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According to supersimplicity in MSSM, a renormalization scheme (SRS) may be defined for any high-
energy 2-to-2 process, to the lloop EW order; where the helicity conserving (HC) amplitudes, are
expressed as a linear combination of just three universal logarithm-involving forms. All other helicity
amplitudes vanish asymptotically. Including to these SRS amplitudes the corresponding counterterms, the
supersimple expressions for the high-energy HC amplitudes, renormalized on-shell, are obtained.
Previously, this property was noted for a large number of processes that do not involve Yukawa
interactions or renormalization group corrections. Here we extend this to e~ e — tf, which does involve
large Yukawa and renormalization group contributions. We show that the resulting supersimple expres-
sions may provide an accurate description, even at energies comparable to the SUSY scale. Such
descriptions clearly identify the origin of the important SUSY effects, and they may be used for quickly
constraining physics contributions, beyond MSSM.
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I. INTRODUCTION

In a recent paper [1], we have shown that at the 1loop
EW order of several high-energy 2-to-2 processes in
MSSM, a remarkably simple structure arises for the helic-
ity conserving' (HC) amplitudes; which are the only sur-
viving amplitudes in this limit [2,3]. This structure, which
has been called ‘‘supersimplicity,” involves just three
forms: two Sudakov-like forms, containing a log or a
log-squared function of the ratio of a Mandelstam variable
with respect to masses, together with an additional energy
independent term; and a squared-log of the ratio of two
Mandelstam variables, to which 72 is added.

In [1], a supersimplicity renormalization scheme (SRS)
was defined, where the high energy HC amplitudes exactly
have the above supersimplicity structure, without any addi-
tional term. Adding to this supersimplicity amplitudes,
some ‘‘residual” constant contributions, which are viewed
as counterterms (c.t.); the supersimple expressions for the
high-energy HC amplitudes in the on-shell renormalization
scheme [4] are obtained.

Such supersimple results arise in MSSM after many
cancellations, among much more complicated contribu-
tions, involving standard and supersymmetric particle ex-
changes. While deriving them, it is fascinating to observe
how the SUSY couplings conspire to achieve the super-
simple structure for the high-energy on-shell HC ampli-
tudes, and at the same time to force the helicity violating
(HV) amplitudes to vanish [1].

In SM, where such conspiracies do not appear, additional
linear logarithms of ratios of Mandelstam variables arising

'The definitions of the HC and HV amplitudes appear in [1]
and are repeated below.
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from boxes appear [1], which cannot be thought of as a
combination of Sudakov-like forms [5-8]. Furthermore,
additional residual constants are needed to describe the
high-energy (on-shell renormalized) HC amplitudes; while
nothing is generally known, for the HV amplitudes.

The supersimplicity structure was shown in [1] for a
large number of MSSM processes, which did not involve
any Yukawa terms or renormalization group corrections,
to the electroweak (EW) couplings. For ug — dW™ in
particular, the supersimple high-energy expressions for
the HC amplitudes were considered in some detail. Such
expressions were found to provide an accurate description,
even at energies comparable to the SUSY scale [1].

In the present work we extend the analysis of [1], to a
process involving renormalization group contributions and
large Yukawa terms. Assuming that sometime in the future
a high-energy e e™ collider (LC) will be built, we
consider the 1loop EW corrections to the process

e (LA +e (I, )= tp, ) +1p,p'), (D)

where ([, I, p, p') denote the momenta, and (A, A/, w, u')
the helicities of the incoming and outgoing particles. The
corresponding helicity amplitudes, denoted as

Fle e = 1)) yuu )

are separated into two classes: the helicity conserving (HC)
amplitudes satisfying

AN =t ot 3)

and the helicity violating ones (HV), where (3) is not
respected. Provided we ignore* CP-violating couplings in
MSSM, the amplitudes (2) satisfy [9-11]

2As we have done also in [1].
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FIG. 1.
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Process (1), indeed involves large Yukawa interactions
affecting the final ¢7 state; while the existence of gauge
boson self-energy contributions, generates renormalization
group (RG) logs and large A p-type terms.> Our purpose is
to investigate how supersimplicity is affected by such
contributions.

Neglecting the electron mass, nonvanishing helicity am-
plitudes always satisfy A + A’ = 0, which combined with
(4), means that there exist only two independent HV
amplitudes, for which we take F_,__, F,___. As dis-
cussed in connection to Fig. 2, these HV amplitudes are
quickly depressed at high energies in MSSM, in agreement
with the general expectations [2,3].

On the contrary, the helicity conserving (HC) ampli-
tudes, denoted as

F7+7+) F+77+) F7++7’ F+7+7: (5)
remain appreciable at high energies. Explicit high-energy
supersimple expressions for them are given in Appendix A.
In constructing them, we separate the HC amplitudes into
two parts, defined in Sec. II. The first one, called
“augmented Sudakov” part, contains contributions from
the triangles, boxes and the electron and top-quark self-
energy counterterms (c.t.); while the second part, called
“augmented renormalization group (RG)” part, is
obtained from the yvy, yZ, and ZZ renormalized self-

energy bubbles, exchanged in the s-channel.

These two parts are, respectively, denoted as F i‘j\‘,l##, and
F5¢, . As discussed in Sec. II, the independence of this

AN
separation from the gauge fixing procedure, is guaranteed
by subtracting from F i‘j\‘?ﬂﬂ, the pinch part of the triangular
graphs in Fig. 1, and including it in Fij’,ﬂﬂ, [12,13].

