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We compute the energy density radiated by a quark undergoing circular motion in strongly coupled

N ¼ 4 supersymmetric Yang-Mills plasma. If it were in vacuum, this quark would radiate a beam of

strongly coupled radiation whose angular distribution has been characterized and is very similar to that of

synchrotron radiation produced by an electron in circular motion in electrodynamics. Here, we watch this

beam of gluons getting quenched by the strongly coupled plasma. We find that a beam of gluons of

momenta�q � �T is attenuated rapidly, over a distance�q1=3ð�TÞ�4=3 in a plasma with temperature T.

As the beam propagates through the plasma at the speed of light, it sheds trailing sound waves with

momenta & �T. Presumably these sound waves would thermalize in the plasma if they were not hit soon

after their production by the next pulse of gluons from the lighthouselike rotating quark. At larger and

larger q, the trailing sound wave becomes less and less prominent. The outward-going beam of gluon

radiation itself shows no tendency to spread in angle or to shift toward larger wavelengths, even as it is

completely attenuated. In this regard, the behavior of the beam of gluons which we analyze is reminiscent

of the behavior of jets produced in heavy ion collisions at the LHC which lose a significant fraction of

their energy without appreciable change in their angular distribution or their momentum distribution as

they plow through the strongly coupled quark-gluon plasma produced in these collisions.

DOI: 10.1103/PhysRevD.85.126006 PACS numbers: 11.25.Tq

I. CONTEXT

Jet quenching is one of the most striking phenomena
seen in heavy ion collisions at the Relativistic Heavy Ion
Collider (RHIC) and at the Large Hadron Collider
(LHC). The basic picture behind a suite of observables
measured in these collisions is that energetic partons
produced via rare hard-scattering processes in heavy ion
collisions lose a significant fraction of their energy as
they and the spray of partons they fragment into plow
through the strongly coupled plasma produced in the
same collisions. At the LHC, jet energies are high enough
that the jets can be detected calorimetrically event-by-
event, and the phenomenon of jet quenching is manifest
in single events with, say, a jet with an energy greater
than 200 GeV back-to-back with a jet with an energy less
than 100 GeV [1–3]. (It is improbable that a pair of jets
will be produced such that each travels the same distance
through the plasma and loses the same amount of energy,
so back-to-back pairs of jets with unbalanced energies are
the norm.) At the LHC, the attenuated jets (i.e. the lower
energy jets in the unbalanced pairs) look remarkably like
jets produced in vacuum, with angular distributions and
momentum distributions (i.e. fragmentation functions)
which are to date indistinguishable from those of jets
with the same energy produced in proton-proton colli-
sions [2,4,5] or in peripheral heavy ion collisions [6]. The
energy lost from the jets emerges instead as an excess of

soft particles (momenta & 1 GeV [2]) at large angles
(> 45� [2]) relative to the jet direction.
The observation of jets which have lost a large fraction

of their energy was no surprise; it was surprising, however,
to see the attenuated jets emerging without any visible
softening of their fragmentation functions and without
any visible broadening of their angular distribution. In
the limit of high parton energy E, the dominant energy
loss process for an energetic parton plowing through
quark-gluon plasma with temperature T is gluon brems-
strahlung [7–9], radiating gluons with energy ! and mo-
mentum transverse to the jet direction k? which satisfy
E � ! � k? � �T [8–12]. This set of approximations
underlies all analytic calculations of radiative energy loss
to date. The (perhaps naive) expectation based upon these
considerations is that at least some of the energy lost by the
high-energy parton should emerge as relatively hard
particles (since ! �� �T) near the jet direction (since
! � k?), resulting in a jet whose angular distribution has
been broadened and whose fragmentation function has
been softened. The data from the LHC have been stimu-
lating more sophisticated implementations of these consid-
erations [13–21], but it is also possible that the partons
produced in LHC collisions are simply not energetic
enough for this picture to apply at all—since it is based
upon the premise that the QCD coupling evaluated at the
scale k? (which, recall, is�� E but� �T) is weak even
if the physics at scales��T is strongly coupled. Given that
this separation of scales may not be applicable, it behooves
us to analyze jet quenching or models of jet quenching
in strongly coupled plasmas in contexts where reliable
analyses are possible. Even if these analyses yield only
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qualitative insight, they can be useful as benchmarks and as
guides to how to think about the physics.

