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We consider correlation functions of the stress-tensor or a conserved current in AdSdþ1=CFTd

computed using the Hilbert or the Yang-Mills action in the bulk. We introduce new recursion relations

to compute these correlators at tree-level. These relations have an advantage over the Britto-Cachazo-

Feng-Witten (BCFW)-like relations described in arXiv:1102.4724 and arXiv:1011.0780 because they can

be used in all dimensions including d ¼ 3. We also introduce a new method of extracting flat-space

S-matrix elements from AdS/CFT correlators in momentum space. We show that the (dþ 1)-dimensional

flat-space amplitude of gravitons or gluons can be obtained as the coefficient of a particular singularity of

the d-dimensional correlator of the stress-tensor or a conserved current; this technique is valid even at

loop-level in the bulk. Finally, we show that our recursion relations automatically generate correlators that

are consistent with this observation: they have the expected singularity and the flat-space gluon, or

graviton amplitude appears as its coefficient.

DOI: 10.1103/PhysRevD.85.126009 PACS numbers: 11.25.Tq, 11.55.�m, 11.30.Pb, 11.25.Db

I. INTRODUCTION

In this paper, we address two issues: the question of
computing AdS/CFT correlators efficiently and the prob-
lem of reconstructing the flat-space S-matrix from bound-
ary correlation functions.

Given a perturbative bulk quantum field theory, the AdS/
CFT conjecture [1] provides a conceptually straightfor-
ward method of computing correlation functions in the
boundary conformal field theory (CFT) [2]. However, in
practice this procedure is quite tedious for theories that
involve gravitational interactions in the bulk. This is be-
cause of two difficulties. First, it is very difficult to com-
pute graviton scattering amplitudes even in flat-space since
expanding the Hilbert action leads to an infinite set of
interaction vertices of formidable complexity, for example,
the four-point vertex has 2850 terms [3]. In Anti-de Sitter
(AdS), this difficulty is compounded by the necessity of
doing bulk integrals that, in position space, cannot be done
in terms of elementary functions.

In flat-space, it was realized long ago [3,4] that compli-
cated interaction vertices could nevertheless give rise to
simple final answers for graviton amplitudes. More
recently, starting with the development of the Britto-
Cachazo-Feng-Witten (BCFW)-recursion relations [5],
there has been rapid progress in the development of new
on shell techniques to compute amplitudes without using
Feynman diagrams at all. (See [6], and references therein.)

In [7,8], a generalization of the BCFW-recursion rela-
tions was presented that could be used to compute correla-
tion functions of stress-tensors or conserved currents in
AdS/CFT. The problem of performing difficult z-integrals
was addressed in [9] which made the observation that going
to momentum space on the boundary led to simple answers
for stress-tensor correlators in odd boundary dimensions.
(See also [10,11] for a different approach to this problem.)

However, these two results could not be immediately
combined because although the BCFW-recursion relations
of [7,8] are phrased in momentum space, they apply only in
higher than 3 boundary dimensions, while this is exactly
the case that was considered in detail in [9].
In this paper we present new recursion relations for

AdSdþ1=CFTd correlators in momentum space that are
valid in arbitrary dimensions including, crucially, d ¼ 3.
Combined with the results for three-point functions pre-
sented in [9], they can be used to compute explicit results
for four-point functions of the stress-tensor; we present
these in a companion paper [12].
These recursion relations are somewhat similar to the

recursion relations developed by Risager [13] for flat-space
gluon and graviton amplitudes. The idea is to shift the
momentum of each operator by a vector that is proportional
to the external polarization-vector for that operator and a
complex parameter w. This is very natural in d ¼ 3, where
the polarization-vectors of anything higher than a 3-point
correlator must be linearly dependent. Moreover, the be-
havior at large w is now fixed just by the Ward identities
and does not require any additional analysis. This imme-
diately leads to new recursion relations for flat-space gluon
and graviton scattering amplitudes. Using the techniques of
[7,8], we can lift these recursion relations to AdS.
Our final answer for the n-point correlator Tn is written

schematically in the form:

Tn ¼
X

�;e m0

Z
H
½�iT�;left

mþ1ðwÞT�;right
n�mþ1ðwÞ þ ~B� dw

w
; (1.1)

where the sum runs over various partitions of the operators
into a ‘‘left’’ and a ‘‘right’’ set, and over the various
possible polarizations of an auxiliary ‘‘internal particle,’’
and the integral runs over a specified contour H . In odd
boundary dimensions, as we show in [12], the integral over
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w can be performed just by extracting residues at easily
identifiable poles. The n-point correlator factorizes into
sums of products of ‘‘transition amplitudes’’ which are
correlation functions taken between specified states as
discussed in [7,8]; this is why we place a ‘‘*’’ in the

superscript on the right-hand side. ~B is a ‘‘boundary
term’’ that is fixed by the Ward identities.

The second question we address in this paper is: Can the
flat-space graviton amplitude be recovered from the bound-
ary stress-tensor correlator? This question was addressed
in the early days of AdS/CFT—albeit in a somewhat
formal manner (see [14], and references therein)—and
more recently in Mellin space [11,15] where several
explicit results were obtained. However, extending an
observation first made for three-point functions in [9], we
show that the flat-space limit is particularly elegant in
momentum space: the flat-space graviton amplitude in
dþ 1-dimensions appears as the coefficient of a specific
singularity in the stress-tensor correlator.

In Sec. III, we prove that, for a scattering process at
l-loops in pure gravity, the flat-space amplitude M with

polarization tensors em and on shell momenta ~km ¼
fkm; ijkmjg is related to the stress-tensor correlator T by

Mðe 1; ~k1; . . . e n; ~knÞ ¼ lim
ET!0

ðETÞ�l
grðnÞ

ðQ jkmjÞd�1=2�ð�l
grÞ

� Tðe 1; k1; . . . e n; knÞ; (1.2)

with �l
grðnÞ ¼ ðn2 � 1þ lÞðd� 1Þ þ 1, and ET ¼ P jkmj.

In exactly the same way, the flat-space gluon scattering
amplitude (with external polarization-vectors �m) is re-
lated to the current-correlators,

Mð�1; ~k1; . . . �n; ~knÞ ¼ lim
ET!0

ðETÞ�
l
gl
ðnÞ

ðQ jkmjÞd�3=2�ð�l
glÞ

� Tð�1; k1; . . . �n; knÞ; (1.3)

although the singularity now appears with an exponent

�l
glðnÞ ¼

�
n

2
� 1þ l

�
ðd� 3Þ þ 1: (1.4)

At higher than tree-level (i.e for l > 0), the relation above
must be understood in dimensional regularization since
both sides are UV-divergent.

The idea behind this limit is quite simple. Given a
d-dimensional boundary momentum k, we can append its
norm to the vector and create a new dþ 1-dimensional

masslessmomentum vector ~k. The dþ 1-dimensional flat-
space amplitude depends on these massless-momenta but
involves momentum conservation in all dþ 1-dimensions.
The boundary correlator conserves momentum only in
d-dimensions. However, when we tune the boundary
momenta so that momentum in the ‘‘radial’’ direction is
also conserved, then we get a singularity in the correlator
with a coefficient that is precisely the flat-space scattering
amplitude!

Our flat-space limit is valid more generally than our
recursion relations. For one, it applies even at loop-level
in the bulk, although our recursion relations are valid only
at tree-level. Second, it is straightforward to generalize it to
the case of higher derivative interactions in the bulk as we
describe below. So we hope that it will be of relevance
more broadly beyond serving as a check on our answers for
correlators. The flat-space limit is also logically indepen-
dent of the recursion relations, so the reader who is inter-
ested only in this aspect of the paper should skip to Sec. V.
A brief overview of this paper is as follows. In Sec. III,

we present new recursion relations for graviton and gluon
scattering in flat-space. In Sec. IV, we generalize these
recursion relations to tree-level correlation functions of
the stress-tensor or of conserved currents. In Sec. V, we
prove the flat-space limit described above. In Sec. VC, we
bring these two streams together and show that our recur-
sion relations automatically have the correct flat-space
limit. In the Appendix, we briefly discuss some of the
problems associated with generalizing the usual BCFW-
recursion relations to d ¼ 3.