In Sec. III and Appendix A, we discuss our predictions
for the HV and HC amplitudes for process e e™ — 1,
in MSSM models. As examples of the way such expres-
sions may be used in studying physically observable
quantities, we consider the differential cross section
do(e” e — t7)/d cosf, the forward-backward (Apg) and
the left-right (A{ ;) asymmetries. It is then argued that the
supersimple MSSM expressions for the HC amplitudes,
may be useful for quickly distinguishing SUSY contribu-
tions from possible new-physics contributions induced

3See Sec. 1IIB
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Diagrams contributing to the pinch term.

e.g. by a new Z' vector or axial boson, or by new anoma-
lous Ztf couplings.

Finally in the fourth section we give our conclusions and
discuss the theoretical aspects and the implications of our
results.

II. THE AUGMENTED SUDAKOV
AND RG FORMS.

As explained in the Introduction, the ‘augmented
Sudakov” part of the HC amplitudes, denoted as F ilfl\(’iuu”
contains the contributions from the triangles and boxes,
as well as the contributions from the counterterms (c.t.)
related to the external (e, e*,t,7) particles. To ensure
gauge invariance though, we have subtracted from them,
the pinch part of the Wy, W and WbHW triangles, indicated
in Fig. 1 [12,13]. This “pinch” term handling, only

affects F_ .
Apart from F ﬁl/l\(ljﬂl‘*” there exists also the F35,  , part of

the HC amplitudes, called ‘“augmented RG” part. This
contains the contributions from the yy, vZ, and ZZ re-
normalized self-energy bubbles in the s-channel, and in-
cludes also the pinch term mentioned above.

An easy way to calculate both these amplitude-parts
at high energy, is by studying the SUSY-transformed pro-
cess & & — ff[1]. But in order to unambiguously obtain
all constant terms, a direct lloop computation of the
e e’ — tf amplitudes is also made, following [14] and
using the asymptotic expansion [15] of the Passarino-
Veltman (PV) functions [16].

Denoting by x, y, any two of the Mandelstam variables
(s,t,u) in e"e™ — 11, while V = y, Z, W, we find that a
supersimplicity renormalization scheme (SRS) may be
defined in MSSM. In this SRS scheme, the high-energy
1loop HC amplitudes are given by a linear combination of
the forms

—— —x—I€
lnsz = lnsz + ZLLZIVCI + 2Lu2VC2’ Xy = (7>,

my
(6)
lnxijflnxij-i-bg(mg)—l lnxijEln_x_le, (7)
m,»mj
In%r,, + 7% ro = ﬁ 8)
. -y — L€
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FIG. 2. Energy dependence at 6 = 60°, of the HV amplitudes F_,__ and F,.___, at the lloop EW order and their Born

approximation. Left-hand panel corresponds to MSSMlow, defined in (17), and right-hand panel corresponds to MSSMhigh, defined

in (16).

with the coefficients of the Sudakov forms (6) and (7)
being constants, satisfying the general constraints [5-8];
while the coefficients of (8) may also contain ratios of
Mandelstam variables, as well as constants. No additional
overall terms can exist in the SRS HC amplitudes [1]. This
structure is exactly the same as in [1]. Such SRS HC
amplitudes are related to the on-shell renormalization
scheme ones [4], through an additional residual constant
contribution [1]. The expressions for the on-shell HC
amplitudes thus obtained, are the supersimple expressions
mentioned above and given in Appendix A.

‘We next discuss the forms (6)—(8). As shown in [1], the
augmented Sudakov squared-logs appearing in (6) are al-
ways associated to triangles or boxes involving gauge
exchanges (V = vy, Z, W). In particular the L,y terms
appearing there, are defined by

LaVc = L(pu’ my, mc)

= L12

2p% +ie )
m¥ —m?+ p2 + i6+\/)\(p§ +ie,m¥, m?)
2p% +ie )
mi —m?+ p2 + ie—\//\(pg +ie,m¥, m?) ’
)

+Li,

where Li, is a Spence function and

Ma, b, ¢c) = a® + b2 + 2 — 2ab — 2ac — 2bc.  (10)

Note that in L, y,, in (6), the gauge boson always appears
as a middle index; while a; describes an external particle of
e e’ —1f; and c; denotes an internal exchange in the
diagram generating the specific high-energy term [5-8].

We next turn to augmented Sudakov linear logs in (7).
The constant contribution Abf{ (m2) in them, is determined
by the finite part of the Bj (m2) PV function [1,16]

bé{(mf,) = bO(mZ;mi; mj)

1 m; -
=2+—2|:(m12- — mlz)ln—’—i-\//\(m% + i€, m3, m?)
mg, mJ
m? +m? —m2— ie)]
Zmimj ’

X ArcCosh( (1)

where (i, j) describe two internal exchanges, while m,
denotes the mass of either an external particle (e™, 1, 7),
or a neutral gauge boson (V = v, Z), that can couple to the
i j-pair. -
The first case, where b(’)J (m2) is associated to an external
line, arises from the cancellation between the divergences
A — In+by (m?), (12)
induced by triangular diagrams, and those induced by the
e, t counterterms (c.t.), finally leading to expressions like
In+bg(m2) — ¢, where ¢ is a pure number. But then a
remarkable property appears in SUSY, where only the
HC amplitudes need to be considered [2,3]. For each group
of related diagrams, the value of ¢ induced by the SM-
exchanges differs from the one induced by the pure SUSY
ones. It is only when all related diagrams are combined,
that the sum of the SM and SUSY contributions produces
the value ¢ = 2 appearing in (7) [1].
A few typical examples are as follows:
(i) For triangles involving a single gauge exchange
related to the initial e* lines and their (c.t.), the
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gauge exchanges contribute 3ln+3b(‘)/f (m2) —1,
with (f =e, v,) and (V. =W, Z, y). The corre-
sponding SUSY gaugino-slepton exchanges give
—In—by ' (m2) + 3. Adding the two, the MSSM
total result becomes a combination of forms like
[In+bg (m2) — 2].