The simplest strongly coupled plasma that we know of
is that found at nonzero temperature in strongly coupled
N ¼ 4 supersymmetric Yang-Mills (SYM) theory in the
large number of colors (Nc ! 1) limit, which is dual to
the five-dimensional anti-de Sitter black hole (AdS-BH)
[22–24]. (For a recent review of the by now many ways in
which this theory and its many cousins have been used to
gain insight into properties of strongly coupled plasma
and phenomena in heavy ion collisions, see Ref. [25].)
Unfortunately, it is not possible to literally study jet
quenching in N ¼ 4 SYM theory because hard scatter-
ing in this theory does not produce jets [26]. Nevertheless,
many authors have used the strongly coupled plasma of
N ¼ 4 SYM theory to gain relevant insights, for ex-
ample, by studying the energy loss and momentum
diffusion of a heavy quark plowing through the plasma
[27–31] as well as the wake it produces [32–39], the
stopping distance of an energetic light quark or gluon in
this plasma [40–42], and the value of the jet quenching
parameter [43,44], the property of the strongly coupled
plasma which enters into the calculation of jet quenching
if the scale separation of the previous paragraph does turn
out to be valid. However, none of these calculations yields
insights into how an attenuated jet can emerge without
any visible softening of its fragmentation function or
spreading of its angular distribution. The one which
comes closest is the calculation of the stopping distance
of a light quark [40–42].

Note that it does not make sense to interpret the data as
saying that a single quark loses a lot of energy in the
medium and then emerges in isolation and fragments into
an ordinary-looking jet, since what would emerge is a
nearly on-shell quark, which would not fragment into a
jet. If we are to gain insight into jets in heavy ion collisions
from a strongly coupled perspective, we should imagine
that the initial hard parton fragments quickly into a protojet
of some sort and then ask how this protojet interacts with,
and loses energy in, the strongly coupled plasma. Although
there is a sense in which the analyses of Refs. [40–42]
provide answers to this question, these results are sensitive
to details of the initial conditions, and we anyway do not
expect strong coupling methods to describe the initial
fragmentation of a hard parton into a protojet. Instead,
we shall assume that this initial stage proceeds convention-
ally, as described successfully in perturbative QCD, and
then ask how the protojet interacts with, and loses energy
in, the strongly coupled plasma. Recent work [45] offers a
new way to gain a perspective on this question, since it
provides a way to produce a beam of gluons whose angular
distribution and wavelengths are well understood in vac-
uum. In this paper, we shall shine such a beam of gluons
through the strongly coupled plasma at nonzero tempera-
ture and watch this beam rapidly get attenuated—without

any apparent broadening of its angular distribution or
lengthening of its wavelength!

II. INTRODUCTION

The trick by which a beam of gluons can be produced in
N ¼ 4 SYM theory is to consider a test quark undergoing
circular motion with radius R0 and velocity � (and hence
angular velocity � � �R0) in the vacuum of this theory
[45,46]. At both weak coupling (where the calculation is
done conventionally) and strong coupling (where the cal-
culation is done via gauge/gravity duality), the radiation
which results is remarkably similar to the synchrotron
radiation of classical electrodynamics, produced by an
electron in circular motion [45]. In particular, as the
limit of ultrarelativistic motion is taken (� ! 1 where

� � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
), the lighthouselike beam of radiation

becomes more and more tightly collimated in angle (it is
focused in a cone of angular extent �1=�) and is com-
posed of gluons and scalars with shorter and shorter wave-
lengths (the pulse of gluons in the beam has a width
�R0=�

3 in the radial direction in which it is moving).
The emitted radiation was found to propagate outward at
the speed of light forever without broadening either in
angle or in pulse width, just as in classical electrodynamics
[45–51]. At weak coupling, the slight differences in the
angular distribution of the power radiated to infinity rela-
tive to that in classical electrodynamics can be attributed to
the fact that scalars are radiated as well as gluons [45]. And
at strong coupling, the angular distribution is identical to
that at weak coupling [45,48,50].
We shall compute the energy density radiated by a quark

undergoing circular motion in strongly coupled N ¼ 4
SYM theory at nonzero temperature, allowing us to watch
what happens as the lighthouse beam of gluons and scalars
is attenuated as it shines through the strongly coupled
plasma. We shall gain analytic understanding of the length
scale over which the energy of the beam is attenuated by
the plasma. And by inspection of the energy density, which
we obtain numerically, we shall see that as the beam is
attenuated, it does not broaden in angle or redden in
wavelength.
The rate at which a quark undergoing circular motion

through the plasma of strongly coupled N ¼ 4 SYM
theory loses energy was studied previously in Ref. [52].
In this analysis, two distinct regimes were found, depend-
ing on whether

� � �2�3

ð�T2Þ (1)

is� 1 or� 1. For� � 1, the energy loss rate is given by
the generalized Larmor formula

dE

dt

��������rad
¼

ffiffiffiffi
�

p
2�

a�a�; (2)
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where a� is the quark’s proper acceleration and � � g2Nc

