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We study heavy hadron spectroscopy near open bottom thresholds. We employ B and B� mesons as

effective degrees of freedom near the thresholds, and consider meson exchange potentials between them. All

possible composite states which can be constructed from the B and B� mesons are studied up to the total

angular momentum J � 2. We consider, as exotic states, isosinglet states with exotic JPC quantum numbers

and isotriplet states. We solve numerically the Schrödinger equation with channel couplings for each state.

The masses of twin resonances Zbð10 610Þ and Zbð10 650Þ recently found by Belle are reproduced. We

predict several possible bound and/or resonant states in other channels for future experiments.
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I. INTRODUCTION

Exotic hadrons are studied extensively in recent hadron
physics. There have been many analyses which imply that
they are multiquark systems or hadronic molecules. In
strangeness sector, there are several candidates of exotic
hadrons, such as f0ð980Þ, a0ð980Þ,�ð1405Þ, and so on. The
scalar mesons f0ð980Þ and a0ð980Þ may be regarded as
tetraquark systems or K �K molecules [1,2]. �ð1405Þ is
considered to be generated dynamically by �KN and ��
[3]. In charm and bottom sectors, recently many candidates
of exotic hadrons have been reported in experiments and
also actively discussed in theoretical studies [4–8].
Dsð2317Þ and Dsð2460Þ may be tetraquarks or KD mole-
cules. X(3872), Y(4260), Zð4050Þ�, Zð4250Þ�, Zð4430Þ�,
and so on are also candidates of exotics states. Especially
Zð4050Þ�, Zð4250Þ�, and Zð4430Þ� cannot be simple char-
monia (c�c) because they are electrically charged. There are
also exotic hadrons in bottom flavors. Yb is the first candi-
date of exotic bottom hadrons. More recently, Zbð10 610Þ�
and Zbð10 650Þ� with isospin one have been reported by
Belle [9,10]. The reported masses and widths of the two
resonances are MðZbð10 610ÞÞ ¼ 10 607:2� 2:0 MeV,
�ðZbð10 610ÞÞ ¼ 18:4� 2:4 MeV and MðZbð10 650ÞÞ ¼
10 652:2� 1:5 MeV, �ðZbð10 650ÞÞ ¼ 11:5� 2:2 MeV.
They also cannot be simple bottomonia (b�b) because they
are electrically charged.

Well below the thresholds in the heavy quark systems,
quarkonia are described by heavy quark degrees of free-
dom, Q and �Q (Q ¼ b, c). Above the thresholds, however,
it is a nontrivial problem whether the resonant states are
still explained by the quarkonium picture. Clearly, a pair of
heavy quark and antiquark (Q �Q) are not sufficient effective
degrees of freedom to form the resonances, because they
are affected by the scattering states of the two open heavy
mesons. Indeed, many resonant states are found around
the thresholds in experiments. However, they do not fit into
the ordinary classification scheme of hadrons, such as the

quark model calculation. Properties for masses, decay
widths, branching ratios, and so forth, are not predicted
by the simple quarkonium picture [4]. Therefore, it is
necessary to introduce components other than Q �Q as ef-
fective degrees of freedom around the thresholds.
Instead of the dynamics of Q �Q, in the present paper, we

study the dynamics described by a pair of a pseudoscalar
meson P� ð �QqÞspin0 or a vector meson P� � ð �QqÞspin1 (q¼
u, d) and their antimesons �P or �P�, which are relevant
hadronic degrees of freedom around the thresholds. In

the following, we introduce the notation Pð�Þ for P or P�
for simplicity. We discuss the possible existence of the

Pð�Þ �Pð�Þ bound and/or resonant states near the thresholds.
An interesting feature is that the pseudoscalar P meson and
the vector P� meson become degenerate in mass in
the heavy quark limit (MQ ! 1). The mass degeneracy

originates from the suppression of the Pauli term in the
magnetic gluon sector in QCD, which is the quantity of
order Oð1=MQÞ with heavy quark mass MQ [11,12].

Therefore, the effective degrees of freedom at the threshold
are given, not only by P�P, but also by combinations, such as

P� �P, P�P�, and P� �P�. Because Pð�Þ includes a heavy anti-
quark �Q and a light quark q, the Lagrangian of P and P�
meson systems is given with respecting the heavy quark
symmetry (spin symmetry) and chiral symmetry [12–21].
A new degree of freedom which does not exist in the Q �Q

systems but does only in the Pð�Þ �Pð�Þ systems is an isospin.
Then, there appears one-pion-exchange potential (OPEP)

between Pð�Þ and �Pð�Þ mesons at long distances of order
1=m� with pion mass m�. What is interesting in the OPEP

between Pð�Þ and �Pð�Þ is that it causes a mixing between
states of different angular momentum, such as L and
L� 2, through its tensor component. Therefore, it is ex-

pected that the Pð�Þ �Pð�Þ systems behave differently from the
quarkonium systems. In reality, in addition to the one pion
exchange dominated at long distances, there are multiple

PHYSICAL REVIEW D 86, 014004 (2012)

1550-7998=2012=86(1)=014004(14) 014004-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.014004


pion (��, ���, etc.) exchange, heavy meson (�, !, �,
etc.) exchange at short distances as well. With these po-
tentials, we solve the two-body Schrödinger equation with
channel couplings and discuss the existence of bound and/

or resonant states of Pð�Þ �Pð�Þ.
In this paper, we study Pð�Þ �Pð�Þ systems, with exotic

quantum numbers which cannot be accessed by quarkonia.
The first group is for isosinglet states with I ¼ 0. We recall
that the possible JPC of quarkonia are JPC ¼ 0�þ (�b),
0þþ (�b0) for J ¼ 0, J�� (�), Jþ� (hb), J

þþ (�b1) for odd
J � 1, and J��, J�þ, Jþþ (�b2) for even J � 2, where
examples of bottomonia are shown in the parentheses.
However, there cannot be JPC ¼ 0�� and 0þ�, J�þ with
odd J � 1, and Jþ� with even J � 2 in the quarkonia.
These quantum numbers are called exotic JPC, and it has
been discussed that they are the signals for exotics includ-

ing the Pð�Þ �Pð�Þ systems and glueballs. The second group is
for isospin triplet states with I ¼ 1. It is obvious that the
quarkonia themselves cannot be isotriplet. To have a finite
isospin, there must be additional light quark degrees of

freedom [22]. In this regard, Pð�Þ and �Pð�Þ mesons have

isospin half, and therefore the Pð�Þ �Pð�Þ composite systems
can be isospin triplet. We observe that, near the thresholds,

the Pð�Þ �Pð�Þ systems can access to more variety of quantum
numbers than the Q �Q systems. In this paper, we focus on
the bottom sector (P ¼ B and P� ¼ B�), because the heavy
quark symmetry works better than the charm sector.

