Decays $\rho^{-} \rightarrow \boldsymbol{\eta} \boldsymbol{\pi}^{-}$and $\boldsymbol{\tau}^{-} \rightarrow \boldsymbol{\eta}\left(\boldsymbol{\eta}^{\prime}\right) \boldsymbol{\pi}^{-} \boldsymbol{\nu}$ in the Nambu-Jona-Lasinio model

M. K. Volkov* and D. G. Kostunin ${ }^{\dagger}$
Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, 141980 Russia

(Received 17 May 2012; published 3 July 2012)

Abstract

The widths of the decays $\rho^{-} \rightarrow \eta \pi^{-}$and $\tau^{-} \rightarrow \eta\left(\eta^{\prime}\right) \pi^{-} \nu$ are calculated in the framework of the Nambu-Jona-Lasinio model. It is shown that these decays are defined by the u and d quark mass difference. It leads to the suppression of these decays in comparison with the main decay modes. In the process $\rho^{-} \rightarrow \eta \pi^{-}$the intermediate scalar a_{0}^{-}state is taken into account. For the τ decays the intermediate states with $a_{0}^{-}, \rho^{-}(770)$ and $\rho^{-}(1450)$ mesons are used. Our estimates are compared with the results obtained in other works.

DOI: 10.1103/PhysRevD.86.013005
PACS numbers: 13.35.Dx, 12.39.Fe

I. INTRODUCTION

At present, the decays $\rho^{-} \rightarrow \eta \pi^{-}$and $\tau^{-} \rightarrow \eta\left(\eta^{\prime}\right) \pi^{-} \nu$ are not well studied in experiments [1-3]. However, recently, a number of works devoted to the investigation of these processes in the framework of the different phenomenological models were published [4-10]. On the other hand, in [11-14] it was shown that different modes of the τ decay can be satisfactorily described in the Nambu-JonaLasinio (NJL) model [15-23]. In the present paper, the NJL model is used for the description of the decays $\rho^{-} \rightarrow \eta \pi^{-}$ and $\tau^{-} \rightarrow \eta\left(\eta^{\prime}\right) \pi^{-} \nu$. The probabilities of the transitions $\pi^{0} \rightarrow \eta\left(\eta^{\prime}\right)$ and $\rho^{-}\left(W^{-}\right) \rightarrow a_{0}^{-}$are calculated. These transitions are defined by the mass difference between u and d quarks and can be calculated in the framework of the NJL model without attraction of any arbitrary parameters. All calculations are performed in the mean field approximation, considering the quark loops and neglecting the meson loops. Our results will be compared with the estimates obtained in [7-10]. It is shown that the amplitudes with intermediate vector mesons dominate in the $\tau^{-} \rightarrow \eta \pi^{-} \nu$ decay.

II. THE DECAY $\boldsymbol{\rho}^{-} \rightarrow \boldsymbol{\eta} \boldsymbol{\pi}^{-}$

For calculation of this decay we should first calculate two non-diagonal transitions $\pi^{0} \rightarrow \eta$ and $\rho^{-} \rightarrow a_{0}^{-}$within the NJL model. These transitions go through quark loops containing u and d quarks (see Fig. 1).

The amplitude of the transition $\pi^{0} \rightarrow \eta\left(\eta^{\prime}\right)$ has the form

$$
\begin{align*}
\epsilon_{\pi \eta\left(\eta^{\prime}\right)}= & 2 g_{\pi}^{2}\left(\left(2 I_{1}\left(m_{d}\right)+m_{\eta\left(\eta^{\prime}\right)}^{2} I_{2}\left(m_{d}\right)\right)-\left(2 I_{1}\left(m_{u}\right)\right.\right. \\
& \left.\left.+m_{\eta\left(\eta^{\prime}\right)}^{2} I_{2}\left(m_{u}\right)\right)\right) \frac{\epsilon_{\eta\left(\eta^{\prime}\right)}}{m_{\pi}^{2}-m_{\eta\left(\eta^{\prime}\right)}^{2}} \tag{1}
\end{align*}
$$

where $m_{\pi}, m_{\eta}, m_{\eta^{\prime}}$ are masses of π, η and η^{\prime} mesons, respectively, given in PDG [1]; m_{u} and m_{d} are constituent quark masses, $m_{u}=280 \mathrm{MeV}$. Using the last experimental data for the decay $\omega \rightarrow \pi \pi$ [1] we obtain $m_{d}-m_{u} \approx$ 3.7 MeV. This decay was described in detail in [17]. The

