
Mesons and nucleons in the soft-wall AdS/QCD model
with constrained infrared background

Sheng Liu and Peng Zhang

Institute of Theoretical Physics, College of Applied Sciences, Beijing University of Technology,
Beijing 100124, People’s Republic of China

(Received 23 April 2012; published 17 July 2012)

The purpose of this paper is to further study the soft-wall AdS/QCDmodel with constrained IR background

proposed in [1]. By including a quartic bulk scalar potential we study various meson and nucleon spectra.

This model naturally realizes the asymptotical linearity of these mass spectra simultaneously, together with

correct patterns of explicit and dynamical chiral symmetry breaking. The agreement between the theoretical

calculations and the experimental data is good.
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I. INTRODUCTION

In the 1970s ’t Hooft argued [2] that the largeNc limit of
QCD, with fixed g2Nc, should be described by its holo-
graphic dual string theory. This idea has been explicitly
realized by the AdS/CFT correspondence [3–5]. In the
infrared region QCD becomes strongly coupled and the
effective dynamical degrees of freedom (instead of quarks
and gluons) are hadrons in the particle zoo, like �, �, N,
etc. Therefore, QCD cannot help us very much in our
understanding the properties of low-energy strong interac-
tions. However, the idea of large Nc expansions and hol-
ography supply a totally new point of view for these
difficult yet important problems. According to its general
rule, when the ’t Hooft coupling g2Nc is large, we can use
the effective theory in the bulk to study the strongly
coupled dynamics of QCD.

Actually this has been an active region of research in
recent years. There are two complementary methods of
study. One is the top-down method (see e.g. [6,7]), which
starts from some brane configurations in string theory. This
method has the advantage of theoretical completeness,
however, the resulting model only has partial resemblances
with the real QCD. The other method is bottom-up, usually
called AdS/QCD (see e.g. [8–10]). This method assumes
the bulk theory living in the AdS5 spacetime or its some IR
deformation. The model contains several bulk fields
each of which corresponds to a QCD operator, people
use observed experimental data and/or some properties of
QCD, e.g. chiral symmetry breaking, linear confinement,
etc., to constrain the possible forms of the model. It sup-
plies necessary conditions that a would-be holographic
theory of QCD should have. In this paper we will follow
this bottom-up approach.

The so-called hard-wall model, defined on a slice of
AdS5 with a sharp IR cutoff, is developed first. These
types of models can correctly realize the pattern of chiral
symmetry breaking and low-lying hadron states. For in-
stance, scalar and pseudoscalar mesons were studied in
[11], tensor mesons in [12], and b1=h1 mesons in [13].

Even hybrid exotic mesons were realized in [14]. In
addition to the meson sector, baryons can also be realized
in the hard-wall model, see [15–18]. However, the main
difficulty of the hard-wall approach is the absence of
linear confinement. To remedy this drawback, a soft-
wall model is construct in [19], which includes a back-
ground dilaton field with quadratic growth at the deep IR
region. By WKB-type arguments, it can be shown that the
excited meson spectrum exhibits the Regge behavior
m2

n / nþ J. In [20], by introducing a quartic potential
term for the bulk scalar, explicit and spontaneous chiral
symmetry breaking are also correctly incorporated in soft-
wall AdS/QCD models. The relation with light-front
dynamics is also discussed, see e.g. [21,22]. A huge
amount of works have been done, a partial list includes
[23–33].
In addition to the meson sector, various baryons also

exhibit the approximate Regge behavior. One possible
explanation [34] of this fact is that the baryon is composed
of a quark and a diquark connected by a flux-tube string. So
its structure is actually similar with meson. In the literature
of AdS/QCD, there are relatively few works considering
the baryon linear spectrum, see e.g. [35–38]. In [39] and
subsequently [40], we develop a soft-wall AdS/QCD
model which realizes asymptotically linear spectra for
both mesons and nucleons. We achieve this by a cubic
potential term for the bulk scalar and a new parametriza-
tion of its vacuum expectation value (VEV). We also
calculate the coupling between pion and nucleons. The
main drawback of this model is that the slopes of meson
mass-squares are different, which is inconsistent with the
real data. Unfortunately it is not easy to improve this.
However, we will argue in this paper that it is impossible
to get parallel meson slopes, while keeping the linear
nucleon spectrum, by only varying the scalar VEV or
choosing different forms of the potential.
In [1] we argue that, by requiring to have correct Regge-