(with g the gauge coupling) is the ’t Hooft coupling which
can be chosen at will since in this conformal theory, it does
not run and which we take as large since we wish to study
strongly coupled plasma. It was shown many years ago by
Mikhailov that the energy-loss rate of a quark in circular
motion in the vacuum of strongly coupled N ¼ 4 SYM
theory is given by Eq. (2) [53], and so in the strongly
coupled plasma at T � 0, in the� � 1 regime, we expect
to see the radiation of beam of synchrotronlike radiation as
in vacuum [45] and the subsequent attenuation of this
beam. When � � 1, on the other hand, the energy-loss
rate is that due to the drag force exerted by the strongly
coupled hydrodynamic fluid on a quark moving in a
straight line with velocity � [52], namely [27,28],

dE

dt

��������drag
¼

ffiffiffiffi
�

p
2�

ð�TÞ2�2�: (3)

Notice that the parameter � which governs which expres-
sion for the energy loss rate is valid is simply the ratio of
the rates appearing in Eqs. (2) and (3). In this respect, it is
as if both hydrodynamic drag and Larmor radiation are in
play with the larger of the two effects dominating the
energy loss, but this simplified picture is not quantitatively
correct because where �� 1, the energy-loss rate is less
than the sum of Eqs. (2) and (3) [52]. Although our
principal interest is in the �> 1 regime, where we can
study the quenching of a beam of synchrotron gluons, it
will prove instructive to look at�< 1 and�� 1 also as in
these regimes, the hydrodynamic response of the plasma—
i.e. the production of sound waves—is more readily
apparent.

Unlike in vacuum, in the plasma at nonzero temperature,
the energy disturbance created by the rotating quark can
excite two qualitatively distinct modes in the energy den-
sity; a sound mode which at long wavelengths travels at

speed cs ¼ 1=
ffiffiffi
3

p
, and a lightlike mode which propagates

at the speed of light. The relative amplitude of each mode
depends on the trajectory of the quark. We find a correla-
tion between the energy loss mechanism and the relative
amplitude of the lightlike and sound modes which can be
anticipated from the results of Ref. [52]. When �< 1, the
dominant modes which are excited are sound waves. When
�> 1, the dominant modes which are excited propagate at
the speed of light. Interestingly, by studying the �� 1
regime, we shall see that as the pulse of radiation moving at
the speed of light is attenuated in energy, it sheds a sound
wave.

We shall use gauge/gravity duality to calculate the energy
density which results when a test quark is moved through
the strongly coupled plasmawith�< 1 or�� 1 or�> 1.
The gravitational dual of the undisturbed plasma is the
(4þ 1)-dimensional AdS-Schwarzschild (AdS-BH) geom-
etry. Setting the AdS curvature radius L ¼ 1, we choose
coordinates such that the metric of the AdS-BH geometry is

ds2 ¼ 1

u2
½�fðuÞdv2 þ dx2 � 2dvdu�; (4)

where fðuÞ � 1� ðu=uhÞ4. These coordinates are general-
ized infalling Eddington-Finkelstein coordinates; lines of
constant time v represent infalling radial null geodesics.
The event horizon of the geometry is located atu ¼ uh, with
T � ð�uhÞ�1 the temperature of the equilibrium strongly
coupledN ¼ 4 SYM plasma which this metric describes.
We shall do the calculation in unitswhere�T ¼ 1, meaning
uh ¼ 1. (However, in order to facilitate comparison to
results at T ¼ 0, we shall report results instead in units
where R0 ¼ 1.) The boundary of the AdS-BH metric, cor-
responding via the holographic correspondence to the ul-
traviolet limit in the boundaryN ¼ 4 SYM quantum field
theory, is at u ! 0. We begin in Sec. III by reviewing the
calculation of the shape of the string that hangs ‘‘down’’
from the rotating quark at the ultraviolet boundary of the
AdS-BH toward its horizon, spiralling around and around
infinitely many times just above the horizon. This string
profile was obtained in Ref. [52], but we rederive it in the
coordinates which we shall use in Sec. IV. In Sec. IV, we
solve the bulk-to-boundary problem, finding the energy
density in the boundaryN ¼ 4 SYM theory plasmawhich
this spiralling string describes. We describe our results in
Sec. V; in Sec. VI, we present analytic arguments which
allow us to understand all of their qualitative features; and in
Sec. VII, we return to the context with which we begun,
marvel at the qualitative resemblance between our results
and jet quenching in heavy ion collisions at the LHC, and
speculate on how this resemblance could be made more
quantitative.
There are preliminary indications that the energy lost by

the lower energy jets (composed of longer wavelength
gluons) studied at RHIC ends up in soft hadrons moving
in directions correlated with the initial parton’s path mak-
ing the jets appear broadened in angle [54–58], rather than
far outside the jet cone as at the LHC [2]. We close by
observing that our results illustrate a natural way for such a
distinction between jet quenching at RHIC and the LHC to
arise, since in our steady-state calculation, we find that our
beam of gluons excites less of a sound wave trailing behind
the beam pulse—also known as soft particles going in
roughly the jet direction—when the beam is composed of
shorter wavelength gluons than when it is composed of
longer wavelength gluons. We discuss this in Sec. VI.