(ii) For Yukawa triangles connected to the final (z, 7)
lines and their (c.t.), the SM Higgs exchanges pro-
duce terms like — In—by(m?) + 3, while the SUSY
additional Higgs and Higgsino exchanges contrib-
ute —In—by(m?) + 1, so that the MSSM total is
again a combination of forms like [In+ b (m?) — 2].

The second case where in (7) we have m, = m,,, my,

was never seen in the processes studied in [1]. It is first
observed here for ¢~ e* — r7. Regularizing the infrared
singularities by choosing m,, = my [1], we thus encounter
additional augmented Sudakov linear logs like

Insyy = Insyy + bV (m2) — 2,
sy - = sy - + b H (m2) — 2,
sy, = Insjo, + by (m2) = 2,
Insz, = Insgo, + bgOZ(mg) -2
sz = Insjoq0 + b 4 (m2) = 2, (13)
Insgop = Insgogo + b (m2) — 2,
W = Ins;p + b-gf(mf) -2,
Ins;; = Ins;; + b (m2) — 2,

Insg . = Insg o + by (m?) — 2,

where the indices (i, j) in Ins;;, describe particles with
nonvanishing yij or Zij couplings. Such terms are gener-
ated by counterterms in the 7y, Z self-energy insertions
2,,(s), 2,7(s) and 27;(s). More explicitly, the
gauge self-energy insertions give contributions like
—A + In—2, whose A-divergence is canceled by quanti-
ties like A + by (m%) — In(m;m;/p?), induced by the
gauge wave function renormalization constants [15]. This
is similar to the case discussed around (12), where the
divergences are canceled by the electron or top counterterms.

We also remark that the terms in (13) concern only the
pinch and the augmented RG parts of the high-energy HC
amplitudes. The augmented Sudakov contributions to the
high-energy HC amplitudes, do not have this form.

As a result, the Insyy, term in the F3__ expression
(AS), is directly related to the subtraction of the pinch
contribution from the diagrams in Fig. 1 [12,13]. Its mag-
nitude is given by

2
a
TlnSWw. (]4)
Sw
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It is this term that has been subtracted from the definitions
of FS'4_ and inserted in F*¢ _ given in (A10). None of
the other high-energy HC amplitudes F i‘;‘?ﬂﬂ,, is affected
by terms in (13).

In contrast to this, all forms (13) contribute to the
augmented RG parts of the asymptotic HC amplitudes

ij\-//’vﬂ«"

Finally, in addition to the augmented squared and
linear logs scaled by masses, a third form given by (8),
also appears in the high-energy HC amplitudes [1].
Typical expressions of this kind, for both - é* — 7 7 and
e~ et — tf processes, are (In’r,, + 72) or (In’r,, + 72),
always arising purely from boxes.

III. THE HC AMPLITUDES FOR e~ et — ¢f.

In this Section we discuss the exact 1loop EW results for

the F§%' . and F3%, . parts of the HC amplitudes in

B B

MSSM, and compare them to the corresponding high
energy supersimple expressions given in Appendixes A 1
and A 2 respectively. The results in (A5)—(A8) and (A10)—
(A13) clearly indicate that the Yukawa interactions and
the RG contributions, do respect the supersimplicity
structure.

As we show below, these supersimple expressions re-
produce the main features of the exact 1loop amplitudes,
even for energies close to the SUSY scale.

For assessing this explicitly, we first show the quick
vanishing, as the energy increases, of the HV amplitudes.
Then, we turn to the augmented Sudalov part of the HC
amplitudes and compare the exact lloop results for
F ij‘,‘ﬂﬂ,, with the corresponding supersimple high-energy
expressions in Appendix A 1. And once this is done, we
turn to the complete amplitudes

— FBorn

S + FSud

s+ F (15)

F/\)lllil/ AN

and compare them to their supersimple approximation
obtained by summing the corresponding expressions in
Appendixes A 1 and A 2.

For the numerical illustrations, we use two MSSM
benchmarks, consistent with the present LHC results.
The first, called MSSMhigh, is given by the cMSSM
high-scale parameters [17]

mo = 1080,
AO == 860,

m1/2 = 1800,
tanf3 = 48,

(16)
>0,

where all dimensional quantities are in GeV. For this
model, the SuSpect code gives m;o = 122 GeV, while the
lightest neutralino is put at about 800 GeV, and all other
SUSY particles acquire masses between 1000 and almost
4000 GeV [18]. As a result, the SUSY contribution to
(g, — 2)/2 is tiny, in this benchmark.
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FIG. 3. Energy dependence at # = 60°, of the augmented Sudakov part of the HC amplitudes F3¢_,, FSud, _ FSud | FSud__ .
Full lines describe the exact 1loop EW order results; while broken lines, indicated by ““sim”, denote the supersimple high-energy
approximation given in Appendix A 1. Panels and models as in Fig. 2.

The second benchmark, called MSSMIlow, is character-
ized be the EW-scale parameters [19,20]

M, = 100, M, = 200, M5 = 800,
m; = 400, mz = 1100,
(17)
A, = —800, A, = A, = —2200,
M= 200, myo = 320, tanB = 20,

where myj, mg describe the common EW-scale SUSY-
breaking slepton and squark masses, for all three genera-
tions; (again all masses in GeV). The charginos, neutralinos,
and sleptons in MSSMlow are much lighter than in the
previous benchmark. Consequently, this benchmark can
accommodate a large SUSY contribution to (g, —2)/2,
consistent with the experimental data [21,22]. Moreover,
SuSpect [18] gives for it m;0 =~ 125 GeV, the lightest neu-
tralino is put at 90 GeV, and the m o and m o masses are in
the 320 GeV region [20].