type spectrum in both meson and nucleon sectors, the IR
asymptotic behavior of various background fields in the
model can be fully determined. The way around the above
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no-go theorem is to allow the mass of bulk fields being
z-dependent.1 This is actually very natural when consider-
ing possible anomalous dimension of the QCD operators.
For operators which are not conserved currents, like the
quark condensates and baryon operators, the full conformal
dimension is not the classical value. The anomalous part is
in general scale-dependent due to the running coupling
constant, which translates to the z-dependence of the
mass term for the corresponding bulk fields according to
the well-known mass-dimension relation. Therefore, we
assume the z-dependence of the bulk mass for the bulk
scalar field and the bulk Dirac field. We only require these
masses approaching the value dual to the classical dimen-
sion at the UV boundary since the high energy fixed-point
of QCD is a free theory.

In the present paper we will further develop the model
proposed in [1]. To be more realistic we include a quartic
potential for the bulk scalar as in [20]. The trajectories of
various meson sectors are parallel with each other, improv-
ing the main drawback of our previous model in [39,40].
The remaining parts of this paper are organized as follows.
In Sec. II we discuss the meson sector of our model. It
includes scalar, vector, axial-vector, and pseudoscalar
mesons. We also compare the predicted masses and the
corresponding data. In Sec. III we discuss the spin-1=2
nucleons. We show that they also have asymptotically
linear spectrum. We summarize this paper in Sec. IV.

II. MESON SECTOR

In our soft-wall AdS/QCD models, all fields are defined
in a five-dimensional (5D) Anti-de Sitter (AdS) space with
the metric

ds2 ¼ GMNdx
MdxN ¼ a2ðzÞð���dx

�dx� � dz2Þ;
0< z <1: (2.1)

The bulk action for the meson sector is

SM ¼
Z

d4xdz
ffiffiffiffi
G

p
e��

�
� 1

4g25
ðkFLk2 þ kFRk2Þ

þ kDXk2 �m2
XkXk2 � �kXk4

�
: (2.2)

Here g25 ¼ 12�2=Nc ¼ 4�2 as usual. FL and FR are

the field strengths of the gauge potentials L and R,
respectively. The covariant derivative is defined to be
DMX ¼ @MX� iLMX þ iXRM, with X in the bifunda-
mental representation of SUð2ÞL � SUð2ÞR. kXk2 is the
norm of the matrix X, i.e. kXk2 ¼ TrðXyXÞ.

A. Background fields

First we introduce the bulk scalar X, it is assumed to
have a z-dependent VEV as follows:

hXi ¼ 1

2
vðzÞ 1 0

0 1

 !
: (2.3)

Then from the bulk action (2.2) we get the equation that
combines function vðzÞ and the background dilaton �ðzÞ,

@zða3e��@zvÞ � a5e��

�
m2

Xvþ �

2
v3

�
¼ 0: (2.4)

We can deduce that the mass-square m2
X may be

z-dependent due to possible unusual dimension of �qLqR.
Then according to (2.4), m2

X can be expressed as

m2
X ¼ v00 þ ð��0 þ 3a0=aÞv0

a2v
� �

2
v2: (2.5)

The UV limit is still simple to argue, for the warp factor we
have

aðzÞ � L

z
; z ! 0: (2.6)

And for the scalar VEV we have

vðzÞ � Azþ Bz3; z ! 0: (2.7)

By the mass-dimension relation m2
X ¼ �ð�� 4Þ, we have

m2
XðzÞ � �3; z ! 0: (2.8)

These are the behaviors at UV boundary, now we continue
to study the IR situation. For the dilaton it must be [19]

�ðzÞ �Oðz2Þ; z ! 1; (2.9)

which guarantees the mesons have linear spectra. In order
to obtain the spectral linearity of nucleons, the IR limit of
the warp factor is [1]

aðzÞ �OðzÞ; z ! 1: (2.10)

To have parallel mass-square lines between vector and axial-
vector mesons we get the IR behavior of the scalar VEV

vðzÞ �Oðz�1Þ; z ! 1: (2.11)

Now we use simple parametrization to smoothly connect
these asymptotes from UV to IR as follows:

�ðzÞ ¼ �2z2; (2.12)

aðzÞ ¼ 1þ�z2

z
; (2.13)

vðzÞ ¼ Azþ Bz3

1þ Cz4
: (2.14)

The parameters are determined by fitting the experimental
data of the pseudoscalar, scalar, vector and axial-vector
meson masses. We take their values as

1This has been suggested previously in e.g. [41,42] for differ-
ent purposes.
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A ¼ 3:2 MeV; B ¼ ð394:5 MeVÞ3;
C ¼ ð786:5 MeVÞ4; � ¼ 1153:6 MeV;

� ¼ 413:1 MeV; � ¼ 5:99:

(2.15)

In the following sections we will use them to calculate
mass spectra and to compare them with the experimental
data.