III. STRING DYNAMICS

The dynamics of classical strings are governed by the
Nambu-Goto action SNG ¼ �T0

R
d�d�

ffiffiffiffiffiffiffi�g
p

, where

T0 ¼
ffiffiffiffi
�

p
=ð2�L2Þ is the string tension, � and � are the

world sheet coordinates of the string, and g ¼ detgab
where gab is the induced world-sheet metric. The string
profile is determined by a set of embedding functions
XMð�;�Þ which specify where in the spacetime described
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by the metric (4) the point (�, �) on the string world sheet
is located. The induced world sheet metric is given in terms
of these functions by gab ¼ @aX � @bX, where a and b each
run over (�, �). For the determinant, we obtain

� g ¼ ð@�X � @�XÞ2 � ð@�XÞ2ð@�XÞ2: (5)

We choose world-sheet coordinates � ¼ v and � ¼ u.
As we are interested in quarks which rotate at constant
frequency � about the ẑ axis, we parametrize the string
embedding functions via

XMðv; uÞ ¼ ðv; rsðv; uÞ; uÞ; (6)

where in spherical coordinates fr; �; ’g, the three-vector rs
is given by

r sðv; uÞ �
�
RðuÞ; �

2
; ’ðuÞ þ�v

�
: (7)

With this parametrization, the Nambu-Goto action reads

SNG ¼ �
ffiffiffiffi
�

p
2�

Z
dvduL; (8)

where

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��R2ð�R02 þ 2’0Þ þ fðR02 þ R2’02Þp

u2
: (9)

The equations of motion for ’ðuÞ and RðuÞ follow from
extremizing the Nambu-Goto action (8). One constant of
the motion can be obtained by noting that the action is
independent of ’ðuÞ. This implies that

� � � @L

@’0 (10)

is constant. The minus sign on the right-hand side of
Eq. (10) is there in order to make � positive for positive
�. Equation (10) can be solved for ’0ðuÞ in terms of RðuÞ
and R0ðuÞ. There are two solutions for ’0ðuÞ: one in which
’0ðuÞ is regular near the horizon at u ¼ 1 and one in which
’0ðuÞ diverges near the horizon. In infalling Eddington-
Finkelstein coordinates, the regular solution is always the
causal infalling solution, and thus this is the onewe choose.

The equation of motion for RðuÞ is given by

@L

@R
� @

@u

@L

@R0 ¼ 0: (11)

Evaluating this expression and then eliminating ’ deriva-
tives via Eq. (10), we obtain the following equation of
motion:

R00 þ Rðuþ 2RR0Þð1þ fR02Þ
uðu4�2 � fR2Þ

þ uþ ufR02 � 2ð1� fÞRR0ð1þ�2R2R02Þ
uRðf��2R2Þ ¼ 0:

(12)

Equation (12) is singular when

u4�2 � fR2 ¼ 0 or f��2R2 ¼ 0: (13)

As discussed in Refs. [45,52], reality of the Nambu-Goto
action (8) implies that both singularities must coincide at a
single value of u, which we denote u ¼ uc upon defining

uc � 1ffiffiffi
2

p ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ�2�2

p
����1=2 (14)

at which

R ¼ Rc �
ffiffiffiffiffi
�

�

s
uc: (15)

Furthermore, g00 ¼ 0 at the singular point u ¼ uc.
Consequently, there is a world-sheet horizon at u ¼ uc,
separating the upper part of the string u < uc which moves
slower than the local velocity of light from the lower part of
the string uc < u < uh ¼ 1 whose local velocity exceeds
that of light. The string equation (12) becomes first order at
the world-sheet horizon,1 meaning that the equation of
motion (12) itself determines R0ðuÞ at u ¼ uc, independent
of any features of the solution away from (uc, Rc).
Consequently, � and � determine not only RðucÞ via
Eqs. (14) and (15) but also R0ðucÞ, and then via the equation
of motion (12), the entire solution RðuÞ [52].
For a given� and�, we determine RðuÞ numerically by

solving Eq. (12) using pseudospectral methods [59]. We
then solve Eq. (10) for ’ðuÞ, again using pseudospectral
methods.

IV. THE BULK-TO-BOUNDARY PROBLEM

The presence of a string in the AdS-BH geometry—in
our case, the rotating string spiraling downward from the
quark in circular motion at the boundary at u ¼ 0—
perturbs the geometry via Einstein’s equations. In the
Nc ! 1 limit, the (4þ 1)-dimensional gravitational con-
stant becomes parametrically small, and the presence of the
string acts as a small perturbation on theAdS-BH geometry.
To obtain leading-order results in Nc, we write the full