II. SETTING

In this paper, we will consider correlation functions of
the stress-tensor, and of conserved currents, in momentum
space,

hTi1j1ðk1Þ . . .TinjnðknÞi �
Z
hT fTi1j1ðx1Þ . . .Tinjnðx nÞgi

� ei
P

n
m¼1

km�x m

ddxm; (2.1)

where T is the time-ordering symbol.
It is convenient to think of this object as a function of

‘‘polarization’’ tensors.

Tðe1;k1; . . . e n; knÞ ¼ e1i1j1 . . . e
n
injn

hTi1j1ðk1Þ . . .TinjnðknÞi;
(2.2)

where the im, jm run over the boundary directions. For
current-correlators we can consider

Tð�1; k1; . . . �n; knÞ ¼ �1i1 . . . �
n
in
hji1ðk1Þ . . . jinðknÞi; (2.3)

where we have suppressed the color indices carried by the
currents, which will have no relevance in our analysis.
However, note that in (2.3), if we have �n ¼ kn, then the

right-hand side can be evaluated using Ward identities,
which relate it to a lower-point function. Similarly, in (2.2)
if either (a) enij ¼ vikj, for some vi or (b) e

n
ij ¼ �enji or

(c) enij ¼ �ij then the right-hand side is determined in terms

of various Ward identities [16].
This means that we only need to consider transverse-

polarization-vectors in (2.3) and only symmetric, traceless,
transverse-polarization matrices in (2.2). In d-dimensions,
this allows d� 1 polarization-vectors for currents and
dðd�1Þ

2 � 1 polarization tensors for stress-tensors.
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If we are given the bulk action, we can compute these
correlators directly using Witten diagrams [2]. However,
the Hilbert action of general relativity, when expanded in
small fluctuations of the metric-tensor, leads to an infinite
set of interaction vertices of increasing complexity. So, in
dealing with gravitational theories, it is necessary to find
more efficient ways of computing these correlators, as we
do below.

Notation: In this paper, we use bold-face for vectors but
not their components. The particle-number index on mo-
menta or polarization-vectors is usually placed in the
superscript and we usually use m, n, etc. for this index.
We use i, j, etc. for boundary spacetime indices and �, �,
etc. for bulk spacetime indices.

III. NEW FLAT-SPACE RECURSION RELATIONS

In this section we start by describing some new recursion
relations in flat-space. These will help establish notation
and serve as a warm-up for the new recursion relations in
AdS. We first describe these recursion relations for gauge-
boson amplitudes and then for graviton amplitudes.

A. Recursion in Yang-Mills

Consider an amplitude in Yang-Mills theory—
Mðk1; �1 . . . kn;�nÞ—where the external gluons have
momenta km and polarizations �m. In order to apply the
recursion relations, wewill need the further constraints that
some set of m of these vectors is linearly dependent.
Without loss of generality, we can take these to be first
m-insertions.

Xm
p¼1

�p�
p ¼ 0; (3.1)

where the � are some coefficients. Now, polarization-
vectors can be shifted by a multiple of the momentum. In
four-dimensional theories, for any four-point and higher
amplitude, we can always use this freedom to find a set of
polarizations that satisfy (3.1). In higher dimensions, we
can build up an amplitude with more general polarization-
vectors by using linear combinations of polarizations that
satisfy (3.1) as explained in Sec. IVD of [8].

Now, consider deforming the amplitude through the
extension

k p ! kpðwÞ � kp þ �p�
pw; p � m (3.2)

for each of the first m-insertions. Note that there is no sum
over p in the second term above. The condition (3.1)
ensures that momentum is conserved under this deforma-
tion. This is similar to the extension described by Risager
[13].

The tree-amplitude is a rational function of w, and it is
quite easy to see that it dies off at large w. To see this, we
merely need to apply the Ward identities. For large w,

Mðk1ðwÞ;�1 . . .kmðwÞ;�mðwÞ; . . .kn;�nÞ
¼ �1�1

. . .�m�m
. . .�n�n

M
�1...�m...�n

F ðk1ðwÞ; . . .kmðwÞ; . . .knÞ

¼N
wm ðk1�1

ðwÞ� k1�1
ð0ÞÞ . . . ðkm�m

ðwÞ� km�m
ð0ÞÞ . . .�n�n

�M�1...�m...�n

F ðk1ðwÞ; . . .kmðwÞ; . . .knÞ; (3.3)

where M�1;...�n

F comes from summing all Feynman dia-
grams that contribute to the amplitude, and we have
defined N ¼ ðQ �iÞ�1. However, the Ward identities
tell us that whenever we contract a momentum with MF

we get zero. Moreover,MF itself can, at worst, scale like w
under the extension (3.2). So the expression in (3.3) van-
ishes at large w.
As usual the poles of the amplitude under (3.2) occur

whenever an intermediate propagator goes on shell. The
residue at such a pole is a product of the left and the right
amplitudes. We can reconstruct the full amplitude from
knowledge of these residues.
This leads to the following recursion relations1

Mð�1; k1ðwÞ; . . . �n; knðwÞÞ

¼ X
f�g;h;�

�iM2

ðPml

o¼1 k
�oðwÞÞ2

w� w	

w� � w	 ;

M2 � Mð��1;k�1ðw�Þ; . . . �q0h ;kq
0 Þ

�Mð�q0�h;�kq0; . . . �n;k�nðw�ÞÞ: (3.4)

We need to explain several parts of this expression.
(1) First, let us examine the sum over �. This sum is

over all ways of partitioning the external momenta
into two sets—f�1; . . .�ml

g, f�mlþ1
; . . .�ng. We will

call these sets, ‘‘left’’ and ‘‘right’’ below; they have
the property that each set contains at least one of the
first m-momenta.

(2) Each such partition is in one-to-one correspondence
with poles in the integrand of the amplitude. To
describe this relation, we define

k q0 ¼ Xml

o¼1

½k�o þ �ðm� �oÞ��o
��0w��: (3.5)

This is just the sum of all the extended momenta in
the left partition, where the � function ensures that
only the first m-momenta are extended. The com-
plex numbers w� are now defined by solving the
equation

ðkq0 Þ2 ¼ 0: (3.6)

There are two solutions because this is a quadratic
equation in w. This is what leads to the funny-

looking factor of w	
w��w	 .

1If not all the momenta are shifted i.e. if m< n, then, in what
follows, we interpret koðwÞ ¼ ko for o > m.
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(3) The sum over intermediate helicities h leads to the
insertion of any complete set of polarization-vectors
for the intermediate particle i.e. while contracting
with on shell amplitudes on the left and the right, the
following replacement should be allowed:X

h

�q
0

h;��
q0
�h;� ! ���: (3.7)

B. Recursion in gravity

We now turn to a description of how these new recursion
relations can be implemented for theories of gravity. There
are two differences from the case of Yang-Mills explained
above: the first has to do with the conditions on polariza-
tion tensors, and the second has to do with the large w
behavior.

For the recursion relations to apply, we require the
following condition. Some m of the polarization tensors
should be writable as

eq�� ¼ �qð�v
q
�Þ; (3.8)

where the �q satisfy

� q � �q ¼ 0; �q � kq ¼ 0; (3.9)

and are linearly dependent as in (3.1). For e to be a valid
polarization tensor, we must have

� q � vq ¼ 0; vq � kq ¼ 0: (3.10)

Second, for the amplitude to die off at large w, the number
of particles extended according to (3.2), say m, must have
the property that

2m> nþ 2: (3.11)

This is because a gravity Feynman-diagram with m mo-
menta scaling like w can naively scale as fast as wnþ2�m as
shown in Fig. 1 which shows an example in the case
where m ¼ 4. In this diagram all four solid-lines have

propagators that are OðwÞ (because the �q are null vectors)
but interaction vertices that are Oðw2Þ.
With these caveats, we can repeat the argument above

to obtain the following recursion relations for graviton
amplitudes in flat-space:

Mðe 1; k1ðwÞ; . . . e n; knðwÞÞ ¼ X
f�g;h;�

�iM2

ðPml

o¼1 k
� oðwÞÞ2

� w� w	

w� � w	 ;

M2 � Mðe�1;k�1; . . . eq
0

h ; k
q0 ÞMðeq0�h;�kq

0
; . . . e n; k�nÞ:

(3.12)

The notation used here is exactly the same as the notation

for (3.4). The intermediate polarization tensors eq
0

�h runs

over any complete set of graviton polarizations.