Using these two MSSM benchmarks,* we present in
Fig. 2, the two independent HV amplitudes F_,__,
F,___, as functions of energy, at a fixed c.m. angle
6 = 60°. As seen there, the 1loop EW order results for
both HV amplitudes, as well as their Born approximation,
are almost identical and quickly suppressed at high ener-
gies, in agreement with the general helicity-conservation
(HCns) theorem [2,3].

We conclude therefore that for a quick study of physical
observables, it may be sufficient to use the Born approxi-
mation for the HV amplitudes.

“A very short list of other possible benchmarks may be found
in [23].

S
A.The F§ud

We first investigate whether the exact 1loop results for
F ﬁ‘j\‘?ﬂﬂ, agree with the corresponding supersimple expres-
sions, at asymptotic energies. In other words, whether there
are any residual contributions that they should still be
added to the expressions in Appendix A 1. Such residual
contributions are essentially determined by the differences
between the e or r wave function renormalization con-
stants, in the on-shell [4] and SRS renormalization
schemes [1],

, part of the HC amplitudes.

L.Rres _ -LROS _ ~LRSRS
5Zf =Z Z; , (18)
where f = e, t. For this we find for MSSMlow (17)

SZE™ = —0.00091,  8ZE™ = —0.00243,

(19)
82y = 0.00202, 8ZF™ = 0.00196,
while for MSSMhigh (16)
8Z¢™ = —0.00039,  SZE™ = —0.00124,

(20)

575" = 0.003 30, 8Z" = 0.00051.

Thus |6Z’;‘R’r“| < 1, which means that no further residual
terms are needed in (AS5)—(AS).

In Fig. 3 we then present the energy dependence of the
augmented Sudakov part of the HC amplitudes F ij‘fﬂﬂ,.
The c.m. scattering angle is fixed at § = 60°. Full lines
describe the exact lloop EW order results; while broken
lines, indicated by ‘“sim,” denote the supersimple high-
energy amplitudes in Appendix A 1.
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As seen in this figure, the differences between the
exact and supersimple results, are almost invisible for all
HC augmented Sudakov amplitudes, at all energies, for
the MSSM models (16) and (17). In fact, at energies in
the range 0.4 < /s <1 TeV, some visible differences
only appear for F3'Y__; but they become invisible for
Js =1 TeV.

Therefore, the supersimple expressions for the aug-
mented Sudakov amplitudes in Appendix A 1, approach
the corresponding exact 1loop results, very quickly, for the
above MSSM benchmarks.

B. The F55, .

As already said in Sec. I1, the augmented RG part for the

HC amplitudes F }j, ,» describes the 1loop finite contri-

bution arising from the renormalized yy, yZ and ZZ self-
energy functions, together with the pinch contribution of
the graphs in Fig. 1. The high-energy supersimple expres-
sions for these e et — tf amplitudes appear in
Appendix A 2.

Using the definitions in Appendix A 2 and (A4), we first
check that the logarithms of this part coincide with those in
the renormalization group result

, part of the HC amplitudes.

1 dFPom
T
47> \m3 2\ dg?
dFBorn
et )] @1
el dgl
where g, = e/cy, g» = e/sy and
—11 -1
-, -, 22
Bi 1 B2 1 (22)
leading to
Fliilf%r = a?

=5 =¥

=3 + 653, — 14s3, s
1253, ¢t In mz)
wew z
—22 s
[3(:4 ]hl(W)’
W z
Fli(ilig_ = a? ﬁ)[—i]ln(%)
s JL3cy myz
(e lrGe)
6¢yy my

which indeed agree with the logarithmic terms in (A10)-
(A13).

We next discuss the energy-independent residual terms,
that are needed in the supersimple expressions (Al17)-
(A19) in order to describe the exact lloop values for
EW, Eyz, 3., at asymptotic energies.

For E ,(s5), no such term is needed in (A17).

(23)

FROloe _ a2(

RGlog
|

PHYSICAL REVIEW D 86, 013003 (2012)
But for iyz(s) and 3 7z(s), a quantity like
Ap =0.017, (24)

is needed in (A18) and (A19), for the MSSM benchmarks
(16) and (17). This value is close to the well-known
neutral-to-charged current ratio parameter

EZZ(O) B EWW(O)
2

2
mz My

Ap = ~ 0.01, (25)

mainly determined by the (b, r) contributions. Such a simi-
larity is not be accidental, since the structure of (A14) and
(A15) suggests that gauge self-energy differences like
those in (25), play an important role in determining the
value of A_p thereby motivating its name.

Taking into account the A p-contributions in (A18) and
(A19), the differences between the exact 1loop contribu-
tion to the F ;j, , part of the HC amplitudes, and the
supersimple expressions (A10)—(A13), normalized to the
corresponding Born contributions, are

(i) for MSSMlow (17)

SFse_, /FBom . = 0.000 54,
SFse, _/FBom = —0.003 03,

(26)
SFse, _/FBom = 0,002 66,
SFse_, /FBom = 0.01406,
(i) while for MSSMhigh (16)
SFse._, /FBom = —0.00128,
SFSe . /FBom  — 0,004 13, on

SFs<. . JFBom = 0.00162,
SFse _, JFBom . =0.01313.

The results (26) and (27) guarantee that the super-
simple expressions (A10)—(A13) accurately approximate

the exact Iloop results for the F3 Vo HC amplitudes at

high energies. That is, no further residual terms are
needed in (A10)-(A13), at least for the two above

benchmarks.

C. The complete HC amplitudes

We next turn to the complete HC amplitude given
in (15).