[^0]$\eta-\eta^{\prime}$ mixing $\epsilon_{\eta}=\sin \bar{\theta}$ for the η meson and $\epsilon_{\eta^{\prime}}=\cos \bar{\theta}$ for the η^{\prime} meson. The mixing angle $\bar{\theta} \approx-54^{\circ}$ was defined in [24]. The constant g_{π} and integrals $I_{1}(m), I_{2}(m)$ are defined in [17]
\[

$$
\begin{gather*}
g_{\pi}=\frac{m_{u}}{F_{\pi}} \tag{2}\\
I_{1}(m)=-i \frac{N_{c}}{(2 \pi)^{4}} \int^{\Lambda_{4}} \frac{d^{4} k}{\left(m^{2}-k^{2}\right)} \\
=\frac{N_{c}}{(4 \pi)^{2}}\left[\Lambda_{4}^{2}-m^{2} \log \left(\frac{\Lambda_{4}^{2}}{m^{2}}+1\right)\right] \tag{3}\\
I_{2}(m)=-i \frac{N_{c}}{(2 \pi)^{4}} \int^{\Lambda_{4}} \frac{d^{4} k}{\left(m^{2}-k^{2}\right)^{2}} \\
=\frac{N_{c}}{(4 \pi)^{2}}\left[\log \left(\frac{\Lambda_{4}^{2}}{m^{2}}+1\right)-\left(1+\frac{m^{2}}{\Lambda_{4}^{2}}\right)^{-1}\right] \tag{4}
\end{gather*}
$$
\]

where $N_{c}=3$ is a number of quark colors and $\Lambda_{4} \approx$ 1250 MeV is a four-dimensional cutoff parameter in the standard NJL model [17].

The obtained estimates coincide with those used in [9,10]. One can see the comparison in Table I.

The transition $\rho^{-} \rightarrow a_{0}^{-}$takes the form

$$
\begin{equation*}
\frac{\sqrt{6}}{2}\left(m_{d}-m_{u}\right) p^{\mu} \rho_{\mu}^{-} a_{0}^{-} \tag{5}
\end{equation*}
$$

where p is momentum of the ρ meson.
The ρ meson decay width is defined by two diagrams in Figs. 2 and 3. The first diagram describes the amplitude which contains the $\pi^{0} \rightarrow \eta$ transitions in the final state

$$
\begin{equation*}
T_{1}=g_{\rho} \epsilon_{\pi \eta}\left(p_{-}^{\mu}-p_{0}^{\mu}\right) \rho_{\mu}^{-} \eta \pi^{-} \tag{6}
\end{equation*}
$$

FIG. 1. $\quad \pi^{0} \rightarrow \eta\left(\eta^{\prime}\right)$ (top) and $\rho^{-}\left(W^{-}\right) \rightarrow a_{0}^{-}$(bottom) transitions.

TABLE I. Comparison of $\epsilon_{\pi \eta\left(\eta^{\prime}\right)}$.

$\left\|\epsilon_{\pi \eta}^{\mathrm{PR}}\right\|[9]$	$1.34 \cdot 10^{-2}$
$\left\|\epsilon_{\pi \eta}^{\mathrm{NL}}\right\|$	$1.55 \cdot 10^{-2}$
$\left\|\epsilon_{\pi \eta^{\prime}}^{\mathrm{PR}}\right\|[10]$	$(3 \pm 1) \cdot 10^{-3}[10]$
$\left\|\epsilon_{\pi \eta^{\prime}}^{\mathrm{NJL}}\right\|$	$6.79 \cdot 10^{-3}$

where $g_{\rho} \approx 6.14$ is defined in [17]. The second diagram describes the amplitude containing the intermediate a_{0}^{-} meson

$$
\begin{equation*}
T_{2}=2 Z g_{\rho} \frac{m_{u}\left(m_{d}-m_{u}\right)}{m_{a_{0}}^{2}-m_{\rho}^{2}} \epsilon_{\eta} p^{\mu} \rho_{\mu}^{-} \eta \pi^{-} \tag{7}
\end{equation*}
$$

where the vertex $a_{0}^{-} \rightarrow \eta \pi^{-}$is defined in [24]