IV. RECURSION RELATIONS IN ADS

We now turn to a description of how these recursion
relations can be generalized to AdS. We first need to
discuss the behavior of current and stress-tensor correlators
under the extension (3.2).

A. Large w behavior for current-correlators

In this subsection we show that under (3.2), a current-
correlator vanishes at large w.
The correlator we are interested in is

T ¼ �1i1 . . . �
m
im
hji1ðk1ðwÞÞjimðkmðwÞÞOðkmþ1Þ . . .OðknÞi:

(4.1)

Here, the operators that carry the momenta that we are
deforming are denoted by j, and we have denoted all the
‘‘other’’ operators that might exist in the correlator by O.
We can now substitute for the polarization-vectors in

terms of the extended and unextended momenta as in the
Yang-Mills analysis above,

T ¼N
wm ðk1i1ðwÞ � k1i1ð0ÞÞðkmimðwÞ � kmimð0ÞÞ
� hji1ðk1ðwÞÞ . . . jimðkmðwÞÞOðkmþ1Þ . . .OðknÞi: (4.2)

We would like to use the fact that for large w the
polarization-vectors are approximately proportional to
the momentum, to simplify the correlator. However, we
need to be more careful about this argument since the Ward
identities for correlation functions can give contact terms
on the right-hand side.
In fact, the application of the Ward identities gives the

two sorts of terms shown below:
FIG. 1. Gravity Feynman-diagram, with 4 momenta of OðwÞ,
that scales like wn�2.
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k1i1ðwÞk2i2ðwÞ . . .kmimðwÞ
�hji1ðk1ðwÞÞji2ðk2ðwÞÞ . . . jimðkmðwÞÞOðkmþ1Þ . . .OðknÞi

(4.3)

¼ k2i2ðwÞ . . . kmimðwÞðhji2ðk2ðwÞ
þ k1ðwÞÞ . . . jimðkmðwÞÞOðkmþ1Þ . . .OðknÞi (4.4)

þ hji2ðk2ðwÞÞ . . . jimðkmðwÞÞOðkmþ1 þ k1ðwÞÞ . . .
�OðknÞi þ . . .Þ: (4.5)

The first kind of terms are those where the k1ðwÞ moves
into one of the other j operators, and the second kind are
those where the k1ðwÞ moves into one of the O operators.
Note that in (4.4) we cannot, any more, use the Ward
identity to contract with k2ðwÞ, whereas we can do this in
(4.5). Proceeding in this way, we come to a situation where
we have several terms, each of which has the following: t
polarization-vectors that scale with w left on the outside, t
of the j operators that have momenta that scale with w, and
m� 2t of the O operators that have picked up momenta
that scale with w.

In any such term, the correlator itself, barring the
polarization-vectors, has a total of m� t momenta scaling
like w. It is easy to persuade oneself that in Yang-Mills
theory with no higher derivative terms this correlator can-
not scale any faster than w. After multiplying with the
polarization-vectors, we see that the expression in (4.3) can
at most contain terms that scale as wtþ1. Hence, the corre-
lator in (4.2) reduces to terms that die off like wtþ1�m at
large w.

B. Large w behavior for stress-tensor correlators

We now turn to the case of stress-tensor correlators. We
find below that, in fact, stress-tensor correlation functions
do not die off at large w. However, the behavior at large w
is entirely determined by the Ward identities.

For stress-tensor correlators, we make the substitution

eqij ¼
1

2

kqi ðwÞ � kqi ð0Þ
�qw

vq
j þ i $ j (4.6)

for the first m polarization tensors in (2.2).
However, unlike the case of current-correlators, we can-

not use this substitution to argue that there are no terms at
largew. The Ward identities for the four-point function can
be worked out in a straightforward manner following [16]
(although their exact form also depends on the precise
definition of the correlator). However, all that is important
to us is that we find terms of the sort

Tðk1;�1 
 k1; . . .kn;enÞ
¼X

q

kq � �1Tðk2;e 2; . . .kq;eq; . . .kn;enÞ þ . . . : (4.7)

However �1 � kq could grow with w, since kq grows with
w, if q < m under the deformation (3.2). However, while

this term does not vanish at large w, its behavior is com-
pletely fixed by the Ward identities.
Let us state this a little more precisely. We can write

IðwÞ ¼N
wm

�Y
q

ðkqiqðwÞ � kqiqð0ÞÞvq
jq
� ð�1ÞmY

q

kqiqð0Þvq
jq

�

� hTi1j1ðk1Þ . . .TimjmðkmÞOðkmþ1Þ . . .OðknÞi:
(4.8)

IðwÞ is completely determined by the Ward identities and
our knowledge of lower-point functions.
So, if we substitute (4.6) into the correlator, there is

exactly one term that is not determined in this way. The
term is

1

wm

�Y
q

kqðiqð0Þv
q
jqÞ

�

�hTi1j1ðk1Þ . . .TimjmðkmÞ . . .Oðkmþ1Þ . . .OðknÞi:
This term vanishes at large w provided that the ‘‘bare
correlator’’ does not grow any faster than wm. Now, as
we pointed out above in the analysis for graviton scattering
amplitudes, the bare correlator with m-momenta extended
may grow as fast as wnþ2�m. So, provided

2m> nþ 2; (4.9)

the large-w behavior of the stress-tensor correlator under
(3.2) is completely determined.

C. Recursion relations for currents

Repeating the arguments of [7,8], we find that we now
have the following information about correlation functions
of currents that are dual to tree-level Witten diagrams of
Yang-Mills theory in the bulk:
(1) Under the extension (3.2), these correlators can be

written as integrals of a rational function of w. The
integration variables are n� 3 parameters,2 each of
which comes from an integral over p in the bulk-
bulk propagators. (We are adopting the same nota-
tion as [7,8] but the bulk-bulk propagator is also
shown explicitly in (5.3).)

(2) The only poles in this integrand occur when the
denominator of one of the bulk-bulk propagators
vanishes. At this point, the residue of the pole is
the product of the integrands of two smaller ‘‘tran-
sition amplitudes’’ i.e. the quantities obtained by
replacing one bulk to boundary propagator in a
Witten diagram by a normalizable mode.

2The counting of n� 3 comes from the diagrams that involve
three-point interactions joined together with bulk to bulk propa-
gators. However, even if have 4 or higher point interactions, each
Witten diagram can always be written in this form. See Sec. 6 of
[12] in the neighborhood of Eq. 28.