In Fig. 4, we present the energy dependence at # = 60°,
of the complete HC amplitudes F_,_., F,_._ (upper
panels), and F_, ; _, F.__, (lower panels), in the bench-
marks MSSMhigh (16) and MSSMlow (17). For compari-
son, the exact 1loop SM results are also given. Left-hand
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FIG. 4. Energy dependence at # = 60°, of the complete HC amplitudes F_,_,, Fy _,_ (upper panels),and F_, , _, F,__ (lower
panels). Models as in caption of Fig. 2. Left panels show the exact 1loop effects on Born, in SM and MSSM. Right panels show the

accuracy of the supersimple expressions of Appendix A, indicated by “‘sim”.

panels show the 1loop effects on Born, in SM and MSSM;
note that above 1 TeV, the 1loop effects strongly depend on
the HC amplitude considered, acquiring their largest values
for F_,_,. Right-hand panels give a feeling of how
accurately the supersimple expressions approximate the
exact lloop results in the energy range from the
ti-threshold to 7 TeV, for the aforementioned MSSM
benchmarks. For F,_,_, F__ this accuracy is rather
good for both benchmarks. For MSSMlow, good accuracy
also exists for both F_,_,, F_,, . For MSSMhigh
though, discrepancies at the 1% level persist for F_,_ .,
even for /s =7 TeV; while for F_,, _, the accuracy
improves at /s = 4.5 TeV. These features are due to the
high value (around 3 TeV) of the SUSY scale in
MSSMhigh, which delays the vanishing of the mass-
suppressed contributions.

2

In Fig. 5, we give illustrations for the energy dependence
of the “dimensionless cross section’ defined as

Z |F/\A’,u,,uf(e_e+ - tﬂlz
AN !

(28)

Full lines give the exact 1loop EW order results, while the
broken lines give the ““sim” predictions. By “sim” in the
case of (28) we mean that, the supersimple results of
Appendix A are used for the HC amplitudes, while for
the HV ones the Born expressions are used.

As seen in the left-hand panel of Fig. 5, the exact
and “sim” contributions for MSSMlow, are very similar.
For MSSMhigh though, the right-hand panel of Fig. 5
indicates a change of sign for the (exact-"’sim’”) difference
at around 3 TeV, again related to the value of the SUSY
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0.03()*1111111111111111111111111111111111 0_0301111111111111111111111111111111111\
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s'73(TeV)
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FIG. 5. Energy dependence for the “dimensionless cross section” in (28). Full lines describe the 1loop EW order results, while
broken lines describe the ““sim” results determined as stated just after (28). Models and panels as in Fig. 2.

scale in this benchmark; compare the right-hand panels
Fig. 4.

Similar patterns for MSSMlow and MSSMhigh also
appear in Figs. 6 and 7, where the angular dependence of
the ‘““dimensionless cross section’ (28) are shown. For
MSSMhigh,, in particular, the (exact-"’sim”’) difference is
at the 2% level for 1 TeV c.m. energy, while it reaches the
1% level at about 10 TeV.

In order to show how these supersimple expressions can
be used for quickly disentangling the supersymmetric ef-
fects, from other possible nonstandard contributions, we
now consider two such examples: an anomalous Ztf cou-
pling described by the effective interaction in (B1); and an

additional Z' with purely vector or axial couplings to
electrons and top quarks (B3). Such a possibility of anoma-
lous top properties is open, after the Tevatron recent results
[24,25].

In Fig. 7, we give the results for the case of an anoma-
lous Ztf coupling (B1) with d? = *0.15, causing the
sinf-proportional contribution to the HV amplitudes
given in (B2). As seen there, such a d? induces discrep-
ancies, which are much larger and have a different structure
from those of the (exact-’sim’) differences caused by
MSSMlow or MSSMhigh, alone. Thus, the supersimple
expressions may be adequate for excluding such anomalous
couplings.

LA AL L L B B LA AL L L B

0.07 - 1 0.07 | o ]
F v Fanyu(€7 e =>tE)1% 4 F vl Fanu( €€ =>tE)1* 4
0.06 E MSsSMlow f 0.06 5 MSSMhigh f
. +++s 1TeV 1loop 1 . +++— |TeV lloop :

0.05 - ¢-0-00 sim ] 0.05F \ 4000 sim ]
- ceeeo 10TeV 1loop g - ceeoo0 10TeV 1lloop g

r o DDA sim b r o DDA sim b
0.04 r 7] 0.04 r 7]
0.03 | 4 o0.03F ]
0.02 F 1 o002 .
0.01 | 4 0.0t F 7
0_0()?1 Lol b b b b ] 0.00 Cov v b b v b b b ]
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0

¥ (radians)

¥ (radiang)

FIG. 6. Angular dependence for the “dimensionless cross section” in (28), at c.m. energies of 1 and 10 TeV. Full lines describe the
1loop EW order results, while broken lines describe the “sim” results determined as stated just after (28). Models and panels as in

Fig. 2.
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F 00600 d*=-0.15 1 F 00400 d°=-0.15 &
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FIG. 7. Angular dependence for the “dimensionless cross section” in (28) and the two MSSM benchmarks (17) and (16), at 1 TeV.
Results including in addition the anomalous Z¢7 couplings in (B1), are also shown. The “sim” predictions are described just after (28).
Left-hand panel corresponds to MSSMlow, and right-hand panel to MSSMhigh.

Such a sin@-proportional contribution to the HV ampli-
tudes, as in (B1) and (B2), when combined with the MSSM
contributions, may also change the forward-backward
asymmetry Agg, to which we now turn.

In addition to Agg, we also consider the Af ; Left-Right
asymmetry defined as

A = ole et — 11 — olee™ — tz0)
LR gle et = 1,0) + ole e — 1z0)

(29)

where o(e et — t,7) and o(e e’ — txf) describe the
cross sections for the production of a t-quark with helicities
pm = —1/2 and u = +1/2, respectively. All other polar-
izations in (29) are summed over.