B. Quadratic order action

To get the fluctuation filed we define

X ¼
�
v

2
þ S

�
e2iP; (2.16)

here S is a real scalar, P is a real pseudoscalar, and X, S, P
are all 2� 2 matrices. Next we define

VM ¼ 1

2
ðLM þ RMÞ; AM ¼ 1

2
ðLM � RMÞ: (2.17)

We expand the action (2.2) to the quadratic order of these
new fields

Sð2ÞM ¼
Z

d4xdzðLð2Þ
P;A5

þLð2Þ
S þLð2Þ

V þLð2Þ
A Þ: (2.18)

Each of them is as follows:

Lð2Þ
P;A5

¼ � 1

2
a3v2e��Pa@2Pa � 1

2
a3v2e��ð@5Pa � Aa

5Þ2

� 1

2g25
ae��Aa

5@
2Aa

5 ; (2.19)

Lð2Þ
S ¼ � 1

2
a3e��Sa

�
@2 � 1

a3e��
@5ða3e��@5Þ

þm2
Xa

2 � 3

4
�a2v

�
Sa; (2.20)

L ð2Þ
V ¼ � 1

2g25
ae��Va

�

�
����@2 þ @�@�

þ 1

ae��
@5ðae��@5Þ���

�
Va
�; (2.21)

L ð2Þ
A ¼ � 1

2g25
ae��Aa

�

�
����@2 þ @�@�

þ 1

ae��
@5ðae��@5Þ��� � g25a

2v2���

�
Aa
�:

(2.22)

Some cross terms have been canceled by gauge fixing
terms,

L G:F: ¼ � ae��

2g25�V

�
@�Va

� � �V

ae��
@5ðae��Va

5 Þ
�
2

� ae��

2g25�A

�
@�Aa

� � �A

ae��
@5ðae��Aa

5Þ

þ g25�Aa
2v2Pa

�
2
: (2.23)

By using the unitary gauge � ! 1 as in [10], we have

@5ðae��Va
5 Þ ¼ 0; (2.24)

@5ðae��Aa
5Þ ¼ g25a

3v2e��Pa: (2.25)

We can write Pa in terms of Aa
5 . Then Eq. (2.19) becomes

L ð2Þ
A5

¼� 1

2g25
ae��Aa

5@
2D2Aa

5�
1

2
a3v2e��ðD2Aa

5ÞðD2Aa
5Þ;

(2.26)

and the quadratic order differential operator D2 is
defined by

D2f ¼ �@5

�
@5ðae��fÞ
g25a

3v2e��

�
þ f: (2.27)

C. Scalar mesons

Next we should use Kaluza-Klein (KK) expansion to get
the four-dimensional (4D) effective action

Sðx; zÞ ¼ X1
n¼0

	ðnÞðxÞfðnÞS ðzÞ; (2.28)

where fðnÞS ’s are eigenfunctions of the following problem:

� 1

a3e��
@5ða3e��@5f

ðnÞ
S Þ þ

�
m2

Xa
2 � 3

4
�a2v

�
fðnÞS

¼ MðnÞ2
S fðnÞS ; (2.29)

with the boundary conditions

fðnÞS jz!0 ¼ 0; fðnÞS jz!1 ¼ 0:

And the orthonormality condition is

Z 1

0
a3e��fðnÞS fðn

0Þ
S dz ¼ 
nn0 : (2.30)

Then we insert (2.28) into (2.20) and do the integration
over the z-coordinate andget exactly an effective 4D action

for a cluster of scalar fields 	ðnÞ. We can also transform
the Sturm-Liouville Eq. (2.29) into a Schrödinger form

as �c ðnÞ00
S þ VSc

ðnÞ
S ¼ MðnÞ2

S c ðnÞ
S in which we introduce

the VS below. By setting fðnÞS ¼ e!S=2c ðnÞ
S with !S ¼ ��

3 loga, the effective potential VS for scalar mesons is

VS ¼ 1

4
!02

S � 1

2
!00

S þm2
Xa

2 þ 3

4
�a2v2: (2.31)
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Here we have

VS �Oðz2Þ; z ! 1 (2.32)

due to the background dilaton. The eigenvalue problem
(2.29) cannot be solved analytically. We have to rely on
numerical calculations.We use the former parameters listed
in (2.15) to calculate the scalar meson masses. The result
and comparison with experimental data are shown in
Table I. The agreement between the theoretical and experi-
mental values is good.

