Erratum: All-order consistency of 5D supergravity vacua [Phys. Rev. D 76, 046006 (2007)]

Patrick Meessen*

(Received 4 June 2012; published 15 June 2012)

DOI: 10.1103/PhysRevD.85.129902

PACS numbers: 11.25.Hf, 04.65.+e, 11.30.Pb, 99.10.Cd

In Sec. II it is wrongly stated that the condition $\mathcal{D}A = 0$ can be used to gauge-fix the local *R*-symmetry¹; the connection \mathcal{D} , however, contains the *R*-symmetry gauge-field V, making the original equation gauge covariant and is therefore not a gauge-fixing but rather a restriction on the auxiliar hyperscalars that, furthermore, need not be compatible with the dilatational symmetry gauge-fixing condition $A^2 = -2$.

The flaw in the original argumentation can be overcome by imposing the standard *R*-symmetry gauge-fixing $\nabla A = 0$, whence the auxiliary hyperscalars are constants, which is compatible with the dilatational symmetry gauge-fixing condition $A^2 = -2$. These gauge-fixings imply that the supersymmetry condition for the auxiliary fermions in the hypermultiplet, Eq. (16) in the article, becomes

$$\eta = \frac{2}{3}T\epsilon - \frac{1}{3}\forall\epsilon.$$
⁽¹⁾

Following the reasoning in the article, it then follows that Eq. (17)'s condition for the *R*-symmetry gauge connection becomes V = 0, instead of R(V) = 0; i.e. for maximally supersymmetric solutions the *R*-symmetry gauge connection vanishes identically. With these changes, the rest of the original argumentation goes through and does not change the conclusions of the article.

^{*}Current address: Departamento de Física, Universidad de Oviedo Avda. Calvo Sotelo s/n, E-33007 Oviedo, Spain

¹The author is deeply indebted to Peter Sloane for discussions leading to this conclusion.