation we takeNc ¼ 3, nf ¼ 4 and� ¼ 150 MeV1,

Q2 ¼ 50 GeV2. In the LHC case we consider also the
DPS W-boson production, taking Q2 ¼ 104 GeV2 and
Y ¼ 3.
As it is seen in Fig. 1, where the relevant quantity

�2
sðq2ÞfðLÞ is plotted, for the DPS production of two b �b

pairs themajor contribution comes froma lowq2. That is, the
reaction may be effectively described by the 1� 1 term; the
formation of two parton branches (one to two splitting) takes
place mainly at low scales. However, at the RHIC energy,
when the available rapidity interval is not large, the q2

dependence is not steep and the contribution caused by the
splitting somewhere in the middle of the evolution is still not
negligible. The same can be said about the DPS W-boson
production at the LHC.Here the upper edge of theq2 integral
dominates. This part may be described as the collision of
one pair of partons supplemented by a more complicated,
2 ! 4 or 2 ! 2W, hard matrix element. However, clearly
we need to also account for contributions from the whole q2

interval.
In other words, depending on the precise kinematics, we

may deal either with a single parton pair collision (times
the 2 ! 4 hard subprocess), with the contribution of the
1� 1 type where the formation of two parton branches
(one to two splitting) takes place at low scales, or with

α2
sf(L)  (unnormalized)

q2 (GeV2)

bb
_
   RHIC

bb
_
   LHC

W   LHC

FIG. 1. The q dependence of the integrand fðLÞ in the loga-
rithmic scale.

1These parameters provide reasonable values of QCD coupling
in a relevant region, say, �s ¼ 0:29 and �s ¼ 0:22 at Q2 ¼ 4
and 20 GeV2, correspondingly.
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the 2� 2 configuration where the splitting may happen
everywhere (with more or less equal probabilities) during
the evolution. Note that just this last possibility may be
relevant for the LHC experiments.

When both splittings take place at relatively small scales
��2 � Q2, the 2� 2 contribution cannot be considered
as the result of the interaction of one pair of partons with
the 2 ! 4 hard subprocess, unlike the statement in
Refs. [19,30,31,33].

Recall also that there may be a configuration with two
quite different scales (say, Q2

1 � Q2
2), in which the upper

limit of the q2 integral is given by a smaller scale (at q > Q1

the hard matrix element corresponding to �A begins to
diminish with qt). In this case the collinear evolution from
the scale q ¼ Q1 up to the scale Q2 in the ladders is
sufficiently justified. A configuration with two quite different
‘‘final’’ rapidities [for instance, 1 � lnð1=x1Þ � lnð1=x2Þ]
is also interesting to probe single and double splitting dia-
grams, since the BFKL evolution takes place in the ladders
before and after (in one of ladders only) splitting.

Here it is worth noticing that the asymptotic prediction
mainly ‘‘teaches’’ us a tendency and tells us nothing
practical about values of x1, x2, Q1, and Q2, beginning
from which the asymptotic behavior is a good approxi-
mation to the real one. Therefore, it makes sense to
consider the quantitative contribution of the 2� 2 term
even within the collinear approach as applied to the
LHC kinematics, where the large available values of Q1

and Q2 (in comparison with mg and �), lnð1=x1Þ and

lnð1=x2Þ (in comparison with 1) can provide configura-
tions with the BFKL or DGLAP evolution in ladders
before and after splitting, depending on the processes
under consideration.

A number of processes were suggested in order to probe
DPS at the LHC. Promising candidate processes, such as
same-sign W production, Z production in association with
jets, four-jet production, production of a b �b pair with two
jets, production of a b �b pair withW, have been discussed in
detail in a review [1], with many references to prior works
listed therein. Quite recently the processes with pairs of
heavy quarkonia in the final state were considered [43–45]
as precise probes of the DPS at the LHC. We believe that
production of a b �b pair (or J=c ) with W may be a good
candidate process to probe the QCD evolution of the
double distribution functions due to a configuration with
two quite different scales.

For completeness, it is also interesting to estimate the value
of the exponential factors available at the LHC kinematics in
single ladder diagrams. The asymptotic behavior of the distri-
bution functions is determined by the factor

exp½ ffiffiffiffiffiffiffiffiffi
8Nc

p ffiffiffiffiffiffiffi
YT

p � ¼ exp½2:4 ffiffiffiffiffiffiffiffiffiffiffiffi
kBFKL

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kDGLAP

p �; (24)

where

kBFKL ¼ Y ¼ lnð1=xÞ< 14

at xmin ¼ 10�6, and

kDGLAP ¼ ln½ðlnðQ=�Þ=ðlnð�=�Þ�< 1:4

atQmax ¼ 250 GeV,�¼1GeV,�¼0:15GeV. In Eq. (24)
we put nf ¼ 4, Nc ¼ 3.

However, it is better to compare the pure BFKL factor
!0 lnð1=xÞ�ð�sNc=�Þlnð1=xÞwith the analogous DGLAP
factor 2Nct. In the BFKL case the resummation of the next-
to-leading logarithmic corrections leads to !0 � 0:3 [46],
that is, the BFKL power !0 � lnð1=xÞ< 4, while for the
DGLAP evolution we have ð4Nc=�ÞkDGLAP < 2. Thus the
LHC kinematics admits a wider interval for the BFKL
evolution than for the DGLAP one in compatible dimen-
sionless variables. Therefore, it may be interesting (and
even more justified theoretically) to consider the multiple
parton interactions in the framework of the BFKL ap-
proach (see, for instance, Ref. [20]).
In summary, we have demonstrated that all components

of the generalized double distribution functions have the
factorization structure in the double logarithm approxima-
tion and contribute to the cross section with the same
leading exponential terms in Y and T, but with different
weights (nonexponential factors). For the debatable double
splitting diagrams, depending on the precise kinematics,
we may deal either with a single parton pair collision (times
the 2 ! 4 hard subprocess), with the contribution of the
1� 1 type where the formation of two parton branches (one
to two splitting) takes place at low scales, or with the 2� 2
configuration where the splitting may happen everywhere
(with more or less equal probabilities) during the evolution.
In order to probe the QCD evolution of the double distribu-
tion functions better, we suggest to also investigate the
processes with two quite different scales, in particular,
production of a b �b pair (or J=c ) with W, which was
estimated at the LHC kinematical conditions in Ref. [14]
using the factorized component only.
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