The results for Agg and Af ; are presented in Table I. In
detail: the second column gives the exact EW 1loop results
for MSSMhigh and MSSMlow; the third column gives the
corresponding ““sim” results, defined as in the Figs. 6 and
7; the fourth and fifth columns give the effects of adding to
the exact 1loop results, the anomalous HV amplitudes (B2),
with d = +0.15; the sixth column gives the correspond-
ing effect in case the only additional physics, beyond

MSSM, consists of a Z’ at 3 TeV, coupled like in (B3),
with identical vector couplings to both e e™ and t7; while
finally the seventh column gives the corresponding effect
for an axial Z'.

Table I reaffirms the implications from Figs. 5-7. The
“sim” results, approximate the exact lloop ones,
for MSSMlow or MSSMhigh, sufficiently well; so that a
d? = +0.15canbe distinctly visible, even when the SUSY
implications are described just by “‘sim”.

Table I suggests that this is also true for discovering a
3 TeV Z' vector or axial contribution, of the kind appearing
in (B3).

The above two examples were chosen with arbitrary
values of their parameters, just to illustrate the possibility
to use the supersimple expressions, for detecting types of
physics beyond MSSM.

IV. CONCLUSIONS

In this paper, we have extended the supersimplicity
concept to the MSSM process e~ e — 7, where Yukawa
interactions and renormalization group (RG) contributions

TABLE I. The Agg and A{ asymmetries for e e — tf, in two MSSM benchmarks, at the
exact 1loop EW order and the ’sim” approximation. The results for adding to the exact 1loop
predictions, a new-physics contribution, are also shown.

AFB
1loop SIM & =015 d&=-015 Z(V)  Z(A)
MSSMygn [17] 0855  0.859 0.776 0.725 0813 0916
MSSM,, [19,20]  0.868  0.859 0.790 0.743 0828 0921
Alr
1loop SIM &=015 d&=-015 Z(V)  Z(A)
MSSMyg [17] 0271 0293 0.237 0219 0222 0279
MSSM,,, [19,20] 0264 0287 0.232 0216 0218 0266
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play important roles. Such features do not exist in the
originally considered processes in [1].

More explicitly, the ‘“augmented Sudakov’ structure
found in [1], is also observed for the Yukawa part of the
electroweak corrections. And the “augmented RG” struc-
ture induced by the photon and Z exchanges in the
s-channel, together with the related pinch contributions,
are also found to respect this supersimplicity structure,
with specific Ap type residual contributions.

This supersimplicity realization is due to spectacular
SUSY properties, arising from cancellations of virtual
standard and spartner contributions, allowing to write
simple expressions for the helicity conserving amplitudes
at high energies. We have thus obtained very simple
expressions for the high energy on-shell HC amplitudes,
which we have termed supersimple. At such high energies,
the helicity violating amplitudes are found to be very
small.

A numerical comparison of the supersimple expressions,
with the exact lloop results, shows that their accuracy
is very good, even at energies comparable to the SUSY
scale; at least for the two benchmarks MSSMhigh and
MSSMlow, we have used in the illustrations. Both, the
energy dependence and the angular distribution of the cross
section presented, respectively, in Fig. 5-7, are very well
reproduced. Only close to threshold, one may observe
some (small) departures. This should remain true for any
MSSM benchmark, provided the energy is sufficiently
above the SUSY scale.

Comparing Figs. 2 and 4 we can also see that for both
MSSMhigh and MSSMlow at 1 TeV and 8 = 60°, the HC
amplitudes are already dominating the HV ones; so that the
HV contribution to the cross sections is at the 3% level.
Varying the angle, changes relative individual contribu-
tions from various HC and HV amplitudes; but globally
the ratio of their contributions to the cross section remains
at this level. Above 1 TeV of course, the HV contribution to
the cross section falls quickly down.

These results have interesting theoretical and predictive
implications.

Theoretically they emphasize the elegance of
Supersymmetry, where the joint action of standard and
of spartner states, produces remarkable structures for
the amplitudes at high energy. More explicitly SUSY
forces all helicity violating 2-to-2 amplitudes to vanish
exactly at high energy [2,3]; while it assigns to the HC
amplitudes at the 1loop EW order, very simple and accu-
rate expressions [1].

For a SUSY scale in the range of the above two bench-
marks, the predictive power of the supersimple description
reaches the accuracy of the percent level, at reasonable
energies. It can therefore be used to calculate the values of
physical observables, keeping the identification of the
important physical input clear. In other words, without
relying on enormous codes, where the main physical

PHYSICAL REVIEW D 86, 013003 (2012)

reason and the many minor effects, are thoroughly inter-
woven. For example, we have shown that the supersim-
plicity expressions may be useful for immediately
distinguishing the MSSM effects, from possible top-related
new physics, beyond it.

APPENDIX A: HIGH ENERGY HC AMPLITUDES

Defining the momenta and helicities for the e et — 7
process as in (1), and the helicity amplitudes as in (2), the
Born contributions are given by

1
B =3 - L R
X = V&S —my w1y (giPL + gy

Xv,((p', u) - 9,1, N)

X YM(g\L/ePL + g\liePR)ue(l’ )\)’ (Al)

where (I, I/, p, p') denote the momenta and (A, A, w, u')
the helicities, of the incoming and outgoing particles, using
the standard conventions [9]. Neglecting all masses at high
energies, the Mandelstam variables are

s=+1?=(p+p)

t= (1= pP = -5~ cost),

(A2)
u= (- p)r= —%(1 + cosf),
where 6 is the c.m. scattering angle. Finally
2e
8he = g5 = —e 8y = &y = 5
L :e(—l+2s%v) R _ eSw
8Ze 2SWCW ’ 87e cw ’ (A3)
. e(3—4sy) R —2esy
82t =~ . 8zt =
6SWCW 3CW

denote the usual SM couplings.