In the previous works, Ericson and Karl estimated the
OPEP in hadronic molecules within strangeness sector and
indicated the importance of tensor interaction in this sys-
tem [23]. Törnqvist analyzed one pion exchange force
between two mesons for many possible quantum numbers
in [24,25]. Inspired by the discovery of X(3872), the
hadronic molecular model has been developed by many
authors [6,8,26–30]. For Zb’s, many works have already
been done since the Belle’s discovery. As candidates of
exotic states, molecular structure has been studied [31–37],
and also tetraquark structure [38–43]. The existence of
Zb’s has also been investigated in the decays of �ð5SÞ
[44–47]. Our study based on the molecular picture of

Pð�Þ �Pð�Þ differs from the previous works in that we com-
pletely take into account the degeneracy of pseudoscalar
meson B and a vector meson B� due to the heavy quark

symmetry, and fully consider channel couplings of Bð�Þ and
�Bð�Þ. In the previous publications, the low-lying molecular
states around Zb’s which can be produced from the decay
of �ð5SÞ were studied systematically and qualitatively
[48,49]. Our present work covers them also.

This paper is organized as follows. In Sec. II, we in-
troduce (i) the � exchange potential and (ii) the ��!

potential between Bð�Þ and �Bð�Þ mesons. To obtain the
potentials, we respect the heavy quark symmetry for the

Bð�ÞBð�Þ�, Bð�ÞBð�Þ� and Bð�ÞBð�Þ! vertices. In Sec. III, we

classify all the possible states composed by a pair of Bð�Þ

and �Bð�Þ mesons with exotic quantum numbers IGðJPCÞ
with isospin I, G parity, total angular momentum J, parity
P, and charge conjugation C. (C in I ¼ 1 is defined only
for states of Iz ¼ 0.) In Sec. IV, we solve numerically the
Schrödinger equations with channel couplings and discuss

the bound and/or resonant states of the Bð�Þ �Bð�Þ systems.
We employ the hadronic molecular picture and only con-

sider the Bð�Þ �Bð�Þ states. In practice, there are bottomonium
and light meson states which couple to these states. The
effect of these couplings as quantum corrections is esti-
mated in Sec. V. In Sec. VI, we discuss the possible decay
modes of these states. Section VII is devoted to summary.

II. INTERACTIONS WITH HEAVY
QUARK SYMMETRY

Bð�Þ mesons have a heavy antiquark �b and a light quark

q ¼ u, d. The dynamics of the Bð�Þ �Bð�Þ systems is given by
the two symmetries: the heavy quark symmetry for heavy
quarks and chiral symmetry for light quarks. These two
symmetries provide the vertices of � meson and of vector
meson (v ¼ �,!) with open heavy flavor (bottom) mesons
P and P� (P for B and P� for B�)

L �HH ¼ g tr �HaHb���5A
�
ba; (1)

LvHH ¼ �i� tr �HaHbv
	ð�	Þba

þ i
 tr �HaHb�	�F	�ð�Þba; (2)

where themultiplet fieldH containingP andP� is defined by

Ha ¼ 1þ 6v
2

½P�
a	�

	 � Pa�5�; (3)

with the four-velocity v	 of the heavy mesons [11]. The

conjugate field is defined by �Ha ¼ �0H
y
a�0, and the index a

denotes up and down flavors. The axial current is given by
A	 ’ i

f�
@	�̂ with

�̂ ¼
�0ffiffi
2

p �þ

�� � �0ffiffi
2

p

0
@

1
A; (4)

where f� ¼ 135 MeV is the pion decay constant. The cou-
pling constant jgj ¼ 0:59 for �PP� is determined with
reference to the observed decay width � ¼ 96 keV for
D� ! D� [50], assuming that the charm quark is sufficiently
heavy. The coupling constant g for�BB� would be different
from the one for �DD� because of 1=mQ corrections with

the heavy quark mass mQ [51]. However, the lattice simula-

tion in the heavy quark limit suggests a similar value as
adopted above [52], allowing us to use the common value for
D and B. The coupling of�P�P�, which is difficult to access
from experiments, is also fixed thanks to the heavy quark
symmetry. Note that the coupling of �PP does not exist due
to the parity conservation. The coupling constants � and 

are determined by the radiative decays of D� meson and
semileptonic decays of B meson with vector meson domi-
nance as � ¼ 0:9 and 
 ¼ 0:56 GeV�1 by following
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Ref. [53]. The vector (� and !) meson field is defined by

�	 ¼ i
gVffiffiffi
2

p �̂	; (5)

with

�̂	 ¼
�0ffiffi
2

p þ !ffiffi
2

p �þ

�� � �0ffiffi
2

p þ !ffiffi
2

p

0
B@

1
CA

	

; (6)

and its field tensor by
F	�ð�Þ ¼ @	�� � @��	 þ ½�	; ���; (7)

where gV ¼ 5:8 is the coupling constant for � ! �� decay.
From Eq. (1), we obtain the �PP� and �P�P� vertices

L �PP� ¼ 2
g

f�
ðPy

aP�
b	 þ P�y

a	PbÞ@	�̂ab; (8)

L �P�P� ¼ 2i
g

f�
���	�v�P

�y
a�P

�
b	@��̂ab: (9)

The� �P �P� and� �P� �P� vertices are obtained by changing the
sign of the �PP� and �P�P� vertices in Eqs. (8) and (9).
Similarly, from Eq. (2) we derive the vPP, vPP�, and
vP�P� vertices (v ¼ �, !) as

L vPP ¼ � ffiffiffi
2

p
�gVPbP

y
av � �̂ba; (10)

L vPP� ¼�2
ffiffiffi
2

p

gVv	�

	���ðPy
aP�

b��P�y
a�PbÞ@�ð�̂�Þba;

(11)

LvP�P� ¼ ffiffiffi
2

p
�gVP

�
bP

�y
a v � �̂ba

þ i2
ffiffiffi
2

p

gVP

�y
a	P�

b�ð@	ð�̂�Þba�@�ð�̂	ÞbaÞ: (12)

Because of theG parity, the signs of vertices for v �P �P , v �P �P�,
and v �P� �P� are opposite to those of vPP, vPP�, and vP�P�,
respectively, for v ¼ !, while they are the same for v ¼ �.

It is important that the scatterings Pð�Þ �Pð�Þ ! Pð�Þ �Pð�Þ
include not only diagonal components P �P� ! P� �P and
P� �P� ! P� �P� but also off-diagonal components P �P !
P� �P� and P �P� ! P� �P�. The OPEPs for P �P� ! P� �P and
P� �P� ! P� �P� are given from the vertices (8) and (9) in the
heavy quark limit as

V�
P1

�P�
2
!P�

1
�P2
¼ �

� ffiffiffi
2

p g

f�

�
2 1

3
½ ~"�1 � ~"2Cðr;m�Þ

þ S"�
1
;"2Tðr;m�Þ� ~1 � ~2; (13)

V�
P�
1
�P�
2
!P�

1
�P�
2

¼ �
� ffiffiffi

2
p g

f�

�
2 1

3
½ ~T1 � ~T2Cðr;m�Þ

þ ST1;T2
Tðr;m�Þ� ~1 � ~2; (14)

and the OPEPs for P �P ! P� �P� and P �P� ! P� �P� are given
as

V�
P1

�P2!P�
1
�P�
2

¼ �
� ffiffiffi

2
p g

f�

�
2 1

3
½ ~"�1 � ~"�2Cðr;m�Þ

þ S"�
1
;"�

2
Tðr;m�Þ� ~1 � ~2; (15)

V�
P1

�P�
2
!P�

1
�P�
2

¼
� ffiffiffi

2
p g

f�

�
2 1

3
½ ~"�1 � ~T2Cðr;m�Þ

þ S"�
1
;T2
Tðr;m�Þ� ~1 � ~2: (16)

Here, three polarizations are possible for P� as defined by

~"ð�Þ ¼ ð	1=
ffiffiffi
2

p
;�i=

ffiffiffi
2

p
; 0Þ and ~"ð0Þ ¼ ð0; 0; 1Þ, and the

spin-one operator ~T is defined by Ti

0
 ¼ i"ijk"ð


0Þy
j "ð
Þk .