NEW RECURSION RELATIONS AND A FLAT SPACE . . . PHYSICAL REVIEW D 85, 126009 (2012)

126009-5



(3) At large w, the behavior of the integral is controlled
by the discussion above. This leads to the following
recursion relations:

Tð�1; k1ðwÞ; . . .�n; knðwÞÞ

¼ X
f�g;�q0 :�

Z � �iT 2

p2 þ ðPml

o¼1 k
�oðwÞÞ2

� w� w	ðpÞ
w�ðpÞ � w	ðpÞ þB

�
dp2

2
;

T 2 � T�ð��1 ; k�1ðpÞ; . . . eq0 ; kq0 Þ
� T�ð�q0 ;�kq

0
; . . . ��n ; k�nðpÞÞ: (4.10)

Although we have written the expression for arbi-
trary w, we will often only be interested in the value
of the correlator at w ¼ 0. The notation above is the
same as the notation used in (3.4). The T� is an
amplitude for all the left insertions to go into an
‘‘intermediate state’’ with momentum k0q defined

above. We have placed a * in the superscript of T
to emphasize that this is a transition amplitude. It is
computed by using the usual bulk-boundary propa-
gators for all particles indexed by �1; . . .�ml

, but by

using a normalizable mode for the particle with
momenta k0q. These quantities were first described

in [17] and are also discussed in detail in [8].
Finally, B is a boundary term that is required to fix the

behavior of the integrand at large p and large w. The fact
that the term with T 2 already correctly reproduces the
poles of the integrand at finite w tells us that B must be
of the form

B ¼ X
m¼0

amðpÞwm; (4.11)

where the amðpÞ are some rational functions. If the term
involving T 2 grows at large p, we must use B to cancel
this growth since we know that the p-integrals in the bulk
to bulk propagators that we started with are all convergent.
Second, since the behavior of the integral at largew is fixed
by the discussion on Ward identities above, we also know
the integrals of the functions amðpÞ. This fixes B up to
irrelevant terms that integrate to 0. We will see in [12] that,
at the level of four-point functions in AdS4=CFT3, we
never need to evaluate B explicitly.

D. Recursion relations for stress-tensors

We now turn to the case of stress-tensor correlators.
These correlators are labeled by a momentum, and
transverse-traceless polarization tensors just like graviton
amplitudes. For our recursion relations to apply we require
the conditions that were enumerated in Sec. III B. With
these constraints on the polarization tensors, we find that

Tðe1;k1ðwÞ; . . .en;knðwÞÞ¼ X
f�g;eq0 ;�

Z � �iT 2

p2þðPml

o¼1k
�oðwÞÞ2

� w�w	ðpÞ
w�ðpÞ�w	ðpÞþB

�
dp2

2
;

T 2�T�ðe�1 ;k�1 �ðpÞ; . . .eq0 ;kq0 Þ
�T�ðeq0 ;�kq

0
; . . . ;e�n ;k�nðpÞÞ: (4.12)

The notation is the same as that used above.

E. Another form of the relations

Let us specialize the recursion relations to w ¼ 0. Then
we can rewrite (4.12) following [18],

X
�

Z 1

0

iT 2

p2 þ ðPml

o¼1 k
�oÞ2

dp2

2

w	ðpÞ
w�ðpÞ � w	ðpÞ

¼
Z 1

0

dp2

2

Z
H

dw

w

�
�iT 2�

��Xml

o¼1

k�oðwÞ
�
2 þ p2

��
;

(4.13)

where H is the set of points on the w plane that satisfy

Im

��Xml

o¼1

k�oðwÞ
�
2
�
¼ 0; and

Re

��Xml

o¼1

k�oðwÞ
�
2
�
< 0 for w 2 H : (4.14)

This is the intersection of the union of the two curves that
solve the quadratic equation with the region that satisfies
the inequality.
We can check this relation by just doing the integral over

the � function. If we write QðwÞ ¼ ðPml

o¼1 k
�oðwÞÞ2 þ

p2 ¼ Aðw� wþÞðw� w�Þ, then3Z
H

dw

w
T 2ðwÞ�ðQðwÞÞ ¼ X

�
T 2ðw�Þ �ðw� w�Þ

Aw�ðw� � w	Þ

¼ 1

Qð0Þ
X
�
T 2ðw�Þ w	

w� � w	 :

(4.15)

We can now interchange the order of integration, do the
integral over p, and rewrite the relations with only an
integral over w.

Tðe 1; k1; . . . e n; knÞ ¼ X
f�g;em0

Z
H

��iT 2

w
þ ~B

�
dw;

(4.16)

where ~B just comes from rewriting B as a function of w
and multiplying with the Jacobian factor for the change of
variables from p to w.

3The relative sign we get between the contribution from wþ
and w� is sensitive to the direction along which we integrate
along the contour H .
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Although this expression is somewhat neater than (4.16)
it has the disadvantage that the contour H can be some-
what complicated. We should remind the reader that the
momenta on the left-hand side are not deformed, and w on
the right-hand side is a dummy variable that is integrated
over.

V. A NEW FLAT-SPACE LIMIT

In this section, wewould like to describe a new flat-space
limit of AdS correlators, which relates the d-dimensional
correlator of stress-tensors, or of currents, computed using
Witten diagrams, and the dþ 1-dimensional flat-space am-
plitude of gravitons or gluons.

Before we describe this limit, it is useful to review the
analytic structure of d-dimensional correlators in momen-
tum space. Now, the bulk to boundary propagators in AdS
are given by the following expressions:

hji ðe;k; x; zÞ ¼
ffiffiffiffi
2

�

s
eji ðjkjzÞd=2eik�xKd=2ðjkjzÞ; (5.1)

where

h0� ¼ 0; kie
ij ¼ 0; eii ¼ 0: (5.2)

It is important to note that in (5.1), we have raised one
index on h. If both indices were lowered, we would have an
additional factor of z�2 on the right-hand side. Here jkj is
chosen to be positive if k is spacelike and it is chosen to
have negative imaginary part if k is timelike. The physical
computation in AdS requires these signs.

We also need the bulk-bulk propagator that, for gravity
in axial gauge, is given by [8],

Gjk
il ¼

Z �
eik�ðx�x0Þðzz0Þd=2Jd=2ðpzÞJd=2ðpz0Þ

ðk2 þ p2 � i�Þ

� 1

2

�
T k

iT
j
l þT ilT jk � 2T j

iT
k
l

d� 1

���iddkdp2

2ð2�Þd ;

(5.3)

where T j
i ¼ �j

i þ kik
j=p2, and the i, j indices are raised

and lowered using the flat-space d-dimensional metric.
A typical Witten diagram such as the one shown in Fig. 3

or Fig. 5 involves several radial integrals and integrals over
the radial momenta p in the bulk-bulk propagators. After
we have done all the radial integrals, we are left with
various integrals over p. At this stage, we are free to
analytically continue and flip the sign of jkj. This leads
to the function

Tðk1; jk1j; e1; . . .kn; jknj; enÞ;
which depends on the polarizations em, the 3-momenta km

and their norms and where there is no constraint on the sign
of jkmj, although we still demand that jkmj2 ¼ km:km.

We can also consider forming the dþ 1-dimensional
null momentum

~k ¼ ðk; ijkjÞ: (5.4)

The dþ 1-dimensional scattering amplitude naturally de-
pends on these ‘‘massless-momenta’’ and the external
polarizations

Mð~k1; e1; . . . ~kn; enÞ:
In what follows below we explore the relation between
these two quantities—M and T.
It will be convenient below for us to define the

quantity

ET ¼ Xn
q¼1

jkqj; (5.5)

which is the total ‘‘radial momentum.’’ The momentum
conserving delta functions in the flat-space amplitude,
of course, include a factor of �ðETÞ. We will show
below that the coefficient of this �-function is just the
residue of a pole at ET ¼ 0 in the CFT correlator.
In our explicit computations below, we take the bulk

action to be either the pure Hilbert action for gravity or the
Yang-Mills action. However, as we mention below it is not
difficult to generalize our results to other kinds of
interactions.

A. Flat-space limit for tree-amplitudes

We4 will now show that the d-dimensional stress-tensor
correlator and the (dþ 1)-dimensional graviton tree-
amplitude are related through

Mðe1; ~k1; . . . en; ~knÞ ¼ lim
ET!0

ðETÞ�0
grðnÞ

ðQn
m¼1 jkmjÞd�1=2�ð�0

grÞ
� Tðe1; k1; . . . en;knÞ; (5.6)

with

�0
grðnÞ ¼

�
n
2 � 1

�
ðd� 1Þ þ 1; (5.7)

and ET defined in (5.5). A similar relation holds for
current-correlators

Mð�1; ~k1; . . . �n; ~knÞ ¼ lim
ET!0

ðETÞ�
0
gl
ðnÞ

ðQn
m¼1 jkmjÞd�3=2�ð�0

grÞ
� Tð�1; k1; . . .�n; knÞ; (5.8)

with

�0
gl ¼

�
n
2 � 1

�
ðd� 3Þ þ 1: (5.9)

In writing this relation, we are stripping off the overall
momentum conserving delta functions on both sides. For

4This subsection was worked out in collaboration with Juan
Maldacena and Guilherme Pimentel. These results were pre-
sented in [19].
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the flat-space amplitude, momentum is conserved in all
dþ 1 directions, whereas the correlator only conserves
momentum in d directions. The pole shown above occurs
when the total z-momentum in the correlator also vanishes.