Neglecting m,, there exist only four independent
HC amplitudes F_,_,, Fy_y , F_., , F,__, to
be considered, whose Born contributions at high
energies are

(aa) =)
2 2 ) AT 2 )
s J\ 12syc s /\3cyy

2r\( —1 2r\( —1
=N =) FBom, =~ 2(—)(—) A4
Ceg) rm=elag)

1. The supersimple augmented Sudakov amplitudes.

I
N

Born
F2OT

Born
FBom

IR

The high-energy supersimple expressions for the Sudakov
part of the HC amplitudes, at the 1loop EW order, are

013003-10



SUPERSIMPLE ANALYSIS OF e"e¢™ — 17 AT ... PHYSICAL REVIEW D 86, 013003 (2012)

(45 — 84s%, + 40s%,)
72sévc‘év

FS | o~ (n’r, + 7%)

Qua’ {(9 — 1252, + 4s},)

(u—1)
a5t ot [ p (n’r, + 72) — 2In’t, + 2ln2uz] -

1 1 1
+ F[lnzuw + ZLKWV + ZLth - EIH(SWV) - 21H(SWw) - EIH(SW;))]

W
- W[ﬂnzsw + 4Ly, — 3In(sy,) + 4L,z — 3In(sz)]

mg[lzhsw + Z’Z\;cwlzm + |Z3sw +93ZI2\§CW|2 InGs 7, )]

3 —ZZSE%,V;VZS%)ZIZ |2ln(s (32’4 42s¥, Z|21,|21n(s 5, )

(3 - 2S2 ) l/l’l2 m -
" 2] > 12 Pins gr,) + ﬁgz;un(sm)]

24s3,c3, L2s3,msin’ B4
3 — 25 m?  (sin’a cosza 2,8
48swc“;/ |:2sWrtn%V (sm Bln(s,Ho) +— B In(s,0) + i In(s,40) + ln(stGo)>
m2
+ "2 (tan?BIn(s,y+) + 1n(shG+))]}, (AS)
Swity
2ua’ [ 4 -1
FS9, =~ e {_4[(u )(lnzrm + 72) — 2(In%r,, + 7 + In’t, — lnzuz)]
s 9cy u
2 4 _
+ [ln sz +4L,7, — 3In(sy,) + ~[In%s, + 4L,,, — 31n(sz,)]]
3¢y, 9
2V Pins 0p) + |2V
_Z li n(sX ér § li n(s)“(?fk)
S ZYPinCs ) + 123 PinGy )]
653 clymyysin? B &Y ez %,
2 2 2 os2
m; sin“’¢ ———  cos*@———  COS°B——
12chWm%V [sm ’Bln(s,Ho) +—— B In(s,;0) + oy In(s,40)
+ In(s,g0) + 2cot? BIn(s,y+) + 21n(sbG+)]}, (A6)
—2ta’ [ 1 t—
) a {—4[—2(ln2rm + 72) + —( 1) (In’r,, + ) + 2In’t, — 2ln2uz]
9cyy t
— 16s}, —
— ln Sz + 4Leze 31n(SZe) + (ln Sz + 4LtZt - 31n(SZt))
12sW W 9
- 1 e 16s2 -
65%/ [ln Sw + 4L6WV 31n(sW,,)] - mg[lzhsw + ZlZViCW|21n(S ) + —le |211’1(S/\/0t )]
! =Y 1Z{PIn(sy5,) mi Z[lZleln )+ 1Z5n(s o5 )]
%,V - & n) 12chWmWsm2ﬂ 4 X 2 b
m? siffad———— cos’a——— cos’f3 5
24swcwm%v SinzlBln(stHo) + Mln(s,ho) + 5P oy In(s,40) + In(s,50) + 2cot* Bln(s,p+) + 21n(sbG+))]}

(A7)
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, —2ta®[ 1 (t—u)

F§_‘_j_+ = B {366"“4/ [_2(1n2rm + 77'2) + 7
—8 2

— 3In(sz.)] — TZS‘X)DHZSZ +4L,;z —

(In’r, + 7%) + 2In’t, — 21112142] -

3In(s Zt)] -
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4 [1n2SZ + 4Leze
w

[IHZSW + 4Lth - 31n(SWb)]

1
12s%,¢%,

- 1 -
Z 2n(s.o; ) ZNsw + 37N 1 ]—— I:Zf. 2In(s o+
6 a4 Zl:l I n(s)( er 36 2 I 15w 2tCW| n(s)( IL) IZS%VC%VZ l lll n(s)(,- bL)

mHZY ) ————  mi|ZF)? 7] m,2 [sinzai cos’a
———In(s.0; ) + —2—=—1In(s .+ ; In + ——1In
2m3,sin’ B (s 307) 2m3,c0s2 8 (v |~ 2892 2y e, Lsin’ B () + Gz g 1)
cos’p3 m2 5
+ ———In(s,40) + In(s,60) | — 5=—5—5—5[tan*BlIn(s,y+) + In(s,5+)] (A8)
sin’ 8 24sy,cmy
I
where the chargino and neutralino mixing matrices 2t N
(zZN,Z*,Z7) are as in [26]. Fyo o= — 2 ZEVV/(s)gﬁegf,,t, (Al3)
V.V

Note that all high-energy supersimple expressions
(A5)—(AS) are solely expressed as linear combinations of
the forms (6)—(8), with the coefficients of (6) and (7) being
constants satisfying the general constraints [5—8]. The co-
efficients of the forms (8) though, may also involve ratios
of Mandelstam variables [1]. No additional constants ap-
pear in (A5)-(A8); i.e. there are no additional residual
terms in them.

We also remark that the pinch contribution which only
affects F'__, has been put in F*% _, as discussed in
Sec. II.