As a convention, we assign ~"ð
Þ for an incoming vector

particle and ~"ð
Þ� for an outgoing vector particle. Here,

~1 and ~2 are isospin operators for P
ð�Þ
1 and �Pð�Þ

2 . We define

the tensor operators

S"�1;"2 ¼ 3ð ~"ð
1Þ� � r̂Þð ~"ð
2Þ � r̂Þ � ~"ð
1Þ� � ~"ð
2Þ; (17)

ST1;T2
¼ 3ð ~T1 � r̂Þð ~T2 � r̂Þ � ~T1 � ~T2; (18)

S"�
1
;"�

2
¼ 3ð ~"ð
1Þ� � r̂Þð ~"ð
2Þ� � r̂Þ � ~"ð
1Þ� � ~"ð
2Þ�; (19)

S"�
1
;T2

¼ 3ð ~"ð
1Þ� � r̂Þð ~T2 � r̂Þ � ~"ð
1Þ� � ~T2: (20)

The � meson exchange potentials are derived by using
the same notation of the OPEPs and the vertices in
Eqs. (10)–(12),

Vv
P1

�P2!P1
�P2
¼
�
�gV
2mv

�
2 1

3
Cðr;mvÞ ~1 � ~2; (21)

Vv
P1

�P�
2!P1

�P�
2

¼
�
�gV
2mv

�
2 1

3
Cðr;mvÞ ~1 � ~2; (22)

Vv
P1

�P�
2
!P�

1
�P2
¼ ð2
gVÞ2 13 ½2 ~"

�
1 � ~"2Cðr;mvÞ

� S"�
1
;"2Tðr;mvÞ� ~1 � ~2; (23)

Vv
P�
1
�P�
2
!P�

1
�P�
2

¼ ð2
gVÞ2 13 ½2
~T1 � ~T2Cðr;mvÞ

� ST1;T2
Tðr;mvÞ� ~1 � ~2

þ
�
�gV
2mv

�
2 1

3
Cðr;mvÞ ~1 � ~2; (24)

Vv
P1

�P2!P�
1
�P�
2

¼ ð2
gVÞ2 13 ½2 ~"
�
1 � ~"�2Cðr;mvÞ

� S"�
1
;"�

2
Tðr;mvÞ� ~1 � ~2; (25)

Vv
P1

�P�
2!P�

1
�P�
2

¼ �ð2
gVÞ2 13 ½2 ~"
�
1 � ~T2Cðr;mvÞ

� S"�
1
;T2
Tðr;mvÞ� ~1 � ~2; (26)

for v ¼ �. The ! exchange potentials are obtained by
changing the overall sign from the above equations with
v ¼ ! and by removing the isospin factor ~1 � ~2.
To estimate the size effect of mesons, we introduce a

form factor ð�2 �m2
hÞ=ð�2 þ ~q2Þ in the momentum space
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at vertices of hPP, hPP�, and hP�P� (h ¼ �, �, and !).
Here, ~q and mh are momentum and mass of the exchanged
meson, and � is the cutoff parameter. Then, Cðr;mhÞ and
Tðr;mhÞ are defined as

Cðr;mhÞ ¼
Z d3 ~q

ð2�Þ3
m2

h

~q2 þm2
h

ei ~q�~rFð ~q;mhÞ; (27)

Tðr;mhÞS12ðr̂Þ¼
Z d3 ~q

ð2�Þ3
� ~q2

~q2þm2
h

S12ðq̂Þei ~q� ~rFð ~q;mhÞ; (28)

with S12ðx̂Þ ¼ 3ð ~�1 � x̂Þð ~�2 � x̂Þ � ~�1 � ~�2, and Fð ~q;mhÞ ¼
ð�2 �m2

hÞ2=ð�2 þ ~q2Þ2. The cutoff � is determined from

the size of Bð�Þ based on the quark model as discussed in
Refs. [54,55]. There, the cutoff parameter is� ¼ 1070 MeV
when the � exchange potential is employed, while � ¼
1091 MeV when the ��! potential is employed.

As a brief summary, we emphasize again that, according
to the heavy quark symmetry, not only the B �B� ! B� �B and
B� �B� ! B� �B� transitions but also the B �B ! B� �B� and
B �B� ! B� �B� transitions become important as channel
couplings. In the next section, we will see that the latter
two transitions supply the strong tensor force, through the
channel mixing B and B� as well as different angular
momentum, such as L and L� 2.

III. CLASSIFICATION OF THE Bð�Þ �Bð�Þ STATES

We classify all the possible quantum numbers IGðJPCÞ
with isospin I, G parity, total angular momentum J, parity
P, and charge conjugation C for the states which can be

composed by a pair of Bð�Þ and �Bð�Þ mesons. The charge
conjugation C is defined for I ¼ 0 or Iz ¼ 0 components
for I ¼ 1, and is related to the G parity byG ¼ ð�1ÞIC. In

the present discussion, we restrict upper limit of the total
angular momentum as J � 2, because too higher angular
momentum will be disfavored to form bound or resonant

states. The Bð�Þ �Bð�Þ components in the wave functions for
various JPC are listed in Table I. We use the notation
2Sþ1LJ to denote the total spin S and relative angular

momentum L of the two-body states of Bð�Þ and �Bð�Þ
mesons. We note that there are not only B �B and B� �B�
components but also B �B� � �BB� components. The JPC ¼
0þ� state cannot be generated by a combination of Bð�Þ and
�Bð�Þ mesons [56]. For I ¼ 0, there are many Bð�Þ �Bð�Þ states
whose quantum number JPC are the same as those of the
quarkonia as shown in the third row of I ¼ 0. In the present
study, however, we do not consider these states, because we
have not yet included mixing terms between the quarkonia

and the Bð�Þ �Bð�Þ states. This problem will be left as future
works. Therefore, for I ¼ 0, we consider only the exotic
quantum numbers JPC ¼ 0��, 1�þ, and 2þ�. The states of
I ¼ 1 are clearly not accessible by quarkonia. We inves-
tigate all possible JPC states listed in Table I.
From Eqs. (13)–(16) and (21)–(26), we obtain the

potentials with channel couplings for each quantum
number IGðJPCÞ. For each state, the Hamiltonian is given
as a sum of the kinetic energy and the potential with
channel couplings in a form of a matrix. Breaking of the
heavy quark symmetry is taken into account by mass
difference between B and B� mesons in the kinetic term.
The explicit forms of the Hamiltonian for each IGðJPCÞ are
presented in Appendix A. For example, the JPC ¼ 1þ�
state has four components, 1ffiffi

2
p ðB �B� � B� �BÞð3S1Þ, 1ffiffi

2
p 


ðB �B� � B� �BÞð3D1Þ, B� �B�ð3S1Þ, B� �B�ð3D1Þ and hence it

gives a potential in the form of 4
 4 matrix as Eqs. (A6),
(A17), and (A28).