(4þ 1)-dimensional metric as GMN ¼ Gð0Þ
MN þ L2

u2
HMN ,

where Gð0Þ
MN is the AdS-BH metric (4), and linearize

Einstein’s equations in the perturbation HMN . This yields

�AB
MNHAB ¼ 	2

5tMN; (16)

where �AB
MN is a second-order linear differential operator,

	2
5 ¼ 4�2=N2

c and

tMN ¼ � T0ffiffiffiffiffiffiffiffi�G
p ffiffiffiffiffiffiffi�g

p
gab@aX

M@bX
N
3ðr� rsÞ (17)

1On can also show this directly by solving Eq. (12) via the
Frobenius method, i.e. doing a Laurent expansion about u ¼ uc.
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is the (4þ 1)-dimensional string stress tensor. The bound-
ary value of the metric perturbation acts as a source for the
N ¼ 4 SYM stress tensor via the relation [60]

T��ðxÞ ¼ 2

Sgrav


 �H��ðxÞ
�������� �H��¼0

; (18)

where �H��ðxÞ � limu!0HMNðx; uÞ and Sgrav is the gravita-
tional action.

The (3þ 1)-dimensional stress tensor T�� is symmetric,
traceless, and conserved and thus describes five indepen-
dent degrees of freedom. These degrees of freedom can be
conveniently packaged in five combinations of compo-
nents of T��, each of which transforms with definite
helicity under spatial rotations. There are two helicity-2
components, two helicity-1 components, and one helicity-
0 component of T��. Similarly, HMN is a spin-2 field
in (4þ 1) dimensions and thus contains 5 independent
gauge-invariant helicity degrees of freedom, gauge-
invariant in the sense that they are invariant under infini-
tesimal diffeomorphisms,

HMN ! HMN �DM�N �DN�M; (19)

where DM is the covariant derivative with respect to the
AdS-BH geometry and �M is an infinitesimal vector field.
Each gauge-invariant helicity degree of freedom in HMN

determines the corresponding helicity component of T��

[35,38]. Moreover, by rotational and gauge invariance,
each gauge-invariant helicity degree of freedom in HMN

satisfies a decoupled equation of motion. As we are only
interested in the N ¼ 4 SYM energy density, we focus
below on helicity-0 gauge invariants.

To determine a helicity-0 gauge invariant and its equa-
tion of motion, it is convenient to decomposeHMN in terms
of a complete set of functions 
qðxÞ of the 4d coordinates

x�. We choose


qðxÞ ¼ e�i!vc qðxÞ; (20)

where c q are eigenfunctions of the spatial Laplacian

�r2c q ¼ q2c q. In what follows, we shall initially not

choose a specific basis of eigenfunctions c q. We define

H MN �
Z

d4x
	
qHMN;H qq � � 1

q2

Z
d4x
	

qrirjHij;

(21)

H q5� 1

iq

Z
d4x
	

qriHi5;H 0q� 1

iq

Z
d4x
	

qriH0i; (22)

and define similar expressions for tMN with the replace-
ments HMN ! tMN and HMN ! tMN . (If the c q were

taken to be plane waves, then HMN would be the
Fourier transform of HMN .) Note that the q subscripts are
labels, not values of the indices M or N, while the i and j
are spatial indices corresponding to values ofM or N given
by 1, 2 or 3. When i or j is repeated, this indicates

summation. With these definitions in hand, the helicity-0
field which we shall use is given by

Z�4qf2

!
@u

H 0q

f2
þð2uq2�3f0ÞH qqþðf0�2uq2ÞH ii

�4q2

i!
H 00þ4iqfH q5þ4q2f

i!
H 05

þ8	2
5

i!
ðt00�ft05Þ: (23)

As can be easily verified, Z is invariant under the infini-
tesimal diffeomorphisms (19). From the linearized
Einstein equations (16), it is straightforward but tedious
to show that Z satisfies

LZ ¼ 	2
5S; (24)

where the linear operator L is given by

L�f
d2

du2
þ
�
q2ðu4�5Þþ6u2ð5u4�9Þ

uðq2þ6u2Þ þ2i!

�
d

du

þq2ð5u4�5iu!þ9Þ�18u2ð3u4þ3iu!�7Þ�q4u2

u2ðq2þ6u2Þ ;

(25)

and the source S is given by

S�8@ut00�16ðq2þ18u2Þ
uðq2þ6u2Þ t00þ4uðq2þ6u2Þ

3
ðtii�2tqqÞ

þ8iqðt0q�ftq5Þ�8uq2f

3
t55þ8

3
ð2uq2þ3i!Þt05:

(26)

For strings which end at the boundary u ¼ 0, the source
has the expansion

S ¼ Sð0Þ þ Sð1ÞuþOðu2Þ; (27)

where

Sð0Þ ¼ �8lim
u!0

u2@u

�
t00
u2

�
¼ �8lim

u!0
@ut00

¼ �
ffiffiffiffi
�

p
2�

16ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

0�
2

q 
	
qðR0Þ; (28)

a result which follows from Eq. (26) upon noting that t00
and indeed all the components of t in Eq. (26) are propor-
tional to u for small u. Solving Eq. (24) with a series
expansion near u ¼ 0 and demanding limu!0HMN ¼ 0,
we find

Z ¼ Zð2Þu2 þ Zð3Þu3 þ . . . : (29)

To lowest nontrivial order in u, Eq. (24) becomes just
Zð2Þ ¼ Sð0Þ, but we shall also need Zð3Þ because the change
in the N ¼ 4 SYM energy density due to the presence of
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the moving quark (i.e. the total energy density minus that
of the undisturbed plasma) is given by [45]

�E ¼ � 1

8	2
5

ðZð3Þ þ i!Zð2ÞÞ: (30)

This is as far as we can proceed without specifying a choice
of the basis functions c q.