$$
\begin{gather*}
\frac{4}{\sqrt{6}} Z g_{\rho} m_{u} \epsilon_{\eta} a_{0}^{-} \eta \pi^{-} \tag{8}\\
Z=\left(1-6 \frac{m_{u}^{2}}{m_{a_{1}}^{2}}\right)^{-1} \tag{9}
\end{gather*}
$$

and $m_{a_{1}}=1230 \mathrm{MeV}$ is the mass of the a_{1} meson [1].
Thus, for branching fractions we get

$$
\begin{align*}
& \mathcal{B}_{1}=\epsilon_{\pi \eta}^{2} \frac{\lambda^{3 / 2}\left(m_{\rho}^{2}, m_{\eta}^{2}, m_{\pi}^{2}\right)}{\lambda^{3 / 2}\left(m_{\rho}^{2}, m_{\pi}^{2}, m_{\pi}^{2}\right)}=1.78 \cdot 10^{-5} \tag{10}\\
& \mathcal{B}_{2}=4 Z^{2} \epsilon_{\eta}^{2}\left(\frac{m_{u}\left(m_{d}-m_{u}\right)}{m_{a_{0}}^{2}-m_{\rho}^{2}}\right)^{2} \frac{\lambda^{3 / 2}\left(m_{\rho}^{2}, m_{\eta}^{2}, m_{\pi}^{2}\right)}{\lambda^{3 / 2}\left(m_{\rho}^{2}, m_{\pi}^{2}, m_{\pi}^{2}\right)} \\
& \quad=0.33 \cdot 10^{-5} \tag{11}
\end{align*}
$$

where $\lambda\left(s, m_{\eta\left(\eta^{\prime}\right)}^{2}, m_{\pi}^{2}\right)=\left(s-m_{\eta\left(\eta^{\prime}\right)}^{2}-m_{\pi}^{2}\right)^{2}-4 m_{\eta\left(\eta^{\prime}\right)}^{2} m_{\pi}^{2}$.
We note that in these calculations we take into account only the ground state of a_{0} because the decay with the intermediate $a_{0}(1450)$ is suppressed by a large mass of the radial-excited meson.

FIG. 2. The ρ^{-}decay with the $\pi \eta$ mixing in the final state.

FIG. 3. The ρ^{-}decay though transition into the a_{0}^{-}meson.

FIG. 4. The vector contribution to the τ decay [V^{-}includes a contact term and terms with the intermediate $\rho(770)$ and $\rho(1450)$ mesons].

FIG. 5. The scalar contribution to τ decay.

Our estimates coincide with one taken in [7]. These estimates do not contradict known experimental limits [1,2].

III. THE DECAY $\boldsymbol{\tau}^{-} \rightarrow \boldsymbol{\eta}\left(\boldsymbol{\eta}^{\prime}\right) \boldsymbol{\pi}^{-} \boldsymbol{\nu}$

The description of the decay $\tau \rightarrow \pi \pi \nu$ was obtained in [13] with satisfactory agreement with current experimental data.

We use the amplitude from [13] with the $\pi^{0} \rightarrow \eta\left(\eta^{\prime}\right)$ transitions (1) in the final states (see Fig. 4) ${ }^{1}$

$$
\begin{align*}
T_{V}= & \epsilon_{\pi \eta\left(\eta^{\prime}\right)} m_{\rho}^{2}\left(\left(1-\frac{i \sqrt{q^{2}} \Gamma_{\rho}\left(p^{2}\right)}{m_{\rho}^{2}}\right) B W_{\rho}\left(p^{2}\right)\right. \\
& \left.+\beta_{\rho} \frac{p^{2}}{m_{\rho}^{2}} B W_{\rho^{\prime}}\left(p^{2}\right)\right)\left(p_{\pi^{-}}^{\mu}-p_{\eta\left(\eta^{\prime}\right)}^{\mu}\right) l_{\mu} \pi^{-} \eta\left(\eta^{\prime}\right) \tag{12}
\end{align*}
$$

where the Breit-Wigner relation $B W_{\rho\left(\rho^{\prime}\right)}\left(p^{2}\right)$ and β_{ρ} parameter were defined in [13]. For the processes with the intermediate vector meson we get contributions to branching fractions

$$
\begin{align*}
& \mathcal{B}_{V}(\tau \rightarrow \eta \pi \nu)=4.35 \cdot 10^{-6}, \tag{13}\\
& \mathcal{B}_{V}\left(\tau \rightarrow \eta^{\prime} \pi \nu\right)=1.11 \cdot 10^{-8} . \tag{14}
\end{align*}
$$