TABLE I. Various components of the Bð�Þ �Bð�Þ states for several JPC (J � 2). The exotic quantum numbers which cannot be assigned
to bottomonia b�b are indicated by

p
. The 0þ� state cannot be neither bottomonium nor Bð�Þ �Bð�Þ states.

JPC Components Exoticness

I ¼ 0 I ¼ 1

0þ� � � � p p

0þþ B �Bð1S0Þ, B� �B�ð1S0Þ, B� �B�ð5D0Þ �b0

p

0�� 1ffiffi
2

p ðB �B� þ B� �BÞð3P0Þ
p p

0�þ 1ffiffi
2

p ðB �B� � B� �BÞð3P0Þ, B� �B�ð3P0Þ �b

p

1þ� 1ffiffi
2

p ðB �B� � B� �BÞð3S1Þ, 1ffiffi
2

p ðB �B� � B� �BÞð3D1Þ, B� �B�ð3S1Þ, B� �B�ð3D1Þ hb
p

1þþ 1ffiffi
2

p ðB �B� þ B� �BÞð3S1Þ, 1ffiffi
2

p ðB �B� þ B� �BÞð3D1Þ, B� �B�ð5D1Þ �b1

p

1�� B �Bð1P1Þ, 1ffiffi
2

p ðB �B� þ B� �BÞð3P1Þ, B� �B�ð1P1Þ, B� �B�ð5P1Þ, B� �B�ð5F1Þ �
p

1�þ 1ffiffi
2

p ðB �B� � B� �BÞð3P1Þ, B� �B�ð3P1Þ
p p

2þ� 1ffiffi
2

p ðB �B� � B� �BÞð3D2Þ, B� �B�ð3D2Þ
p p

2þþ B �Bð1D2Þ, 1ffiffi
2

p ðB �B� þ B� �BÞð3D2Þ, B� �B�ð1D2Þ, B� �B�ð5S2Þ, B� �B�ð5D2Þ, B� �B�ð5G2Þ �b2

p

2�þ 1ffiffi
2

p ðB �B� � B� �BÞð3P2Þ, 1ffiffi
2

p ðB �B� � B� �BÞð3F2Þ, B� �B�ð3P2Þ, B� �B�ð3F2Þ �b2

p

2�� 1ffiffi
2

p ðB �B� þ B� �BÞð3P2Þ, 1ffiffi
2

p ðB �B� þ B� �BÞð3F2Þ, B� �B�ð5P2Þ, B� �B�ð5F2Þ c b2

p
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IV. NUMERICAL RESULTS

To obtain the solutions of the Bð�Þ �Bð�Þ states, we solve
numerically the Schrödinger equations which are second-
order differential equations with channel couplings. As
numerics, the renormalized Numerov method developed
in Ref. [57] is adopted. The resonant states are found from
the phase shift � as a function of the scattering energy E.
The resonance position Er is defined by an inflection
point of the phase shift �ðEÞ and the resonance width by
�r ¼ 2=ðd�=dEÞE¼Er

following Ref. [58]. To check con-

sistency of our method with others, we also use the com-
plex scaling method [59]. We obtain an agreement in
results between the renormalized Nemerov method and
the complex scaling method.

In Table II, we summarize the result of the obtained
bound and resonant states, and their possible decay
modes to quarkonium and light flavor meson. For decay
modes, the � meson can be either real or virtual depending
on the mass of the decaying particle, depending on the
resonance energy which is either sufficient or not to emit
the real state of � or ! meson. ��ð!�Þ indicates that it is a
virtual state in radiative decays assuming the vector meson
dominance. We show the mass spectrum of these states in
Fig. 1.

Let us see the states of isospin I ¼ 1. Interestingly,
having the present potential we find the twin states in the
IGðJPCÞ ¼ 1þð1þ�Þ near the B �B� and B� �B� thresholds; a
bound state slightly below the B �B� threshold, and a reso-
nant state slightly above the B� �B� threshold. The binding
energy is 8.5 MeV, and the resonance energy and decay

width are 50.4 MeV and 15.1 MeV, respectively, from the
B �B� threshold. The twin states are obtained when the ��!
potential is used. We interpret them as the Zbð10 610Þ and
Zbð10 650Þ observed in the Belle experiment [9,10]. It
should be emphasized that the interaction in the present
study has been determined in the previous works without
knowing the experimental data of Zb’s [54,55].
Several comments are in order. First, the bound state

of lower energy has been obtained in the coupled channel
method of B �B� and B� �B� channels. In reality, however,
they also couple to other lower channels such as �hb, ��
and so on as shown in Table I. Once these decay channels
are included, the bound state will be a resonant state
with a finite width. A qualitative discussion will be given
in Sec. V. Second, when the � exchange potential is
used, only the lower bound state is obtained but the resonant
state is not. However, we have verified that a small change in
the � exchange potential generates, as well as the bound
state, the corresponding resonant state also. Therefore,
the pion dominance is working for the B �B� and B� �B�
systems. (See also the discussion in Appendix B.) Third, it
would provide a direct evidence of these states to be B �B�
and B� �B� molecules if the B �B� and B� �B� decays are ob-
served in experiments. Whether the energies are below or
above the thresholds is also checked by the observation of
these decays.

In other channels, we further predict the Bð�Þ �Bð�Þ bound
and resonant states. The IGðJPCÞ ¼ 1�ð0þþÞ state is
a bound state with binding energy 6.5 MeV from the
B �B threshold for the � exchange potential, while no struc-
ture for the ��! potential. The existence of this state

TABLE II. Various properties of the Bð�Þ �Bð�Þ bound and resonant states with possible IGðJPCÞ in I ¼ 1. The energies E can be either
pure real for bound states or complex for resonances. The real parts are measured from the thresholds as indicated in the second
column. The imaginary parts are half of the decay widths of the resonances, �=2. In the last two columns, decay channels of a
quarkonium and a light flavor meson are indicated. Asterisk of �� indicates that the decay occurs only with a virtual � while
subsequently transit to a real photon via vector meson dominance.

IGðJPCÞ Threshold E [MeV] Decay channels

� potential ��! potential s wave p wave

1þð0þ�Þ � � � � � � � � � � � � hb þ �, �b0;1;2 þ �
1�ð0þþÞ B �B �6:5 no �b þ �, �þ � hb þ ��, �b1 þ �
1þð0��Þ B �B� �9:9 �9:8 �b1 þ �� �b þ �, �þ �
1�ð0�þÞ B �B� no no hb þ �, �b0 þ � �þ �
1þð1þ�Þ B �B� �7:7 �8:5 �þ � hb þ �, �b1 þ ��

50:4� i15:1=2
1�ð1þþÞ B �B� �16:7 �1:9 �þ � hb þ ��, �b0;1 þ �
1þð1��Þ B �B 7:0� i37:9=2 7:1� i37:4=2 hb þ �, �b0;1;2 þ �� �b þ �, �þ �

58:8� i30:0=2 58:6� i27:7=2
1�ð1�þÞ B �B� no no hb þ �, �b1 þ � �b þ �, �þ �
1þð2þ�Þ B �B� no no � � � hb þ �, �b0;1;2 þ �
1�ð2þþÞ B �B 63:5� i8:3=2 62:7� i8:4=2 �þ � hb þ ��, �b1;2 þ �
1�ð2�þÞ B �B� no no hb þ � �þ �
1þð2��Þ B �B� 2:0� i4:1=2 2:0� i3:9=2 �b1 þ �� �b þ �, �þ �

44:2� i2:5=2 44:1� i2:8=2
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depends on the details of the potential, while the states in the
other quantum numbers are rather robust. Let us see the
results for the latter states from the ��! potentials. For
1þð0��Þ and 1�ð1þþÞ, we find bound states with binding
energy 9.8 MeV and 1.9 MeV from the B �B� threshold,
respectively. These bound states appear also for the �
exchange potential, though the binding energy of the
1�ð1þþÞ state becomes larger. The 1�ð2þþÞ state is a
resonant state with the resonance energy 62.7 MeV and the
decay width 8.4 MeV. The 1þð1��Þ states are twin reso-
nances with the resonance energy 7.1 MeV and the decay
width 37.4 MeV for the first resonance, and the resonance
energy 58.6 MeV and the decay width 27.7 MeV for the
second. The resonance energies are measured from the B �B
threshold. The 1þð2��Þ states also form twin resonances
with the resonance energy 2.0 MeV and the decay width
3.9 MeV for the first resonance and the resonance energy
44.1 MeV and the decay width 2.8 MeV for the second,
where the resonance energies have are measured from the
B �B� threshold.

Next, we discuss the result for the states of isospin I ¼
0. In general, the interaction in these states are either
repulsive or only weakly attractive as compared to the
cases of I ¼ 1. The fact that there are less channel

couplings explains less attraction partly. (See also
Appendix B.) Because of this, we find only one resonant
state with IGðJPCÞ ¼ 0þð1�þÞ, as shown in Fig. 1 and in
Table III. The 0þð1�þÞ state is a resonant state with the
resonance energy 17.8 MeVand the decay width 30.1 MeV
for the ��! potential.
In the present study, all the states appear in the

threshold regions and therefore are all weakly bound
or resonant states. The present results are consequences
of unique features of the bottom quark sector; the large

reduced mass of the Bð�Þ �Bð�Þ systems and the strong
tensor force induced by the mixing of B and B� with small
mass splitting. In fact, in the charm sector, our model
does not predict any bound or resonant states in the region
where we research numerically. Because the reduced
mass is smaller and the mass splitting between D and D�
is larger.

V. EFFECTS OF THE COUPLING TO
DECAY CHANNELS

We have employed the hadronic molecular picture

and only considered the Bð�Þ �Bð�Þ states so far. In reality,

however, the Bð�Þ �Bð�Þ states couple to a bottomonium
and a light meson state which is predominantly a pion, as
Zb’s were discovered in the decay channels of �ðnSÞ�
(n ¼ 1, 2, 3) and hbðmPÞ� (m ¼ 1, 2) [9,10]. In this
section, we estimate the effects of such channel coupling

to the Bð�Þ �Bð�Þ states. We give a qualitative estimation

for the lowest Bð�Þ �Bð�Þ state in 1þð1þ�Þ corresponding
to Zbð10 610Þ�. Similar effects are expected for other
states.
To this purpose, we employ the method of Pennington

and Wilson [60]. They calculated charmonium mass shifts
for including the effect of open and nearby closed channels
and we apply their calculation procedure for Zb mass shift.
The bare bound state propagator i=ðs�m2

0Þ, where m0 is

the mass of the bare state, is dressed by the contribution of
hadron loops �ðsÞ. Therefore, the full propagator can be
written as

GzðsÞ ¼ i

s�M2ðsÞ ¼
i

s�m2
0 ��ðsÞ

¼ i

s�m2
0 �

P
n¼1

�nðsÞ
; (29)

TABLE III. The Bð�Þ �Bð�Þ bound and resonant states with exotic IGðJPCÞ in I ¼ 0. (Same convention as Table II.).

IGðJPCÞ Threshold E [MeV] Decay channels

� potential ��! potential s wave p wave

0�ð0��Þ B �B� no no �b1 þ! �b þ!, �þ �
0þð1�þÞ B �B� 28:6� i91:6=2 17:8� i30:1=2 hb þ!�, �b1 þ � �b þ �, �þ!
0�ð2þ�Þ B �B� no no � � � hb þ �, �b0;1;2 þ!

FIG. 1. The Bð�Þ �Bð�Þ bound and resonant states with exotic
IGðJPCÞ. The dots with error bars denote the position of the
experimentally observed Zb’s where MðZbð10 610ÞÞ ¼
10 607:2 MeV and MðZbð10 650ÞÞ ¼ 10 652:2 MeV. Solid lines
are for our predictions for the energies of the bound and resonant
states when the ��! potential is employed. Mass values are
shown in units of MeV.
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where s is the square of the momentum carried by the
propagator. MðsÞ is the complex mass function and the
real part of this gives the ‘‘renormalized’’ mass. Since the
Zb has five decay channels, the hadron loops�ðsÞ is a sum
of each decay channel n (Fig. 2). Each hadron loop �nðsÞ
(Fig. 2) is obtained by using the dispersion relation in terms
of its imaginary part. All hadronic channels contribute to
its mass at least in principle. Because the dispersion inte-
gral diverges, we have to subtract the square of mass
function Mðs0Þ at suitable point s0 from MðsÞ. We shall
discuss the choice of s0 shortly. Now, we can write the loop
function in a once subtracted form as

��nðs; s0Þ � �nðsÞ ��nðs0Þ

¼ ðs� s0Þ
�

Z 1

sn

ds0
Im�nðs0Þ

ðs0 � sÞðs0 � s0Þ : (30)

Then, we arrive at the mass shift �M as

X
n¼1

��nðs; s0Þ ¼ M2ðsÞ �m2
0 � �M2ðsÞ: (31)

Since an imaginary part of a loop function is proportional
to the two-body phase space, we take Im�n in the form for
s � sn as

Im�nðsÞ ¼ �g2n

�
2qcmffiffiffi

s
p

�
2Lþ1

exp

�
� q2cm

�2

�
; (32)

where gn is the coupling of Zb to a decay channel n (a
bottomonium and a pion), L is the orbital angular momen-
tum between a bottomonium and a pion. qcm is the magni-
tude of the three-momentum of a pion in the center-of-
mass frame and is related to

qcm ¼
�sþm2

� �M2
b �b

2
ffiffiffi
s

p
�
2 �m2

�: (33)

In Eq. (32), following [60], we have introduced the
Gaussian-type form factor with a cutoff parameter�which
is related to the interaction range R. We set � ¼ 600 MeV
as a typical hadron scale; this value corresponds to

R� 0:8 fm by using the relation R ’ ffiffiffi
6

p
=�. Coupling gn

is determined from the partial decay width �n, by
�nðsÞ ¼ �Im�nðsÞ=

ffiffiffi
s

p
. For the present rough estimation,

we postulate that the decay rates for five final states
(�ð1SÞ�, �ð2SÞ�, �ð3SÞ�, hbð1PÞ�, hbð2PÞ�) are
equal. Then, partial decay width for each decay channel
is set as 3 MeV that is one-fifth of the total decay width
15 MeV [9,10].
The subtraction point s0 determines the renormalization

point where the loop correction vanishes. In Ref. [60], the
subtraction point was chosen at the mass of J=c . Since
J=c is a deeply bound state of a c �c pair where the
charmonium description works well without a D �D loop.
Now in our situation, there is no such physical
bottomonium-like state decaying into a pion and a botto-
monium. However, as in the case of J=c we expect that the
renormalization point of the vanishing loop is located at an
energy which is significantly below the thresholods of
the particle in the loop. We adopt such an energy atffiffiffiffiffi
s0

p ¼ 9000 MeV, 600 MeV below the ��ð1SÞ, which is

similar to the mass difference of J=c and D �D.
The resulting mass shift �M due to each coupling is

given in Table IV. The total mass shift is �M ¼ 2:4 MeV,
which is slightly repulsive. This means that the mass of the