We should mention that both sides of (5.6) manifestly
have the same behavior under rescalings of the momenta.
The d-dimensional tree-level graviton scattering amplitude
scales as M ! 	2M if all the momenta are rescaled by
km ! 	km. The stress-tensor correlator, without the lead-
ing �-function, scales like T ! 	dT under this scaling. We
see that the prefactor equalizes the behavior under scaling
of both sides. Similarly, the d-dimensional gluon-
amplitude scales like M ! 	4�nM, while the current-
correlator scales as T ! 	d�nT; the prefactor turns this
scaling into that of the amplitude.

1. Contact interactions

We start by discussing contact interactions and then go
on to discuss interactions involving bulk propagators. The
contribution of a contact interaction, such as the one shown
in Fig. 2, to the momentum space correlator can be written
as the integral of a function of z and the momenta ki

TðkiÞ ¼
Z

Caðz;kiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðzÞ

q
dzþ . . . (5.10)

where the . . . indicate other terms that contribute to the
correlator.

Now, in flat-space, although we would usually choose to
Fourier transform in the z direction as well, we can write
down a similar contribution leaving the z integral as is,

Mð~kmÞ ¼
Z

Cfðz; ~kmÞdzþ . . . : (5.11)

How are Cf and Ca related?

In general, the answer to this is quite complicated, but to
get the flat-space limit, we are interested in what happens
in the deep interior of AdS i.e. at large z. At large z, the
relation between Cf and Ca simplifies as we now show.

Both Ca and Cf are related to the contact vertex which

is obtained by expanding the Hilbert action out to the

appropriate power in a perturbation about AdS. However
notice that

Rðgads�� þ h��Þ ¼ R
�
1
z2
ð��� þ z2h��Þ

�
¼ z2Rð��� þ z2h��Þ � dðdþ 1Þ: (5.12)

The wave functions described in (5.1) have the following
behavior at large z:

z2h��ðx; zÞ !
z!1ðjkjzÞ

d�1=2e�jkjzþik�x: (5.13)

When we expand out the scalar curvature R on the right-
hand side in (5.12) there are various z-derivatives that act
on h. However, if we want to get the largest power of z in a
n-point contact interaction, then we must make sure that all
the z-derivatives act only on the exponential and not on the
leading prefactor. After we take into account the additional

factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffi�gðzÞp ¼ z�d�1, this leads to the result

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðzÞ

q
Caðz;kmÞ !

z!1

�Yn
q¼1

jkqj
�
d�1=2

zðn=2�1Þðd�1ÞCfðz;kmÞ:

(5.14)

Now, there is another difference between (5.10) and (5.11),
which involves the range of the z-integral. Both Cf and Ca

involve a leading exponential in z: e�ETz. Integrating this
over all z in (5.11) gives a � function: �ðETÞ. However,
doing the integral from 0 to 1 in (5.10) with the leading
power of z shown above leads to a pole at ET ¼ 0 and the
relation (5.6).

2. Exchange interactions: Differential
equation argument

Now, a correlator receives contributions not only from
contact Witten diagram, but also from diagrams with bulk-
bulk propagators. From the argument above, it is clear that
the contact diagram yields the flat-space result multiplied
with the correct pole. We will now show that this happens
for terms with propagators as well.
Consider a term with one propagator, as shown in the

Fig. 3, that runs between contact terms with nl lines on the
left and nr lines on the right This diagram can schemati-
cally be written

Z
Li
jðz1;KÞGjk

il ðz1;z2;KÞRl
kðz2;KÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðz1Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðz2Þ

q
dz1dz2

¼
Z
Ak
l ðz2;KÞRl

kðz2;KÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðz2Þ

q
dz2; (5.15)

where L is the term from the left contact interaction, R is
the term from the right contact interaction, K is the mo-
mentum running through the propagator (we have Fourier
transformed the propagator in the boundary directions) and
we have defined

z

FIG. 2. One-loop AdS diagram.
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Ak
l ðz2;KÞ�

Z
Li
jðz1;KÞGjk

il ðz1;z2;KÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðz1Þ

q
dz1: (5.16)

Since G is a Green’s function we know that A satisfies an
ordinary differential equation of the form

Dil
jkðK; z2ÞAk

l ðz2;KÞ ¼ Li
jðz2;KÞ; (5.17)

where D is a second-order differential operator whose
exact form is available easily5 but will not be important
to us. The argument that led to (5.8), but without adding the
contribution of the

ffiffiffiffiffiffiffi�g
p

factor, now tells us that for large

values of

Li
jðz2;KÞ !

z2!1

�Y
q2L

jkqj
�
d�1=2ðz2Þnlðd�1Þ=2þ2Li

jðz2;KÞ;

(5.18)

whereLi
j is the corresponding interaction in flat-space, and

the product over q runs over all the momenta that appear on
the left. Also for large z2, we can verify that the differential
operator scales likeDðK; z2Þ � z22DðK; z2Þ, whereD is the
corresponding differential operator in flat-space. This
means that for large z2, A must scale like

Ai
jðz2;KÞ !

z2!1

�Y
q2L

jkqj
�
d�1=2ðz2Þnlðd�1Þ=2Ai

jðz2;KÞ;

(5.19)

where A is the quantity corresponding to (5.16) in flat-
space. Consequently (after using the scaling of R) the final
integrand inside (5.15) must scale like

Ak
l ðz2;KÞRl

kðz2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðz2Þ

q
!

z2!1

�Yn
q¼1

jkqj
�
d�1=2

� zðnlþnrÞðd�1Þ=2�ðd�1Þ
2 Ak

l ðz2;KÞRl
kðz2Þ; (5.20)

where the product over q now runs over all momenta.

Since the location of the pole is governed by the behav-
ior of (5.15) at large z2, we are done and we get the pole we
need including the � function from the scaling above.

3. Exchange interactions: Direct integral argument

We now give a second argument that is more direct and
also sheds light on the exact analytic continuation that is
required to observe this pole. The relationship between
contact interactions, which we derived above, evidently
holds diagram by diagram, with the flat-space diagrams
evaluated in axial gauge. Consider Fig. 3, which is given by
the expression (5.15). Consider doing the integrals over
both z1 and z2, but leaving the integral in p, which occurs
in (5.3), undone. Now, the ordinary Bessel function that
occurs in (5.3) has an asymptotic form that is given by

Jd=2ðpz1Þ !
z!1

ffiffiffiffi
2

�

s
sin

�
pz1 �

�
dþ 1

2

�
�

2

�
1ffiffiffiffiffiffi
pz

p : (5.21)

Repeating the argument for contact interactions above, and
defining

ETL
¼ X

q2L

jkqj; ETR
¼ X

q2R

jkqj; (5.22)

we find that the integral over z1 and z2 gives

Tex ¼
�ð�0

grðnl þ 1ÞÞ�ð�0
grðnr þ 1ÞÞðQn

q¼1 jkqjÞd�1=2

2�
(5.23)

Z
dp

��e�i�ðdþ1Þ=4Li
jðK; pÞ

ðipþ ETL
Þ�0

grðnlþ1Þ � ei�ðdþ1Þ=4Li
jðK;�pÞ

ð�ipþ ETL
Þ�0

grðnlþ1Þ

�

(5.24)

G jk
il ðp;KÞ

�
eð�i�ðdþ1ÞÞ=4Rl

kð�K; pÞ
ðipþ ETR

Þ�0
grðnrþ1Þ

� ei�ðdþ1Þ=4Rl
kð�K;�pÞ

ð�ipþ ETR
Þ�0

grðnrþ1Þ

�
þ . . .