The $W^{-} \rightarrow a_{0}^{-}$transition takes the form

$$
\begin{equation*}
\frac{\sqrt{3}}{4 g_{\rho}} g_{\mathrm{EW}}\left|V_{u d}\right|\left(m_{d}-m_{u}\right) p^{\mu} W_{\mu}^{-} a_{0}^{-} \tag{15}
\end{equation*}
$$

where $g_{\text {EW }}$ is the electroweak constant.
The amplitude with the intermediate scalar meson (see Fig. 5) takes the form

[^1]DECAYS $\rho^{-} \rightarrow \eta \pi^{-}$AND \ldots

$$
\begin{align*}
T_{S}= & 2 Z m_{u}\left(m_{d}-m_{u}\right) \epsilon_{\eta\left(\eta^{\prime}\right)}\left(B W_{a_{0}}\left(p^{2}\right)\right. \\
& \left.+\beta_{a_{0} \eta\left(\eta^{\prime}\right) \pi} B W_{a_{0}^{\prime}}\left(p^{2}\right)\right) p^{\mu} l_{\mu} \pi^{-} \eta\left(\eta^{\prime}\right) \tag{16}
\end{align*}
$$

where $B W_{a_{0}\left(a_{0}^{\prime}\right)}\left(p^{2}\right)$ is the Breit-Wigner formula for the $a_{0}\left(a_{0}^{\prime}\right)$ meson with $m_{a_{0}}=980 \mathrm{MeV}, m_{a_{0}^{\prime}}=1474 \mathrm{MeV}$, $\Gamma_{a_{0}^{\prime}}\left(m_{a_{0}^{\prime}}\right)=265 \mathrm{MeV}$ taken from PDG [1] and $\Gamma_{a_{0}}\left(m_{a_{0}}\right)=$ 100 MeV calculated from Eq. (9) which coincides with the upper PDG limit [1]. For the estimation of the contribution of the radial-excited $a_{0}^{-}(1450)$ to the τ decays we should use the extended NJL model [25-27]. The amplitudes $A_{a_{0}^{\prime} \rightarrow \eta\left(\eta^{\prime}\right) \pi}$ of the $a_{0}^{\prime} \rightarrow \eta\left(\eta^{\prime}\right) \pi$ decays can be found in [27]. The transition $W^{-} \rightarrow a^{-}(1450)$ takes the form

$$
\begin{align*}
C_{W a_{0}^{\prime}}= & \frac{\sqrt{3}}{4 g_{\rho}} g_{\mathrm{EW}}\left|V_{u d}\right|\left(m_{d}-m_{u}\right) p^{\mu} W_{\mu}^{-} a_{0}^{-}\left(\frac{\cos \left(\phi+\phi_{0}\right)}{\sin \left(2 \phi_{0}\right)}\right. \\
& \left.+\Gamma \frac{\cos \left(\phi-\phi_{0}\right)}{\sin \left(2 \phi_{0}\right)}\right) \tag{17}
\end{align*}
$$

where $\phi_{0}=65.5^{\circ}$ and $\phi=72.0^{\circ}$ are the mixing angles, and $\Gamma=0.54$.

Thus, we get the $\beta_{a_{0} \eta\left(\eta^{\prime}\right) \pi}$ parameter

$$
\begin{equation*}
\beta_{a_{0} \eta\left(\eta^{\prime}\right) \pi}=e^{i \pi} C_{W a_{0}^{\prime}} \frac{\sqrt{6}}{4 Z} \frac{A_{a_{0}^{\prime} \rightarrow \eta\left(\eta^{\prime}\right) \pi}}{m_{u}} \tag{18}
\end{equation*}
$$

where phase factor $e^{i \pi}$ is taken similarly [13]. The values $\beta_{a_{0} \eta \pi}=-0.24$ and $\beta_{a_{0} \eta^{\prime} \pi}=-0.26$ do not contradict the ones given in $[8,10]$. The contributions to the branching fractions from the amplitude [Eq. (16)] are

$$
\begin{align*}
& \mathcal{B}_{S}(\tau \rightarrow \eta \pi \nu)=0.37 \cdot 10^{-6} \tag{19}\\
& \mathcal{B}_{S}\left(\tau \rightarrow \eta^{\prime} \pi \nu\right)=2.63 \cdot 10^{-8} \tag{20}
\end{align*}
$$