Bð�Þ �Bð�Þ bound state in 1þð1þ�Þ will be pushed up by the
�ðnSÞ� and hbðmPÞ� couplings. Therefore, we expect that
this state gets closer the B �B� threshold, or could even
become a resonant state. Since the coupling g�ð1SÞ� is the

largest due to its low mass, the largest effect is found for
the coupling of �ð1SÞ�, where the mass shift �M is
6.3 MeV. The coupling of hbð2PÞ� having P-wave con-
tributes attraction, whose mass shift �M is �3:0 MeV.
Other coupling channels are minor role.
To summarize this section, we have estimated loop

contributions to the mass of the Bð�Þ �Bð�Þ molecules. We
find small repulsive corrections, which still keeps the
molecular picture unchanged but may change the bound
states into resonances, being consistent with the experi-
mental observation.

VI. SEARCH IN DECAYS FROM �ð5SÞ
As twin Zb’s were observed from �ð5SÞ decay, �ð5SÞ

decay is a useful source to search the exotic states

around the Bð�Þ �Bð�Þ energy region. �ð5SÞ can decay to a
FIG. 2. The diagram corresponding to a loop function�nðsÞ of
channel n.

TABLE IV. Various contributions to loop corrections of chan-
nel n, �M. The total correction is shown on the most right
column. The first and the second row show the threshold masses
and the coupling strengths of channel n.Mth and �M are given in
units of MeV.

�ð1SÞ� �ð2SÞ� �ð3SÞ� hbð1PÞ� hbð2PÞ� Total

Mth 9600 10 163 10 495 10 038 10 399 � � �
gn 1986 844 956 7392 14 179 � � �
�M 6.3 0.5 �1:3 �0:1 �3:0 2.4
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IGðJPCÞ ¼ 1þð1þ�Þ state by a single pion emission in s
wave, and a 1þð0��Þ, 1þð1��Þ, or 1þð2��Þ state by a
single pion emission in p wave. We recall that the twin
Zb’s with I

GðJPCÞ ¼ 1þð1þ�Þwere observed in the s-wave
channel [9,10]. In the present study, we further predict
the bound state in IGðJPCÞ ¼ 1þð0��Þ, and new twin
resonant states in IGðJPCÞ ¼ 1þð1��Þ and 1þð2��Þ as
summarized in Table II. As for the exotic JPC states in
isosinglet, the resonant state in IGðJPCÞ ¼ 0þð1�þÞ can
be observed from�ð5SÞ by! emission in pwave as shown
in Table III.

The radiative decay of �ð5SÞ is also an interesting
channel as discussed in Ref. [49]. In radiative decay,
�ð5SÞ decays to the IGðJPCÞ ¼ 1�ð0þþÞ, 1�ð1þþÞ, and
1�ð2þþÞ states with a photon emission in s wave. These
channels can be also produced in hadronic transitions with
emission of � meson from higher �-like bottomonim
states. In the present study, we predict the bound states in
IGðJPCÞ ¼ 1�ð0þþÞ and 1�ð1þþÞ and a resonant states in
1�ð2þþÞ as summarized in Table II.

As a consequence, we will be able to study the Bð�Þ �Bð�Þ
bound and resonant states with positive G parity in a pion
emission from �ð5SÞ and with negative G parity in a
photon emission from �ð5SÞ. It will be an interesting
subject for experiments to search these states in �ð5SÞ
decays.

VII. SUMMARY

In this paper, we have systematically studied the possi-

bility of the Bð�Þ �Bð�Þ bound and resonant states having
exotic quantum numbers IGðJPCÞ. These states are con-
sisted of at least four quarks, because their quantum num-
bers cannot be assigned by the quarkonium picture and
hence they are genuinely exotic states. We have con-

structed the potential of the Bð�Þ �Bð�Þ states using the effec-
tive Lagrangian respecting the heavy quark symmetry.
Because of the degeneracy in masses of B and B� mesons,
the channel mixing, such as B �B�-B� �B, B� �B�-B� �B�,
B �B-B� �B�, and B �B�-B� �B�, plays an important role to

form the Bð�Þ �Bð�Þ bound and/or resonant states. We have
numerically solved the Schrödinger equation with the

channel couplings for the Bð�Þ �Bð�Þ states with IGðJPCÞ for
J � 2.

As a result, in I ¼ 1, we have found that the IGðJPCÞ ¼
1þð1þ�Þ states have a bound state with binding energy
8.5 MeV, and a resonant state with the resonance energy
50.4 MeVand the decay width 15.1 MeV. We have success-
fully reproduced the positions of Zbð10 610Þ and
Zbð10 650Þ observed by Belle. Therefore, the twin reso-

nances of Zb’s can be interpreted as the Bð�Þ �Bð�Þ molecular
type states. It should be noted that the B �B�-B� �B,
B �B�-B� �B�, and B� �B-B� �B� mixing effects are important,
because many structures disappear without the mixing

effects. We have obtained the other possible Bð�Þ �Bð�Þ states

in I ¼ 1. We have found one bound state in each 1þð0��Þ
and 1�ð1þþÞ, one resonant state in 1�ð2þþÞ, and twin
resonant states in each 1þð1��Þ and 1þð2��Þ. It is remark-
able that another two twin resonances can exist in addition

to the Zb’s. We have also studied the Bð�Þ �Bð�Þ states in I ¼ 0
and found one resonant state in 0þð1�þÞ. We have checked
the differences between the results from the � exchange
potential and those from the ��! potential, and found that
the difference is small. Therefore, the one-pion-exchange

potential dominates as the interaction in the Bð�Þ �Bð�Þ bound
and resonant states.
We have estimated the effects of the coupling to decay

channels by means of dispersion relations. Total mass shift
is �M ¼ 2:4 MeV, which is slightly repulsive. Therefore,

we conclude that the molecular picture of Bð�Þ �Bð�Þ will be a
good approximation for the first step. More systematic
analyses will be left for future works.
For experimental studies, the�ð5SÞ decay is a useful tool

to search the Bð�Þ �Bð�Þ states.�ð5SÞ can decay to the Bð�Þ �Bð�Þ
states with 1þð0��Þ, 1þð1��Þ, and 1þð2��Þ by a single
pion emission in p wave and the state with 0þð1�þÞ by !

emission in p wave. �ð5SÞ can also decay to the Bð�Þ �Bð�Þ
states with 1�ð0þþÞ, 1�ð1þþÞ, and 1�ð2þþÞ by radiative
decays. In the future, various exotic states would be ob-
served around the thresholds from �ð5SÞ decays in accel-
erator facilities such as Belle and also would be searched in
the relativistic heavy ion collisions in RHIC and LHC
[61,62]. If these states are fit in our predictions, they will

be good candidates of the Bð�Þ �Bð�Þ molecular states.
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APPENDIX A: HAMILTONIAN

The Hamiltonian is a sum of the kinetic term and
potential term as

HJPC ¼ KJPC þ V�
JPC

; (A1)

for the � exchange potential only, and

HJPC ¼ KJPC þ
X

i¼�;�;!