�
; (5.25)

where G is the flat-space graviton propagator in axial
gauge, but Fourier transformed so that it is a function of
the radial momentum p, rather than the radial coordinate.
Similarly L and R have been Fourier transformed, and
depend on the exchanged d-momentum K, and the radial
momentum p rather then the radial coordinates z1 and z2 as
in (5.15). The . . . indicate terms that have lower order poles
in (ipþ ETL

) and (� ipþ ETR
). These will eventually

give lower order poles in ET .
As we mentioned above, choosing the physical signs for

the norms of the momenta while doing the z-integrals leads
to a situation where ðiETL

Þ and ðiETR
Þ are both in the first

quadrant. Note that the prefactor of 1
2� comes about by

multiplying the prefactors in (5.21) and accounting for
the 1

2 in the sin-function. Moreover, note that the product

K

z1 z2

FIG. 3. Exchange interaction in AdS.

5See, for example, Eqs. (2.42), (2.37) and (2.32) in Section 2.3:
‘‘Review of Perturbation Theory’’ in [8]. D can be read off from
the quadratic part of the action.
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over jkqj that appears in the prefactor does not include a
factor of p because the Bessel function that appears in the
propagator, and has the asymptotics (5.21), is normalized
differently from the bulk to boundary propagators de-
scribed in (5.1).

The contour of the p-integral runs from 0 to 1 and the
integrand has at least four poles, that are shown in Fig. 4.
Now, let us start analytically continuing the values of the
norms of the momenta as shown by the dashed-lines on the
left-hand side of Fig. 4. When we reach a point where
ImðiETR

Þ ¼ 0, we can deform the p contour upward to

avoid the singularity. This defines an analytic continuation
of Tex. However, eventually we reach a point where the
contour gets pinched between the poles as shown on the
right-hand side of Fig. 4. At this point Tex develops a
singularity, since we cannot deform the contour any more.
(See [20] for a nice discussion of singularities of complex
integrals.) This singularity occurswhenwe take the first term
inside the bracket in (5.24), which has a pole atp ¼ iETL

and

multiply with the second term inside the bracket in (5.25),
which has a pole at p ¼ �iETR

. This singularity is itself a

pole, and we can determine the behavior near the singularity
by evaluating the residue of the integrand in (5.23) at p ¼
iETL

or at p ¼ �iETR
. We find that

Tex !
ET!0

�ð�0
grðnÞÞð

Q
q
jkqjÞd�1

ðETÞ�0
grðnÞ Li

jðK; ETL
ÞGjk

il ðETL
;KÞ

�Rl
kð�K; ETR

Þ: (5.26)

The right-hand side is just the value of the exchange diagram
in flat-space. So this leads exactly to the flat-space limit
indicated above.

B. Flat-space limit for loop amplitudes

We would now like to generalize the flat-space limit
described above for tree amplitudes to loop amplitudes. In
this section, we will show that

Mðe1; ~k1; . . . en; ~knÞ ¼ lim
ET!0

ðETÞ�l
grðnÞ

ðQn
m¼1 jkmjÞd�1=2�ð�l

grÞ
� Tðe1; k1; . . . en; knÞ; (5.27)

with

�l
grðnÞ ¼

�
n
2 � 1þ l

�
ðd� 1Þ þ 1: (5.28)

The equivalence under dilatations of the two sides above
is a little more subtle. First we should note that both sides
are UV-divergent within effective field theory. So we
should properly understand the relation (5.27) within
dimensional regularization. Now, the flat-space graviton

dþ 1-dimensional scattering amplitude scales as M !
	2þlðd�1ÞM under k ! 	k; this is precisely accounted
for by the additional lðd� 1Þ in �l

gr.

For current-correlators, we have a similar relation,

Mð�1; ~k1; . . . ; �n ~knÞ ¼ lim
ET!0

ðETÞ�
l
gl
ðnÞ

ðQ jkmjÞd�3=2�ð�l
glÞ

� Tð�1; k1; . . . �n; knÞ; (5.29)

with

�l
glðnÞ ¼

�
n
2 � 1þ l

�
ðd� 3Þ þ 1: (5.30)

We will prove the relation between stress-tensor
correlators and graviton amplitudes below, since the
current-correlator $ gluon-amplitude argument is almost
identical.
The p-integral argument above helps us make this

generalization. Consider a loop diagram such as the one
shown in Fig. 5. This diagram can be written as

T1‘¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�gðz1Þ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�gðz2Þ
q

dz1dz2d
3K1½Li1i2

j1j2
ðz1;KÞ

�Gj1k1
i1l1

ðz1;z2;K1ÞGj2k2
i2l2

ðz1;z2;K�K1ÞRl1l2
k1k2

ðz2;�KÞ�:
(5.31)

The key point is that we get the product of two (or more,
if a higher-loop diagram is involved) bulk-bulk propaga-
tors. However, we can do the z-integrals to leave us with
two integrals over radial momenta p1 and p2 and one
integral over the loop d-momentum,

FIG. 4 (color online). Analytically continuing the poles along the dashed line pinches the contour.
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T1‘ ¼
Z 1

0
dp1

Z 1

0
dp2

Z ddK1

ð2�Þd

�
2
64�ð�0

grðnl þ 2ÞÞ�ð�0
grðnr þ 2ÞÞ

�Q
n
q¼1 jkqj

�
d�1=2

4�2

(5.32)

�
� X
si¼�1

eðs1þs2Þ�dþ1=4Li1i2
j1j2

ðK; s1p1; s2p2Þ
ðis1p1 þ is2p2 þ ETL

Þ�0
grðnlþ2Þ

	
Gj1k1

i1l1
ðp1;K1Þ

(5.33)

�Gj2k2
i2l2

ðp2;K�K1Þ

�
� X
ri¼�1

eðr1þr2Þ�dþ1=4Rl1l2
k1k2

ðr1p1; r2p2; � KÞ
ðir1p1 þ ir2p2 þ ETR

Þ�0
grðnrþ2Þ

	375: (5.34)

The curly brackets on (5.33) and (5.34) come from using
the argument for the large-z scaling of contact interac-
tions shown above. This expression is very similar to the
expression in (5.23) except that there are a total of 16
terms. We have introduced the compact variables s1, s2,
r1, r2 that can each take the values �1.

Now let us consider doing the integral over p2 first. As
we mentioned above this integral has at least 16 singular-
ities that are all manifest in the expression above. Now,
recall that we start with iETL

and iETR
in the first quadrant.

Since p1 2 ð0;1Þ we see that for p1 < ReðiETL
Þ the sin-

gularity corresponding to p2 ¼ �p1 þ iETL
is also in the

first quadrant. Now, we analytically continue ETR
exactly

as shown in Fig. 4. More specifically, by flipping the signs
of some of the jkqj and then varying the values of the
momenta, we get �iETR

to the third quadrant, and then

continue it upward till it collides with iETL
.

This leads a singularity at ET ¼ 0 in the integral when
the singularities in the integrand at ip2 þ ip1 þ ETL

¼ 0,

and �ip2 � ip1 þ ETR
¼ 0 collide and pinch the p2 con-

tour. On the other hand, for p1 > ReðiETL
Þ, we get a

singularity in the integral at ET ¼ 0, when the singularities
in the integrand at �ip2 þ ip1 þ ETL

¼ 0 and ip2 �
ip1 þ ETR

¼ 0 collide.