D. Pseudoscalar mesons

Similarly, we expand the field A5 in terms of its KK
modes

A5ðx; zÞ ¼
X1
n¼0

�ðnÞðxÞfðnÞP ðzÞ; (2.33)

with fðnÞP being the eigenfunction of the differential opera-
tor D2,

� @5

�
@5ðae��fðnÞP Þ
g25a

3v2e��

�
þ fðnÞP ¼ MðnÞ2

P

g25a
2v2

fðnÞP (2.34)

and with the boundary condition [11]

@5ðae��fðnÞP Þjz!0 ¼ 0; fðnÞP jz!1 ¼ 0: (2.35)

According to general theories of the Sturm-Liouville prob-

lem, we can normalize fðnÞP by the following orthonormal-
ity relation

Z 1

0

e��

av2
fðnÞP fðn

0Þ
P dz ¼ g45

MðnÞ2
P


nn0 : (2.36)

We can rewrite this eigenvalue problem in a Schrödinger
form as in the scalar meson field. Define

p ¼ 1

g25a
3v2e��

; q ¼ 1

ae��
; (2.37)

and c ðnÞ
P ¼ ae��p1=2fðnÞP , which satisfies the Schrödinger

equation �c ðnÞ00
P þ VPc

ðnÞ
P ¼ MðnÞ2

P c ðnÞ
P with the effective

potential

VP ¼ 2pp00 � p02 þ 4pq

4p2
: (2.38)

Here we also have

VP �Oðz2Þ; z ! 1:

Then we find the asymptotical spectrum is linear with
respect to the radial quantum number n. The resulting
mass spectra are listed in Table II.

E. Vector mesons

With the same procedure as the scalar and pseudoscalar
mesons, the field V� is expanded as

V�ðx; zÞ ¼
X1
n¼0

�ðnÞ
� ðxÞfðnÞV ðzÞ; (2.39)

with fðnÞV being eigenfunctions of the following problem:

� 1

ae��
@5ðae��@5f

ðnÞ
V Þ ¼ MðnÞ2

V fðnÞV ; fðnÞV jz!0 ¼ 0;

fðnÞV jz!1 ¼ 0: (2.40)

We normalize fðnÞV by the following orthonormality
condition

Z 1

0
ae��fðnÞV fðn

0Þ
V dz ¼ 
nn0 : (2.41)

Then we can get the effective 4D action for a tower of

massive vector fields �ðnÞ
� , which can be identified as the

fields of � mesons by inserting (2.39) into (2.21) and
integrating over the z-coordinate. Then we also transform

(2.40) into a Schrödinger form by setting fðnÞV ¼ e!=2c ðnÞ
V

with ! ¼ �� loga. The effective potential VV for vector
mesons is

VV ¼ 1

4
!02 � 1

2
!00: (2.42)

It is also of order Oðz2Þ in the deep IR region, i.e. (z ! 1)
and gives us asymptotically linear spectra for vector
mesons. The resulting mass spectra are listed in Table III.

TABLE I. The experimental and theoretical values of scalar
meson masses. The average error is 2.03%.

n 0 1 2 3 4 5 6 7

mexp 550 980 1350 1505 1724 1992 2103 2189

mth 550 999 1301 1544 1753 1939 2108 2265

error 0.0% 2.0% 3.6% 2.6% 1.7% 2.7% 0.3% 3.5%

TABLE II. The experimental and theoretical values of pseu-
doscalar meson masses. The average error is 7.67%.

n 0 1 2 3 4

mexp 139 1300 1816 2070 2360

mth 139 1662 1860 2040 2204

error 0.0% 27.9% 2.4% 1.5% 6.6%

TABLE III. The experimental and theoretical values of vector
meson masses. The average error is 6.61%.

n 0 1 2 3 4 5 6

mexp 775.5 1465 1570 1720 1909 2149 2265

mth 982.9 1288 1533 1743 1930 2100 2257

error 26.8% 12.1% 2.4% 1.3% 1.1% 2.3% 0.4%
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F. Axial-vector mesons

We expand the field A� in terms of its KK modes

A�ðx; zÞ ¼
X1
n¼0

aðnÞ� ðxÞfðnÞA ðzÞ; (2.43)

with fðnÞA being eigenfunctions of the following problem:

� 1

ae��
@5ðae��@5f

ðnÞ
A Þ þ g25a

2v2fðnÞA ¼ MðnÞ2
A fðnÞA ;

fðnÞA jz!0 ¼ 0; fðnÞA jz!1 ¼ 0: (2.44)

The orthonormality condition for fðnÞA is

Z 1

0
ae��fðnÞA fðn

0Þ
A dz ¼ 
nn0 ; (2.45)

the same as vector mesons. Again, inserting (2.43) into
(2.22) and integrating over the z-coordinate, we get exactly
an effective 4D action for a tower of massive axial-vector

fields aðnÞ� . With the former steps, we rewrite (2.44) in a

Schrödinger form by setting fðnÞA ¼ e!=2c ðnÞ
A with ! ¼

�� loga. The effective potential VA for axial-vector me-
sons is

VA ¼ 1

4
!02 � 1

2
!00 þ g25a

2v2: (2.46)

It also has the quadratic behavior at z ! 1 and asymptoti-
cally linear spectra follows. Note also that the last term is
only Oð1Þ so the first term dominates, which results in the
same spectral slope with that vector meson. Having differ-
ent slopes is a main drawback of our previous model
[39,40]. Now it has been removed by the proper choice
of background fields. The theoretical and the experimental
values of axial-vector mesons are listed in Table IV.

III. NUCLEON SECTOR

To realize the spin-1=2 nucleon in the AdS/QCD, we can
introduce two 5D Dirac spinors �1;2 in the bulk as sug-

gested in [15]. Each of them is also a isospin doublet. They
are charged under the gauge fields LM and RM, respec-
tively. The action of nucleon sector is

SN ¼
Z

d5x
ffiffiffiffi
G

p ðLK þLIÞ;
LK ¼ i ��1�

MrM�1 þ i ��2�
MrM�2

�m�
��1�1 þm�

��2�2;

LI ¼ �g ��1X�2 � g ��2X
y�1: (3.1)

Here we have �M ¼ eMA �
A ¼ z
M

A �
A with f�A;�Bg ¼

2�AB. We choose �A ¼ ð�a;�i�5Þ with �5 ¼
diagðI;�IÞ. The covariant derivatives for spinors are

rM�1 ¼ @M�1 þ 1

2
!AB

M �AB�1 � iLM�1; (3.2)

rM�2 ¼ @M�2 þ 1

2
!AB

M �AB�2 � iRM�2: (3.3)

Here �AB ¼ 1
4 ½�A;�B� and the nonzero components of the

spin connection !AB
M are !a5

� ¼ �!5a
� ¼ 1

z 

a
�.

A. Nucleon spectrum

The second order action is

Sð2ÞN ¼
Z

d5x
ffiffiffiffi
G

p ðLð2Þ
K þLð2Þ

I Þ;

Lð2Þ
K ¼ 1

a

X
i¼1;2

��i

�
i��@� þ �5@5 þ 2a0

a
�5 �m�a

�
�i;

Lð2Þ
I ¼ � 1

2
gvð ��1�2 þ ��2�1Þ (3.4)

and we expand �1;2 in terms of their KK modes,

�1ðx; zÞ ¼
P
n
NðnÞ

L ðxÞfðnÞ1L ðzÞ
P
n
NðnÞ

R ðxÞfðnÞ1R ðzÞ

0
BB@

1
CCA

�2ðx; zÞ ¼
P
n
NðnÞ

L ðxÞfðnÞ2L ðzÞ
P
n
NðnÞ

R ðxÞfðnÞ2R ðzÞ

0
BB@

1
CCA:

(3.5)

Here the NðnÞ
L;R are two-component objects, which will be

interpreted as the left-handed and right-handed parts of a
tower of 4D nucleon fields, respectively, which means

NðnÞðxÞ ¼ ðNðnÞ
L ; NðnÞ

R ÞT (3.6)

when reducing to a 4D effective action. We also have the

following equations which the four internal functions fðnÞ
satisfy:

@z �m�aþ 2a0=a �uðzÞ
�uðzÞ @z þm�aþ 2a0=a

 !
fðnÞ1L

fðnÞ2L

0
@

1
A

¼ �MðnÞ
N

fðnÞ1R

fðnÞ2R

0
@

1
A; (3.7)

TABLE IV. The experimental and theoretical values of axial-
vector meson masses. The average error is 4.75%.