Vi
JPC

; (A2)

for the ��! potential.
The kinetic terms with including the explicit breaking

of the heavy quark symmetry by the mass difference
mB� �mB are
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K0þþ ¼ diag

�
� 1

2 ~mBB

40;� 1

2 ~mBB�
40 þ2�mBB� ;� 1

2 ~mBB�
42 þ2�mBB�

�
; (A3)

K0�� ¼ diag

�
� 1

2 ~mBB�
41

�
; (A4)

K0�þ ¼ diag

�
� 1

2 ~mBB�
41;� 1

2 ~mB�B�
41 þ�mBB�

�
; (A5)

K1þ� ¼ diag

�
� 1

2 ~mBB�
40;� 1

2 ~mBB�
42;� 1

2 ~mB�B�
40 þ�mBB� ;� 1

2 ~mB�B�
42 þ�mBB�

�
; (A6)

K1þþ ¼ diag

�
� 1

2 ~mBB�
40;� 1

2 ~mBB�
42;� 1

2 ~mB�B�
42 þ�mBB�

�
; (A7)

K1�� ¼diag

�
� 1

2 ~mBB

40;� 1

2 ~mBB�
41þ�mBB� ;� 1

2 ~mB�B�
41þ2�mBB� ;

� 1

2 ~mB�B�
41þ2�mBB� ;� 1

2 ~mB�B�
43þ2�mBB�

�
; (A8)

K1�þ ¼ diag

�
� 1

2 ~mBB�
41;� 1

2 ~mB�B�
41 þ�mBB�

�
; (A9)

K2þ� ¼ diag

�
� 1

2 ~mBB�
42;� 1

2 ~mB�B�
42 þ�mBB�

�
; (A10)

K2þþ ¼ diag

�
� 1

2 ~mBB

42;� 1

2 ~mBB�
42 þ�mBB� ;� 1

2 ~mB�B�
42 þ2�mBB� ;� 1

2 ~mB�B�
40

þ 2�mBB� ;� 1

2 ~mB�B�
42 þ2�mBB� ;� 1

2 ~mB�B�
44 þ2�mBB�

�
; (A11)

K2�þ ¼ diag

�
� 1

2 ~mBB�
41;� 1

2 ~mBB�
43;� 1

2 ~mB�B�
41 þ�mBB� ;� 1

2 ~mB�B�
43 þ�mBB�

�
; (A12)

K2�� ¼ diag

�
� 1

2 ~mBB�
41;� 1

2 ~mBB�
43;� 1

2 ~mB�B�
41 þ�mBB� ;� 1

2 ~mB�B�
43 þ�mBB�

�
; (A13)

where 4l ¼ @2

@r2
þ 2

r
@
@r � lðlþ1Þ

r2
with integer l � 0, 1= ~mBB ¼ 1=mB þ 1=mB, 1= ~mBB� ¼ 1=mB þ 1=mB� , 1= ~mB�B� ¼

1=mB� þ 1=mB� , and �mBB� ¼ mB� �mB.
The � exchange potentials for each JPC states are

V�
0þþ ¼

0
ffiffiffi
3

p
VC � ffiffiffi

6
p

VTffiffiffi
3

p
VC 2VC

ffiffiffi
2

p
VT

� ffiffiffi
6

p
VT

ffiffiffi
2

p
VT �VC þ 2VT

0
BB@

1
CCA; (A14)

V�
0�� ¼ ð�VC � 2VTÞ; (A15)

V�
0�þ ¼ VC þ 2VT �2VC þ 2VT

�2VC þ 2VT VC þ 2VT

 !
; (A16)
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V�
1þ� ¼

VC � ffiffiffi
2

p
VT �2VC � ffiffiffi

2
p

VT

� ffiffiffi
2

p
VT VC þ VT � ffiffiffi

2
p

VT �2VC þ VT

�2VC � ffiffiffi
2

p
VT VC � ffiffiffi

2
p

VT

� ffiffiffi
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p
VT �2VC þ VT � ffiffiffi

2
p

VT VC þ VT

0
BBBBB@

1
CCCCCA; (A17)

V�
1þþ ¼

�VC

ffiffiffi
2

p
VT

ffiffiffi
6

p
VTffiffiffi

2
p

VT �VC � VT

ffiffiffi
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p
VTffiffiffi

6
p

VT

ffiffiffi
3

p
VT �VC þ VT

0
BB@

1
CCA; (A18)

V�
1�� ¼

0 0
ffiffiffi
3

p
VC 2

ffiffi
3
5

q
VT �3

ffiffi
2
5

q
VT

0 �VC þ VT 0 3
ffiffi
3
5

q
VT 3

ffiffi
2
5

q
VTffiffiffi

3
p

VC 0 2VC � 2ffiffi
5

p VC

ffiffi
6
5

q
VT

2
ffiffi
3
5

q
VT 3

ffiffi
2
5

q
VT � 2ffiffi

5
p VC �VC þ 7

5VT �
ffiffi
6

p
5 VT
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ffiffi
2
5

q
VT 3

ffiffi
2
5

q
VT

ffiffi
6
5

q
VT �

ffiffi
6

p
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5VT

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA
; (A19)

V�
1�þ ¼ VC � VT �2VC � VT

�2VC � VT VC � VT

 !
; (A20)

V�
2þ� ¼ VC � VT �2VC � VT

�2VC � VT VC � VT

 !
; (A21)

V�
2þþ ¼

0 0
ffiffiffi
3

p
VC �

ffiffi
6
5

q
VT 2

ffiffi
3
7

q
VT �6

ffiffiffiffi
3
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q
VT

0 �VC þ VT 0 �3
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2
5

q
VT
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7

p VT
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p
VC 0 2VC
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2
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q
VT � 2ffiffi

7
p VT
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35

p VT

�
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6
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q
VT �3
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3
5
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VT
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2
5
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VT �VC �
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14
5

q
VT 0

2
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3
7

q
VT

3ffiffi
7

p VT � 2ffiffi
7

p VT �
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5
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7VT � 12
7
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p VT

�6
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3
35

q
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p VT 0 � 12
7
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5
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7 VT

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

; (A22)

V�
2�þ ¼

VC þ 1
5VT � 3

ffiffi
6

p
5 VT �2VC þ 1

5VT � 3
ffiffi
6

p
5 VT

� 3
ffiffi
6

p
5 VT VC þ 4

5VT � 3
ffiffi
6

p
5 VT �2VC þ 4

5VT
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5VT � 3

ffiffi
6

p
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5VT � 3
ffiffi
6

p
5 VT

� 3
ffiffi
6

p
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6
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5VT

0
BBBBBBB@

1
CCCCCCCA; (A23)
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3
ffiffi
6

p
5 VT � 3
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3

p
5 VT

6
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3

p
5 VT
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6
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5VT � 3
ffiffi
2

p
5 VT

6
ffiffi
2

p
5 VT
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3

p
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ffiffi
2
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5VT