Notice also that for the e e™ — tf, the structure of (6),
(9), and (10), implies that

In?t, — In’u, = In’*t, — In’uy,, (A9)
so that all In?(x,/) terms in (A5)—(A8) with (x = s, t, u), are
consistent with the form (6).

Moreover, since we are using a Feynman-t’Hooft gauge,
the masses of the charged and neutral Goldstone bosons
(whenever they appear in the equations above) are taken as
my, and my respectively.

Finally, (A5)—(A8) clearly indicate that the Yukawa

interactions do respect the supersimplicity structure.

2. The supersimple augmented RG amplitudes.

At high energies the yy, yZ, ZZ renormalized self-
energy contribution to the four HC helicity amplitudes,
together with the pinch contribution, are

2

Fee = szw(wgwgv, —Insyy,  (A10)
v,V W
2u
Py === Z v (9858, (A1)
v, v/
2t
P, =5 Z wis)ehoel,  (A12)
v,V

where V and V' run over y and Z, and the coupling
constants are given in (A3). The last term in (A10) is the
aforementioned pinch contribution (14).

We next discuss the renormalized gauge self-energy
functions iw/(s). In the on-shell scheme we have (for
details and notations see [4])

S, () =2,,(s) +s6Z],
S,4(5) = S,,(s) — Sm2 + (s — m2)67Z%, (Al4)
S.2(5) = 3,5(s) + $8Z0% + m3(82) — 820%),
where
0
670 = -3, (0),  52] = —3,(0) + W 220
CW mZ
2 = 5% 3,200)
874 = =3/ _(0) + 25w %W =7z
2 L swew  m%
n c%v - s%v (6m% _ Bm%v)
52 m>3 m%, )
W Z W
87 = =3/ (0) + 3ciy = 25y 297(0)
! L Swew m’
c — 5% (Bm% B 5m%v)
5% m? m¥, )
521" = WV (577 — 5270),
cy — sk
M3, = Redyyw(M3,), dMZ = Rel,,(M2). (Al5)
At high energies, (A14) become
S,(5) =3 (s) + 58Z],
32(5) = S7,(5) + 5875, (A16)
iyz(S) = Eyz(S) + S(SZ;Z.
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Using then the definitions (7) and (13) we obtain the supersimple high-energy expressions

5 3
3, (8) = s?a{zln(swﬁ‘)‘ﬁ) ln(sH+H ) — ZNC Qf3 [ln(sff) + = Zln(sff ] Zln(sX+X } (A17)
. 26 5
2 (s) = — ﬂ{%wct;) (n(sg+g-) + In(sy+w-)] — ::: In(sy+p-) + ZN Qf ln(sff)
12SWCW ZNfo{(If — Qys¥)in(sz 7)) + (Is2 — Qfs%)[/)ln(szfz)}
ZL ZRTn (¢ v ‘w
12ch g(o + 07 )ln(s~+~-)} +s WAp, (A18)
1 ) _ 2 _
$220) = 2 [~ T o)+ o) — G () + o) |
cos?(20y) ———— 10 ,  cos*(26y) 2)
O G + (S el — S i) - ZNC{Tfln@f;)
1 -
g ZNf{4[1§ = QysiyPnGsz,7) + 55 ¢ (in(s7,7,) + InGs7,7)) + AlHs2 — Oy Pin(ss )}
! [ Z OO In(s ) — Z (07 0% + OZROF)In(s )]} by S%VA—,D, (A19)
24'SWCW i,j=1 i,j=1 ‘ S‘z}V

where 6 ¢ denotes the (f1. fr)-sfermion mixing angle, and

OVt = OV = — QYR = — QPR = Z* 7). — 70 78,
OiZL Z+*Z+ + 5IJ(CW S%V);
O%F = 71,27 + 8,5(chy — siy), (A20)

with the (ZV, Z*, Z~) matrices as shown in Appendix A 1.
Finally

B —20;s}, K
e e— a
ZSWCW ZSWCW

‘Uf =

: (A21)

with I:’: being the third component of the isospin of the
L-fermion or sfermion fields, and Q; the corresponding
electric charge. In all cases, CP conserving SUSY cou-
plings are assumed.

It is worth remarking, that the high-energy expressions
(A10)—-(A13) for the RG amplitudes, do respect the super-
simplicity structure. In this respect we note that in addition
to the forms (6)—(8), they also contain residual constant
contributions given by A_p in (A18) and (A19) and further
discussed in Sec. III B.

APPENDIX B: ANOMALOUS EFFECTIVE Z¢f
COUPLING AND Z' EFFECTS

Here we define the two new-physics models, used for
illustration in Fig. 7 and Table I.

f
The first such model just contains the additional effec-
tive Ztf coupling
dZ
—ie—e”“.(p—p),
m

t

(B

where p, p’ denote the ¢, f momenta, respectively; while d?
is an effective coupling, (which a priori could also be s-
dependent). Such an interaction leads to the additional
helicity amplitudes

e _AerdEsn ( B m,2)2
AN, ! 2m,s3,c3, (s — m) s
X Sineau,,u/[g%e(sl\,(*l/Z) + gge‘s)\,(‘H/Z)]r
(B2)
where (1)-(A3) are used. As seen from (B2),

d*-contributions only exist for the helicity violating am-
plitudes F___, F_ 4y, Fi __Fq ..

The second new-physics model used in Table I, just
contains a new vector boson Z’, with common, purely
vector or axial couplings, to all fermions. It is described
by the vertex

- iey”[g;,fZ’,,(V) - g%/f’YSZIV(A)]-

In Table I, common couplings, for both f = ¢ and f = ¢
cases have been used, for purely vector (axial) couplings
chosen as g;,f =1 (g%,f = 1). The Z'-mass is taken as

3 TeV.

(B3)
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