We choose to compute the boundary theory energy
density using the basis functions

c qðxÞ ¼ j‘ðqrÞY‘mð�;�Þ; (31)

where j‘ are spherical Bessel functions and Y‘m are spheri-
cal harmonics. Our calculation is much simpler than the
calculation for a quark moving along an arbitrary trajectory
because, as in Ref. [45], the quark has been moving in a
circle at a constant angular velocity � for all time, mean-
ing that everything in the problem [the (4þ 1) -dimen-
sional string stress tensor and the (3þ 1)-dimensional
boundary theory energy density) is rotating at this constant
angular velocity and depends on the azimuthal angle� and
the time v only in the combination���v. (At the u ¼ 0
boundary, Eddington-Finkelstein time v is just boundary
theory time t.) It follows that the energy density only has
support when ! ¼ m�. Hence, the Fourier transform in
time is a discrete Fourier transform. Furthermore, specify-
ing m specifies !.

For each fq; ‘;mg, we solve Eq. (24) using pseudospec-
tral methods in which the u dependence of all functions is
decomposed in terms of Chebyshev polynomials [59]. The
requisite two boundary conditions are specified at u ¼ 0
and u ¼ 1, as we now describe. At u ¼ 0, there are two
linearly independent solutions. The one we want is regular
at u ¼ 0 and has the expansion (29), while the one which
must be taken to vanish is proportional to u3 logu at small
u. Imposing a boundary condition which selects the regular
solution is made easier by first writing

Z ¼ u2Sð0Þ þ u3X (32)

and turning the differential equation for Z into a differential
equation for X. In this differential equation, X00 (by 0, we
mean @u) arises only in the term ufX00, meaning that at
u ¼ 0, the differential equation for X involves only X and
X0, as long as X00 is finite. So, the differential equation itself
specifies its own boundary condition (as a relation between
X and X0) at u ¼ 0. Satisfying this boundary condition
automatically yields a regular solution at u ¼ 0, since if X
is finite, the boundary condition makes X0 finite, and if X0 is
finite, the boundary condition makes X00 finite, and so on.
(The undesirable solution has X, X0, and X00 all divergent at
u ¼ 0.) At the AdS-BH horizon u ¼ 1, there are again two
linearly independent solutions, and we must specify a
boundary condition which selects only the infalling mode.
Because we are using ingoing Eddington-Finkelstein coor-
dinates, this boundary condition is equivalent to requiring
that Z (or X) and all of its derivatives are finite at u ¼ 1.

Again, as long as X00 is finite at u ¼ 1, the term ufX00
vanishes there, this time, because f ¼ 0 at u ¼ 1, and the
differential equation for X turns into a boundary condition
relating X and X0 which, when satisfied, yields a regular
solution at u ¼ 1. (In ingoing Eddington-Finkelstein coor-
dinates, the outgoing mode has a divergent phase at u ¼ 1.)
Once the solution Zðq; ‘;m; uÞ is determined, we extract

Zð3Þ (which is just X evaluated at u ¼ 0) and compute the

Fourier components of the energy density �Eðq; ‘;mÞ via
Eq. (30). The real-space energy density is then computed
by evaluating

�Eðr; �;�Þ ¼ 2

�

X
‘m

Z
q2dq�Eðq; ‘;mÞj‘ðqrÞY‘mð�;�Þ

(33)

numerically. This is the change in the energy density at
time t ¼ 0 relative to the energy density of the unperturbed
plasma due to the presence of the rotating quark. The time-
dependent energy density �Eðr; �; �; tÞ is obtained simply
by replacing � by ���t. In order to obtain the results
which we illustrate in the next section, we typically used
between 103 and 104 values of q between 0 and 200�T and
at least 40 values of ‘, with smooth window functions
cutting the Fourier transform (33) off at large q and ‘.
One further complication remains, before we turn to our

results. The differential operator L and the source S in
Eqs. (25) and (26) are badly behaved at u ¼ 0 for small q.
There is no problem of principle, but solving the equation
(24) numerically becomes intractable. Because the energy
density has support only where q * ! ¼ m�, this diffi-
culty only arises for the m ¼ 0 modes. We therefore use
the procedure which we have described only for them � 0
components of the energy density �Eðq; ‘;mÞ. We calcu-
late the m ¼ 0 components using a different gauge-
invariant helicity-0 field Z0 which we define and describe
in the Appendix.