6
ffiffi
3

p
5 VT

6
ffiffi
2

p
5 VT � 6
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5VT

0
BBBBBBB@

1
CCCCCCCA: (A24)

The � and ! potentials are
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Vv
0þþ ¼

Vv0
C 2

ffiffiffi
3

p
Vv
C

ffiffiffi
6

p
Vv
T
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ffiffiffi
3

p
Vv
C 4Vv

C þ Vv0
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2
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1
CA; (A25)

Vv
0�� ¼ ð�2Vv

C þ 2Vv
T þ Vv0

C Þ; (A26)
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0�þ ¼ 2Vv
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T þ Vv0
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T

�4Vv
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T þ Vv0
C

 !
; (A27)
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; (A30)
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T 2Vv
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; (A33)
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where the central and tensor potentials are defined as

V�
C ¼

� ffiffiffi
2

p g

f�

�
2 1

3
Cðr;m�Þ ~1 � ~2; (A36)

V�
T ¼

� ffiffiffi
2

p g

f�

�
2 1

3
Tðr;m�Þ ~1 � ~2; (A37)

V�
C ¼ �ð2
gVÞ2 13Cðr;m�Þ ~1 � ~2; (A38)

V!
C ¼ ð2
gVÞ2 13Cðr;m!Þ; (A39)

V�
T ¼ �ð2
gVÞ2 13Tðr;m�Þ ~1 � ~2; (A40)

V!
T ¼ ð2
gVÞ2 13Tðr;m!Þ; (A41)

V�0
C ¼

�
�gV
2m�

�
2 1

3
Cðr;m�Þ ~1 � ~2; (A42)

V!0
C ¼ �

�
�gV
2m!

�
2 1

3
Cðr;m!Þ: (A43)

APPENDIX B: DIAGONALIZATION OF OPEP

We consider the diagonalization of OPEP (A14)–(A24)

by adopting a stationary approximation for Bð�Þ and �Bð�Þ

mesons. We regard the Bð�Þ and �Bð�Þ mesons as sources of

isospin, and fix the positions of Bð�Þ and �Bð�Þ mesons by
neglecting the kinetic term. Then, the potentials with chan-
nel couplings as matrices in which there are off-diagonal
components, turn to be diagonal matrices ~V�

JPC
as follows,

~V�
0þþ ¼diagð�3VC;�VCþ4VT;�VC�2VTÞ ~1 � ~2; (B1)

~V�
0�� ¼ diagð�VC � 2VTÞ ~1 � ~2; (B2)

~V�
0�þ ¼ diagð�3VC;�VC þ 4VTÞ ~1 � ~2; (B3)

~V�
1þ� ¼ diagð3VC; 3VC;�VC þ 4VT;�VC � 2VTÞ ~1 � ~2;

(B4)

~V �
1þþ ¼diagð�VCþ4VT;�VC�2VT;�VC�2VTÞ ~1 � ~2;

(B5)

~V�
1�� ¼ diagð3VC;�VC þ 4VT;�VC þ 4VT;�VC

� 2VT;�VC � 2VTÞ ~1 � ~2; (B6)

~V �
1�þ ¼ diagð3VC;�VC � 2VTÞ ~1 � ~2; (B7)

~V �
2þ� ¼ diagð3VC;�VC � 2VTÞ ~1 � ~2; (B8)

~V�
2þþ ¼ diagð3VC;�VC � 2VT;�VC � 2VT;�VC

� 2VT;�VC þ 4VT;�VC þ 4VTÞ ~1 � ~2; (B9)

~V �
2�þ ¼ diagð3VC; 3VC;�VC � 2VT;�VC þ 4VTÞ ~1 � ~2;

(B10)

~V�
2�� ¼ diagð�VC � 2VT;�VC � 2VT;�VC

� 2VT;�VC þ 4VTÞ ~1 � ~2; (B11)

where the central and tensor potentials are defined as VC ¼
ð ffiffiffi

2
p

g
f�
Þ2 1

3Cðr;m�Þ and VT ¼ ð ffiffiffi
2

p
g
f�
Þ2 1

3Tðr;m�Þ, with

VC > 0 and VT > 0 and VC < VT. For I ¼ 1 ( ~1 � ~2 ¼
1), we see that the strongest attractive potential, �ðVC þ
2VTÞ, is contained in the JPC ¼ 0þþ, 0��, 1þ�, 1þþ, 1��,
1�þ, 2þ�, 2þþ, 2�þ, and 2�� states. In another quantum
number, the 0�þ state in I ¼ 1 has only weakly attractive
potential, �3VC. Therefore, we expect in I ¼ 1 that the
0þþ, 0��, 1þ�, 1þþ, 1��, 1��, 1�þ, 2þ�, 2þþ, 2�þ, and
2�� states may be bound and/or resonant states, while the
0�þ state hardly forms a structure. For I ¼ 0 ( ~1 � ~2 ¼
�3), the strongest attractive potential, �3 � 3VC, is con-
tained in 1�þ and 2þ� states. The potential in the 0�� state
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is repulsive. Therefore, there may be a bound and/or
resonant states in 1�þ and 2þ�, and no structure in
0�� in I ¼ 0.

Although the static approximation may be a crude ap-
proximation, this is a useful method at qualitative level. For
example, let us study two nucleon (NN) systems, we
analyze the deuteron (I ¼ 0, JP ¼ 1þ) in which the NN
potential is given by 2
 2 matrix with 3S1 and

3D1 states
[63]. The OPEP for deuteron is given as

V�
NN ¼ VNN

C 2
ffiffiffi
2

p
VNN
T

2
ffiffiffi
2

p
VNN
T VNN

C � 2VNN
T

 !
~1 � ~2; (B12)

with VNN
C ¼ ðg�NN2mN

Þ2 1
3Cðr;m�Þ and VNN

T ¼ðg�NN2mN
Þ213Tðr;m�Þ,

for a �NN vertex constant g�NN and a nucleon mass mN.
We diagonalize Eq. (B12) and obtain the eigenvalues in the
diagonal potential,

~V �
NN ¼ diagðVNN

C � 4VNN
T ; VNN

C þ 2VNN
T Þ ~1 � ~2: (B13)

Because VNN
T >VNN

C , the first eigenvalue gives a repulsion

in I ¼ 0, while the second eigenvalue gives an attraction in
I ¼ 0. The eigenvector of the 3S1 and

3D1 components for

the second eigenvalue is ð ffiffiffiffiffiffiffiffi
2=3

p
;
ffiffiffiffiffiffiffiffi
1=3

p Þ. This means that the
D-wave probability is about 33 percent. In reality, we have
to introduce a kinetic term which disfavors the higher
angular momentum (D wave), and hence the D-wave
probability in deuteron becomes a few (� 5) percent.

The stationary approximation will be applied to Bð�Þ �Bð�Þ
systems with better accuracy, because the B meson mass is
5.6 times larger than the nucleon mass. We note that the
OPEPs as a long-range force are better approximation for
larger angular momentum, because the sizes of systems are
extended. However, the static approximation may become
worse for larger angular momentum. Therefore, it is nec-
essary for quantitative analysis to study numerically the
solutions of the Schrödinger equations with the kinetic
terms and the potentials with channel coupling as dis-
cussed in the text.
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