The expression for the total width is

$$
\begin{align*}
\Gamma= & \frac{G_{f}^{2}\left|V_{u d}\right|^{2}}{384 \pi m_{\tau}^{2}} \int_{m_{\eta\left(\eta^{\prime}\right)}^{2}+m_{\pi}^{2}}^{m_{\tau}^{2}} \frac{d s}{s^{3}} \lambda^{1 / 2}\left(s, m_{\eta\left(\eta^{\prime}\right)}^{2}, m_{\pi}^{2}\right)\left(m_{\tau}^{2}-s\right)^{2} \\
& \times\left(\left|T_{V}\right|^{2}\left(2 s+m_{\tau}^{2}\right) \lambda\left(s, m_{\eta\left(\eta^{\prime}\right)}^{2}, m_{\pi}^{2}\right)\right. \\
& \left.+\left|T_{S}\right|^{2} 3 m_{\tau}^{2}\left(m_{\eta\left(\eta^{\prime}\right)}^{2}-m_{\pi}^{2}\right)^{2}\right) \tag{21}
\end{align*}
$$

Note that there is no interference between the vector and scalar intermediate state contributions. Thus, for branchings we get

$$
\begin{align*}
& \mathcal{B}\left(\tau^{-} \rightarrow \eta \pi^{-} \nu\right)=4.72 \cdot 10^{-6} \tag{22}\\
& \mathcal{B}\left(\tau^{-} \rightarrow \eta^{\prime} \pi^{-} \nu\right)=3.74 \cdot 10^{-8} \tag{23}
\end{align*}
$$

Let us note that our estimations for scalar contributions are much less than those in previous works.

IV. CONCLUSIONS

Our calculations are in qualitative agreement with the previous theoretical estimates obtained in [7-10]. However, the NJL model allows us to describe the transitions $\pi^{0} \rightarrow \eta\left(\eta^{\prime}\right)$ and $\rho^{-}\left(W^{-}\right) \rightarrow a_{0}^{-}$using the same methods. As a result, we can compare the contribution of amplitudes with intermediate scalar and vector mesons from uniform positions. These calculations show that in the decays $\rho^{-} \rightarrow \eta \pi^{-}$and $\tau^{-} \rightarrow \eta \pi^{-} \nu$ the scalar meson plays a insignificant role. However, in the decay $\tau^{-} \rightarrow$ $\eta^{\prime} \pi^{-} \nu$ the processes with intermediate a_{0} and a_{0}^{\prime} make contributions comparable with the contributions of intermediate vector mesons.

It is worth noticing that the width of the decay $\tau^{-} \rightarrow$ $a_{0}^{-} \nu$ calculated in the NJL model is close to the values obtained in [8]

$$
\begin{gather*}
\Gamma=\frac{G_{F}^{2}\left|V_{u d}\right|^{2} m_{\tau}^{3}}{16 \pi}\left(\frac{\sqrt{6}}{2} \frac{m_{d}-m_{u}}{g_{\rho}}\right)^{2}\left(1-\frac{m_{a_{0}}^{2}}{m_{\tau}^{2}}\right)^{2}, \tag{24}\\
\mathcal{B}\left(\tau^{-} \rightarrow a_{0}^{-} \nu\right)=3.28 \cdot 10^{-6} \tag{25}
\end{gather*}
$$

This confirms the relevance of our expression for the vertex $\tau a_{0} \nu$ used in Eq. (16). For the vertex $a_{0} \rightarrow \eta \pi$ the expression in Eq. (9) was used. We get the amplitude [Eq. (16)] by matching these expressions through propagator of scalar a_{0} meson. This contradicts the vector-domi-nance-model-like ansatz for the intermediate resonance used in [5,9,10]

$$
\begin{equation*}
\frac{\epsilon_{\pi \eta}^{2} M_{R}^{2}}{M_{R}^{2}-p^{2}-i M_{R} \Gamma_{R}\left(p^{2}\right)} \tag{26}
\end{equation*}
$$