V. RESULTS

Figure 1 shows three different plots of r2�E=P for
quarks in circular motion with each of three different
velocities: � ¼ 0:15, � ¼ 0:3, and � ¼ 0:5. Here, P �
dE=dt is the energy lost by the circulating quark (and
hence dumped into the plasma) per unit time. The radius
of the quark’s trajectory in all plots is R0 ¼ 1, and the
temperature of the plasma is given by �T ¼ 0:15=R0. This
means that � defined in Eq. (1) is given by 1.0, 4.6, and
17.1 in the left, middle, and right columns, respectively.
P is given by Eq. (2) when � � 1 or by Eq. (3) when
� � 1. P has been calculated in Ref. [52] for any� and is
related to the constant � defined in Eq. (10) by

P ¼
ffiffiffiffi
�

p
2�

�� ¼
ffiffiffiffi
�

p
2�

��

R0

: (34)
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In the left, middle, and right columns of Fig. 1, � is given
by 5:2
 10�3=R0, 3:0
 10�2=R0, and 0:22=R0, respec-
tively. At the time shown, the quark is located at x ¼ R0,
y ¼ 0, and the quark is rotating counterclockwise in the
plane z ¼ 0. The three plots in the top row are cutaway
plots with the cutaways coinciding with the planes z ¼ 0,
� ¼ 0 and � ¼ 7�=5. The three plots in the middle row
show the energy density on the plane z ¼ 0, and the bottom
three plots give the energy density at z ¼ 0, � ¼ �=2,
namely, a slice through the middle-row plot along one
radial line. For reference, the red dashed curves in these
bottom plots show r2E for the strongly coupled synchro-
tron radiation which a quark moving along the same cir-
cular trajectory would emit in vacuum [45]. In each of the
bottom plots, we use the same P to normalize the red curve
as for the blue curve. All nine panels in Fig. 1 show the
energy density at one instant of time, but the time depen-
dence is easily restored by replacing the azimuthal angle�
by ���t, where� ¼ �=R0 is the angular velocity. As a
function of increasing time, the entire patterns in the upper
and middle rows rotate with angular velocity �, as the
spirals of radiation move outwards. As a function of in-
creasing time, the patterns in the lower rows move out-
wards, repeating themselves after a time 2�=�.

As is evident from Fig. 1, as the quark accelerates along
its circular trajectory, energy is radiated outwards in a
spiral pattern which is attenuated as the radiation propa-
gates outwards through the plasma to increasing r.
However, the qualitative features of the spiral patterns
differ greatly at the three different quark velocities which
we have chosen. For � ¼ 0:15, the spiral arms are very
broad in r, as broad as their separation, and the spiral
pattern propagates outwards at the speed of sound, while
being attenuated with increasing r. (Second-order hydro-
dynamics for a conformal fluid with a gravity dual like

N ¼ 4 SYM theory predicts a sound velocity 1=
ffiffiffi
3

p þ
0:116q2=ð�TÞ2 þ . . . [61] for sound waves with wave
vector q. The sound waves in the left column of Fig. 1
have q� 1:3�T and are moving outward with a velocity of
0.73. We shall return to the comparison to second-order
hydrodynamics in Sec. VI.) The dashed curve in the lower-
left panel shows the energy density of the synchrotron
radiation which this quark would have emitted if it were
in vacuum, and we see that there is no sign of this in our
results. So, at this �, corresponding to � ¼ 1:0, the rotat-
ing quark is emitting sound waves.

The results in the right column of Fig. 1, for� ¼ 0:5, are
strikingly different. The spiral arms are very narrow in r,
much narrower than their separation, and they propagate
outwards at the speed of light, as can be seen immediately
in the bottom-right panel by comparing our results, in blue,
to the energy density of the synchrotron radiation which
this quark would have emitted if it were in vacuum. We see
that at this �, corresponding to � ¼ 17:1, the rotating
quark is emitting strongly coupled synchrotron radiation,

as in vacuum [45], and we see that the radiation is being
attenuated as it propagates outward in r, through the
strongly coupled plasma. Remarkably, even as the out-
going pulses of energy are very significantly attenuated
by the medium, we see no sign of their broadening in either
the � or the � or the r directions. Looking at the vertical
sections in the upper-right panel, we see that, if anything,
the spread of the beam of radiation in � is becoming less as
it propagates and gets attenuated. This conclusion is further
strengthened by comparing the upper-right panel of Fig. 1
to the analogous results for a quark in circular motion in
vacuum shown in Fig. 2. It is certainly clear that the
presence of the medium does not result in the spreading
of energy away from the center of the beam at the equator
out toward large polar angles. Just the opposite, in fact: at
large polar angles, the beam gets attenuated more rapidly
than near � ¼ �=2. We shall return to this in Sec. VI.
Broadening in either the � or the r directions would be
manifest as widening of the pulses in the bottom-right
panel, and this is certainly not seen. In fact, we have
extended the plot in the bottom-right panel out to larger
r, for several more turns of the spiral, and we continue to
see rapid attenuation with no visible broadening.
We turn our attention now to the center column of Fig. 1.