n 0 1 2 3 4 5

mexp 1230 1647 1930 2096 2270 2340

mth 1438 1647 1844 2023 2188 2340

error 16.9% 0.0% 4.4% 3.5% 3.6% 0.0%
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@z þm�aþ 2a0=a uðzÞ
uðzÞ @z �m�aþ 2a0=a

 !
fðnÞ1R

fðnÞ2R

0
@

1
A

¼ þMðnÞ
N

fðnÞ1L

fðnÞ2L

0
@

1
A; (3.8)

with uðzÞ ¼ 1
2 gYaðzÞvðzÞ. Note that these equations are

general for any form of various background fields, so it is
the generalization of the corresponding equations in [15].
The UV boundary conditions are [15]

fðnÞ1L ðz ! 0Þ ¼ 0; fðnÞ2R ðz ! 0Þ ¼ 0: (3.9)

The IR condition is as in [39], which is proper for soft-wall
models

fðnÞ1R ðz ! 1Þ ¼ 0; fðnÞ2L ðz ! 1Þ ¼ 0: (3.10)

To reduce the 5D bulk action to 4D, we also need the
following orthonormality condition

Z 1

0
a4fðnÞaLf

ðn0Þ
aL dz ¼

Z 1

0
a4fðnÞaRf

ðn0Þ
aR dz ¼ 
nn0 : (3.11)

From (3.7) and (3.8) it can be seen that only two of f’s are
linear independent,

fðnÞ2L ¼ ��fðnÞ1R ; fðnÞ2R ¼ �fðnÞ1L ; (3.12)

where � ¼ �1 is the 4D parity. We can transform (3.7) and
(3.8) into a two-component vector-valued Sturm-Liouville

problem for fðnÞL ¼ ðfðnÞ1L ; f
ðnÞ
2L ÞT or fðnÞR ¼ ðfðnÞ1R ; f

ðnÞ
2R ÞT. We

can further rewrite the vector-valued Sturm-Liouville prob-

lem, e.g. fðnÞL into a Schrödinger form �
ðnÞ00
L þ VN


ðnÞ
L ¼

MðnÞ2
N 
ðnÞ

L by setting fðnÞL ¼ a�2
ðnÞ
L . The potential matrix

VN is

VN ¼ m2
�a

2 þ ðm�aÞ0 þ u2 u0

u0 m2
�a

2 � ðm�aÞ0 þ u2

 !
:

(3.13)

We also have similar equations for the right-handed fields.
Based on the similar arguments about the anomalous

dimensions, we parametrize the bulk spinor mass also as a
function of z as

m� ¼
5
2 þ�1z

1þ�2z
: (3.14)

For we have the mass-dimensional relation for spinors

m� ¼ �� 2: (3.15)

So this parametrization gives the correct UV limit 5=2,
corresponding to the classical dimension 9=2 of the baryon
operator by the equation above. And at IRm� will tend to a
constant �1=�2 and this is also reasonable. By fitting the
spin-1=2 nucleon mass we choose

�1 ¼ 1:16 GeV; �2 ¼ 7:8 GeV; gY ¼ 8:74:

(3.16)

The resulting mass spectra and the corresponding data are
listed in Table V.

IV. SUMMARY

In this paper we further develop the model proposed in
[1]. The main motivation of this model is to correctly
reproduce the observed spectral pattern of both mesons
and nucleons. In the original soft-wall model the quadratic
dilaton is introduced for the linear spectra of mesons. To
further constrain the IR behavior of other background
fields, aðzÞ and vðzÞ, we need to consider more spectral
details. Two key facts which help us to fix this are (1)
nucleons also have linear spectra, and (2) various meson
sectors have the same spectral slopes. Combining these
two requires aðzÞ �OðzÞ and vðzÞ �Oðz�1Þ as z ! 1. In
the present work we include a quartic potential for the bulk
scalar to improve our model, and carefully study the spec-
tra of various mesons and nucleons. The agreement
between the theoretical calculation and the experimental
data is rather good. Actually it can be easily generalized to
include more baryon sectors, e.g. the �. These discussions
show a consistent way to consider mesons and baryons
simultaneously in one AdS/QCD model. The problem that
they need different IR cutoffs in the hard-wall model
disappears here just by definition. It is a proper setup to
further study meson-baryon interactions in future works.
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TABLE V. The experimental and theoretical values of the
spin-1=2 nucleon masses. The average error is 3.06%.

n 0 1 2 3 4 5 6

mexp 939 1440 1535 1650 1710 2090 2100

mth 941 1402 1536 1767 1819 2026 2057

error 0.2% 2.6% 0.1% 7.1% 6.4% 3.1% 2.0%
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