On the other hand, if we use this ansatz for a vector-toscalar transition taken in $[5,9,10]$ and calculate $\rho^{-} \rightarrow$ $\eta \pi^{-}$with this ansatz then we get by an order of magnitude

$$
\begin{equation*}
\mathcal{B} \sim \epsilon_{\pi \eta}^{2}\left(\frac{m_{a_{0}}^{2}}{m_{a_{0}}^{2}-m_{\rho}^{2}}\right)^{2} \frac{\lambda^{3 / 2}\left(m_{\rho}^{2}, m_{\eta}^{2}, m_{\pi}^{2}\right)}{\lambda^{3 / 2}\left(m_{\rho}^{2}, m_{\pi}^{2}, m_{\pi}^{2}\right)} \sim 10^{-3} \tag{27}
\end{equation*}
$$

This estimate for the branching fraction is close to the current experimental limit [1,2] and can be tested in the near future at the high-luminosity $e^{+} e^{-}$colliders in Novosibirsk and Beijing, for example. Therefore, the problem of relevancy of vector-scalar transition representation can be clarified.

ACKNOWLEDGMENTS

We are grateful to B. A. Arbuzov, A. B. Arbuzov, A. E. Dorokhov and E. A. Kuraev for useful discussions. This work was supported by RFBR Grant No. 10-02-01295-a.
[1] K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010).
[2] T. Ferbel, Phys. Lett. 21, 111 (1966).
[3] P. del Amo Sanchez et al. (BABAR Collaboration), Phys. Rev. D 83, 032002 (2011).
[4] S. Tisserant and T. N. Truong, Phys. Lett. B 115, 264 (1982).
[5] A. Bramon, S. Narison, and A. Pich, Phys. Lett. B 196, 543 (1987).
[6] H. Neufeld and H. Rupertsberger, Z. Phys. C 68, 91 (1995).
[7] S. Nussinov and A. Soffer, Phys. Rev. D 78, 033006 (2008).
[8] S. Nussinov and A. Soffer, Phys. Rev. D 80, 033010 (2009).
[9] N. Paver and Riazuddin, Phys. Rev. D 82, 057301 (2010).
[10] N. Paver and Riazuddin, Phys. Rev. D 84, 017302 (2011).
[11] Y. P. Ivanov, A. A. Osipov, and M. K. Volkov, Z. Phys. C 49, 563 (1991).
[12] M. K. Volkov, Y. P. Ivanov, and A. A. Osipov, Yad. Fiz. 52, 129 (1990); Sov. J. Nucl. Phys. 52, 82 (1990).
[13] M. K. Volkov and D. G. Kostunin, arXiv:1202.0506.
[14] M. K. Volkov, A. B. Arbuzov, and D. G. Kostunin, arXiv:1204.4537.
[15] D. Ebert and M. K. Volkov, Z. Phys. C 16, 205 (1983).
[16] M. K. Volkov, Ann. Phys. (N.Y.) 157, 282 (1984).
[17] M. K. Volkov, Fiz. Elem. Chastits At. Yadra 17, 433 (1986); Sov. J. Part. Nucl. 17, 186 (1986).
[18] D. Ebert and H. Reinhardt, Nucl. Phys. B271, 188 (1986).
[19] U. Vogl and W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991).
[20] S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).
[21] M. K. Volkov, Phys. Part. Nucl. 24, 35 (1993).
[22] D. Ebert, H. Reinhardt, and M. K. Volkov, Prog. Part. Nucl. Phys. 33, 1 (1994).
[23] M. K. Volkov and A.E. Radzhabov, Phys. Usp. 49, 551 (2006).
[24] M. K. Volkov, M. Nagy, and V.L. Yudichev, Nuovo Cimento Soc. Ital. Fis. A 112, 225 (1999).
[25] M. K. Volkov and C. Weiss, Phys. Rev. D 56, 221 (1997).
[26] M. K. Volkov, Yad. Fiz. 60N11, 1094 (1997); Phys. At. Nucl. 60, 1920 (1997).
[27] M. K. Volkov and V.L. Yudichev, Yad. Fiz. 65, 1701 (2002); Phys. At. Nucl. 65, 1657 (2002).

[^0]: *volkov@theor.jinr.ru
 ${ }^{\dagger}$ kostunin@theor.jinr.ru

[^1]: ${ }^{1}$ We neglect the p^{2} dependence for a rough estimate.