We also get a singularity in the integral at ET ¼ 0 when
the singularities in the integrand at ip2 � ip1 þ ETL

¼ 0

and �ip2 þ ip1 þ ETR
¼ 0 collide. These combinations

are all summarized in Table I.
Taking one of the contributions from the first two lines

of Table I and the contribution from the third line gives us
the following answer:

T1‘ ¼
Z 1

0

dp1

2�

Z ddK1

ð2�Þd
�
�ð�1

grðnÞÞ
�Yn
q¼1

jkqj
�
d�1=2

�
�
1

ET

�
�1
grðnlþnrÞ

(5.35)

�
Li1i2

j1j2
ðK; � p1; p2 ¼ iETL

� p1ÞGj1k1
i1l1

ðp1; K1Þ (5.36)

Gj2k2
i2l2

ðp2 ¼ iETL
� p1; K�K1Þ

�Rl1l2
k1k2

ðp1; � p2 ¼ iETR
þ p1; KÞ

	
(5.37)

þ p1 ! �p1 þ . . .

�
: (5.38)

Here . . . are terms that have lower order singularities in ET .
However, the p1 ! �p1 interchange in (5.38) is exactly
what we need to convert the integral over p1 from ð0;1Þ to
ð�1;1Þ. We can now combine the integral over K1 and
the integral over p1 into a single dþ 1-dimensional loop-
integral, which is what occurs in the flat-space amplitude.
This leads to the result (5.27) with l ¼ 1.
We can show the generalization to arbitrary l through

induction. Consider a l-loop diagram, which is made up of
a ml-loop diagram on the left, a mr-loop diagram on the
right and let us focus on the l�ml �mr loops in the

TABLE I. Colliding singularities in the integrand give rise to a ET ¼ 0 singularity in the
integral.

Condition Colliding singularities

p1 < ReðiETL
Þ ip2 þ ip1 þ ETL

¼ 0 and �ip2 � ip1 þ ETR
¼ 0

p1 > ReðiETL
Þ �ip2 þ ip1 þ ETL

¼ 0 and ip2 � ip1 þ ETR
¼ 0

All p1 ip2 � ip1 þ ETL
¼ 0 and �ip2 þ ip1 þ ETR

¼ 0

K − K

K K

K1

1

FIG. 5. One-loop AdS diagram.
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middle. We can write this diagram in the form (5.32),
although the exponents of the singularities associated
with L and R will now be �ml

gr ðnl þ l�ml �mr þ 1Þ
and �mr

gr ðnr þ l�ml �mr þ 1Þ. To obtain the pole in

ET , we can make an argument similar to the one above.
The key identity that we need is that

�l
grðnl þnrÞ ¼ �ml

gr ðnl þ l�ml �mr þ 1Þ
þ�mr

gr ðnr þ l�ml �mr þ 1Þ� 1; (5.39)

which holds irrespective of the values of ml and mr.

C. Flat-space limit of the recursion relations

We wish to prove that our recursion relations have the
right flat-space limit. We will do this by induction. The
recursion relations take three-point amplitudes as an input,
and then generate higher point amplitudes. The three-point
amplitudes need to be computed directly through a bulk
AdS computation, or some other method, and by the argu-
ment of Sec. V, they automatically have the correct flat-
space limit. In fact this can be seen more concretely in the
results for three-point functions obtained in [9].

Now, to make the inductive argument, let us assume that
all m-point amplitudes with m smaller than some given n
have the right flat-space limit. If we now compute a higher
point amplitude using (4.12), our assumption states that
both the q-point amplitude and the n� q point amplitude
in T 2 have the right flat-space limit. In particular, this
means that (4.12) involves a term

Tðe1;k1; . . . en; knÞ ¼ Bþ X
f�g;em0

:�

Z iT 2
f

p2 þ ðPml

o¼1 k
�oÞ2

� dp2

2

w	ðpÞ
w�ðpÞ � w	ðpÞ þ . . . ;

(5.40)

T 2
f �

Yn
o¼1

jkoj
�
�ðqþ 1Þ X

s¼�1

Mðe�1 ; ~k�1ðpÞ; . . . eq0 ; ~kq0sÞ
ðETL

þ ispÞ�0
grðqþ1Þ

�

(5.41)

�
�
�ðn� qþ 1Þ X

r¼�1

Mðeq0 ; f�~kq
0
r . . . en; ~k�nðpÞÞ

ðETR
þ irpÞ�0

grðn�qþ1Þ

�
:

(5.42)

Here, M is the flat-space amplitude as in Sec. III, ETL
and

ETR
have the same definition as (5.22) and the . . . in (5.40)

indicate terms that will give a lower order pole in ET after

the p-integral is done. The symbols ~km have the same
meaning as in (5.4) and

~k q0s � fkq0 ; ispg; ~kq
0
r � fkq0 ; irpg: (5.43)

Now using exactly the same argument as Sec. VA3, we
see that the n-point correlator has a term

Tðe1;k1; . . .en;knÞ¼�ðnÞQn
o¼1 jkoj

E
�0
grðnÞ

T

X
f�g;em0

:�

iM2

p2þðPml

o¼1k�o
Þ2

� w	ðpÞ
w�ðpÞ�w	ðpÞþ . . . ;

M2�Mðe�1 ;k�1ðpÞ; . . . ;eq0 ;kq0 ÞMðeq0 ;�kq
0
; . . .en;k�nðpÞÞ;

(5.44)

where . . . are terms that have lower order singularities
in ET .
However, we see the coefficient of the highest order

singularity at ET ¼ 0 is just what appears in the flat-space
recursion relations (3.12), which generate the flat-space
scattering amplitudes. This proves that the recursion rela-
tions (4.12) have the correct flat-space limit.

VI. CONCLUSIONS

There are two main results in this paper. Our first result
has to do with a new set recursion relations for correlation
functions of the stress-tensor and conserved currents in
AdS/CFT. To find these recursion relations, we first devel-
oped a new set of recursion relations for graviton and
gluon tree amplitudes in flat-space. These are presented
in Eqs. (3.4) and (3.12). We then generalized these recur-
sion relations to Anti-de Sitter space: these generalizations
are presented in Eqs. (4.10) and (4.12). Our new recur-
sion relations rely on extending each momentum by its
polarization-vector. These relations have an advantage
over the BCFW-like relations derived in [7,8] since they
are valid for AdS4=CFT3. In higher dimensions—while
they give rise to more terms than the BCFW relations—
they involve less stringent conditions on the polarizations
than the conditions enumerated in [7,8]. Moreover, they
can be used to explicitly maintain crossing symmetry.
Our second main result in this paper was a new method

of extracting flat-space S-matrix elements from AdS/CFT
correlators. In particular we showed that given a stress-
tensor correlator in a conformal field theory with a bulk
pure gravity dual, one could recover the (dþ 1)-
dimensional graviton amplitude in flat-space using (5.27).
This flat-space limit is valid beyond tree-level, at any fixed
order in perturbation theory.
We then showed that our recursion relations automati-

cally generated answers that had the correct flat-space limit.
This is a powerful consistency check on their validity.
In an accompanying paper, we have shown how these

results may be used in a concrete setting. In [12], we
used the recursion relations to obtain explicit answers for
four-point correlation functions of the stress-tensor in
AdS4=CFT3 and then checked these answers by verifying
that, in the flat-space limit, they reduce to the famous
formulas for four-point graviton amplitudes.
We should mention that although our explicit results for

the flat-space limit were derived for the case of pure gravity
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and Yang-Mills theory it is clear how we must proceed in
the presence of other kinds of interactions. For example, in
the presence of an R3 interaction we would just get a factor
of z6 instead of a z2 in (5.12). This would give rise to higher
order poles, which is indeed what is observed in the
computations with a Weyl-cubed action in [9].

If we have both an R and a R3 term in the action, we can
still use our flat-space limit provided these terms are multi-
plied by adjustable parameters. For example, in string
theory on AdS5 � S5, there are higher derivative terms in
the effective action that are suppressed by factors of 1

	 . So

if we could somehow compute stress-tensor correlators in
the strongly coupledN ¼ 4 Super Yang-Mills theory then
to compare the results with the prescription given in this
paper, wewould need to expand the answer both in 1

N and 1
	 .

The leading term in this expansion (both in 1
N and 1

	 ) is

reproduced by tree-level gravity in AdS5 � S5 and should
have the flat-space limit indicated above. Furthermore, if
we stick to leading order in 1

N then the higher order terms in
1
	 will have higher order poles whose residues will repro-

duce the corrections to graviton amplitudes by higher
derivative corrections in flat-space string theory.

On the other hand, it is unclear how this method should
be applied to theories like the Vasiliev theory [21], where
higher derivative terms are not suppressed by any parame-
ter. In this case, we might get arbitrarily high order poles at
any given order in the 1

N expansion. It would be nice to see

if our flat-space limit can be generalized to apply to that
case also.

Vasiliev-type theories also seem to present obstacles to
the recursion relations because it seems hard to control the
behavior of the correlator at w ¼ 1. On the other hand,
given that the BCFW-recursion relations can be general-
ized to string theory [22], we could hope that some general-
ization of these new recursion relations might work for
higher spin theories as well. This would be very useful
since computations with higher spins are even harder than
gravity computations. More ambitiously, since these recur-
sion relations determine all correlators starting with just
the three-point transition amplitude, it would be nice to
explore whether it is possible to use these techniques to
demonstrate the equivalence of the Vasiliev theory and the
OðNÞ vector model to all orders [22].
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APPENDIX A: DIFFICULTIES
WITH BCFW IN AdS4=CFT3

In this Appendix we briefly describe the difficulties
involved in generalizing the BCFW-recursion relations to
the computation of correlation functions in AdS4=CFT3. It
is entirely possible that these difficulties are surmountable
and we present this analysis here in the hope that a reader
of this paper will find a way to improve it. In fact the
development of BCFW relations for AdS4=CFT3 would be
quite valuable. The BCFW-recursion relations involve
fewer terms than (4.12) because the sum over partitions is
limited to partitions in which one chosen momentum ap-
pears on the left, and another chosen momentum appears on
the right. This means that such relations are likely to more
directly lead to compact expressions for final answers.
The standard BCFW relations rely on finding a null

vector q that is orthogonal to two given momenta k1 and
kn i.e. we must have

q � q ¼ q � k1 ¼ q � kn ¼ 0: (A1)

Given two arbitrary momenta—k1 and kn—in three
dimensions, there is no solution to this equation even if
we allow q to become complex. One solution to this
problem, which works for scattering amplitudes that
depend on massless-momenta in three dimensions was
developed in [23]. Here, we will try and generalize it to
the computation of correlators, which can depend on arbi-
trary momenta.
The idea is that given two vectors k1 and kn, we want to

‘‘rotate’’ them in the plane, while keeping their sum con-
stant. We will allow the ‘‘angle of rotation’’ to take com-
plex values.
Let us define

km� _� ¼ jkmj
0
� _� þ kmi 


i
� _�; (A2)

for m ¼ 1 or m ¼ n. We also write

k1� _� ¼ 	1
�
�	1
_�; kn� _� ¼ 	n

�
�	n
_�; (A3)

where 	1, 	n, �	1, �	n are two component spinors.
Then the following rotation has the properties that we

want,

R ¼ exp

�
�i

�� � ðk1 þ knÞ
jk1 þ knj

	
;

R�1 ¼ exp

�
þi

�� � ðk1 þ knÞ
jk1 þ knj

	
: (A4)

Under which the spinors transform as
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	m ! R	m; �	m ! �	mR
�1: (A5)

In particular, with n̂ � ðk1þknÞ
jk1þknj , we have

R ¼ cos�2 � i� � n̂ sin�2 ¼ 1
2½ðxþ 1=xÞ � � � n̂ðx� 1=xÞ�;

(A6)

with x � ei�=2. However, we do not need to restrict to
jxj ¼ 1 and can consider this rotation to be an arbitrary
function of x.

Now, since the norm of both vectors k1 and kn is
independent of x, it is clear that the correlator can be
written as an integral over a rational function of x. This
integrand has poles when an intermediate propagator goes
on shell. However, it also has potential poles at x ¼ 0 and
at x ¼ 1.

Let us choose a coordinate system to gain some intuition
for what happens under this extension. In particular, we
choose

k 1 ¼ ð0; 1; �Þ; kn ¼ ð0;�1; �Þ; (A7)

where we have rescaled coordinates so that the
y-component of the vectors is 1, without loss of generality.
(These expressions arewritten as three dimensional expres-
sions.) Initially, these vectors are associated with spinors

	1 ¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

pq
;

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

pp
9=
;;

�	1 ¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

pq
;� iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

pp
9=
;;

	n ¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

qr
;� iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

pq
9=
;;

�	n ¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

qr
;

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ 1
pq

9=
;:

(A8)

As we make our rotation above, the momenta get trans-
formed to

k1ðxÞ ¼
�
1

2
i

�
x2 � 1

x2

�
;
�1

2

�
�x2 � 1

x2

�
; �

	
;

knðxÞ ¼
�
� 1

2
i

�
x2 � 1

x2

�
;
1

2

�
�x2 � 1

x2

�
; �

	
; (A9)

with associated negative helicity polarizations [obtained
using the spinor transformation rule (A5)] that are

��1 ðxÞ ¼
�
� x4 þ 2�2 þ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p
þ 1

2x2ð�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p
Þ ;

iðx4 � 2�2 � 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p
� 1Þ

2x2ð�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p
Þ ; i

	

¼ i

�
1

2
i

�
�1x

2 þ 1

�1x
2

�
;
1

2

�
�1x

2 � 1

�1x
2

�
; 1

	
;

��n ðxÞ ¼
8<
:� x4 þ 2�2 þ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p þ 1

2x2ð�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p Þ
;
iðx4 � 2�2 � 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p � 1Þ
2x2ð�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ 1
p Þ

; � i

9=
;

¼ �i

�
1

2
i

�
�nx

2 þ 1

�nx
2

�
;
1

2

�
�nx

2 � 1

�nx
2

�
; 1

	
: (A10)

The positive helicity polarizations are similar

�þ1 ðxÞ ¼
8<
:0; � ð2�2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p
�þ 1Þx4 þ 1

2x2ð�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p
Þ ;

iðx4ð2�2 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p
�þ 1Þ � 1Þ

2x2ð�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p
Þ ; � i

9=
;

¼ i

�
1

2
i

�
x2

�1

þ �1

x2

�
;
1

2

�
x2

�1

� �1

x2

�
; � 1

	
;

�þn ðxÞ ¼
8<
:0; � ð2�2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p
�þ 1Þx4 þ 1

2x2ð�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p Þ
;
iðx4ð2�2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p
�þ 1Þ � 1Þ

2x2ð�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p Þ
; i

9=
;

¼ �i

�
1

2
i

�
x2

�n

þ �n

x2

�
;
1

2

�
x2

�n

� �n

x2

�
; � 1

	
: (A11)

However, these polarization-vectors blow up both at x ¼ 0
and x ¼ 1. If we consider a gluon-amplitude then naively
we would expect that for large x, following the analysis of
[24], that the amplitude would behave like

T4 � �1i �
ijx2�nj þ . . . : (A12)

So, we might expect that T4 � Oðx6Þ, since both polar-
izations grow like x2. However, since �1 ¼ �1k

1 þ Oð1Þ
and similarly for �n, we can use the Ward identity twice
to get rid of a factor of x4. (More precisely the highest
order terms in x are fixed by the contact terms that appear
in the Ward identity.) However, this still leaves us with
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the scaling T4 � Oðx2Þ. The same problem occurs
at x ¼ 0.

We do not know how to compute these boundary terms
in a simple way. Moreover, if we try and get rid of this
problem by scaling the polarization-vectors as we go to

x ! 1 and also as we go to x ! 0, we inevitably introduce
a pole somewhere else in the complex plane with residues
that do not have any nice physical interpretation. For this
reason, the naive approach to the BCFW-recursion rela-
tions for AdS4=CFT3 runs into trouble.
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