Here, with a rotation velocity of � ¼ 0:3 corresponding to
� ¼ 4:6, we clearly see both synchrotron radiation and
sound waves. The synchrotron radiation is most easily
identified with reference to the results for a quark with
this rotation velocity in vacuum, shown in the red curve in
the bottom-center panel. In our results with T � 0, we see
the emission of a pulse of synchrotron radiation whose
amplitude is very rapidly attenuated, much more rapidly
than in the right column. In part guided by our inspection
of the results at large � in the right column, we see that as
the pulse of synchrotron radiation is attenuated, it too does
not broaden. What we see here that is not so easily seen in
the right column is that as the pulse of synchrotron radia-
tion is attenuated, it ‘‘sheds’’ a sound wave, leaving behind
it a broad wave, reminiscent of the sound waves in the left
column. Behind each pulse of synchrotron radiation, we
see the ‘‘compression half’’ of a sound wave, and behind
that a deeper rarefaction, and then the next pulse of syn-
chrotron radiation arrives. Once seen in the middle column,
this phenomenon can perhaps also be discerned to a much
lesser degree in the right column, with each pulse of
synchrotron radiation trailed first by a slightly yellow
region of compression and then by a more blue region of
rarefaction. It is not really clear in the right column
whether these can be called sound waves, both because
of their smaller amplitude and because the next pulse of
synchrotron radiation overwhelms them sooner than in the
middle column. In the middle column, though, the inter-
pretation is clear: the beam of synchrotron gluons is excit-
ing sound waves in the plasma. In the right column, it is
clear that any sound waves, if present, are smaller in
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amplitude than in the middle column even though the
pulses of radiation carry more energy in the right column.

Figure 1 demonstrates clearly that at small �, the rotat-
ing quark emits only sound waves, while at large �, it
emits strongly coupled synchrotron radiation as in vacuum,
with that beam of gluons subsequently being quenched by

the plasma. The crossover between these two regimes lies
between � ¼ 1 and � ¼ 5, consistent with expectations
based upon the results of Ref. [52]. We have also confirmed
that this crossover occurs in the same range of � for a
quark in circular motion with R0�T twice as large as in
Fig. 1, meaning that this range of� occurs at larger �. For

FIG. 1 (color online). Plots illustrating the energy density of strongly coupledN ¼ 4 SYM plasma in which a test quark is rotating
on a circle with radius R0 with angular velocity � ¼ �=R0 for � ¼ 0:15 (left column), � ¼ 0:3 (middle column), and � ¼ 0:5 (right
column), corresponding to � ¼ 1:0, 4.6, and 17.1. In all plots, the temperature of the plasma is given by �T ¼ 0:15=R0, and the units
are chosen such that R0 ¼ 1. Top: cutaway plots of r2�E=P where P is the power radiated by the quark. The cutaways coincide with
the planes � ¼ �=2, � ¼ 0, and � ¼ 7�=5. Middle: plots of r2�E=P on the equatorial plane � ¼ �=2 (i.e. z ¼ 0). Bottom: blue
curves are plots of r2�E=P at � ¼ �=2 and � ¼ �=2. The quark’s trajectory lies in the equatorial plane � ¼ �=2, and the quark is
rotating counterclockwise. The red dashed curves in the bottom plots show r2E=P for the strongly coupled synchrotron radiation
emitted by a quark in circular motion in vacuum [45], pulses of radiation which propagate outward to r ! 1 at the speed of light
without spreading.
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R0�T ¼ 0:15 as in Fig. 1, we have looked at a quark
moving with � ¼ 0:10, meaning� ¼ 0:45, and confirmed
that we see only sound waves, with longer wavelengths
than in the left column of Fig. 1 and hence with a velocity

which is closer to 1=
ffiffiffi
3

p
, the q ! 0 velocity of sound. We

have also done the calculation at � ¼ 0:65, corresponding
to � ¼ 42:8, with results shown in Fig. 3 which we have
extended out to larger r to show the beam of synchrotron
radiation getting almost completely attenuated. The com-
parison in the lower panel between the pulses of radiation
propagating through the plasma (blue curve) and those
propagating in vacuum (red dashed curve) makes it clear
that even as the beam is being almost completely attenu-
ated by the plasma, it propagates at the speed of light, and,
as far as we can see, it does not broaden.

Extending our calculations with R0�T ¼ 0:15 to larger
� is possible, but the numerics rapidly become more
difficult as the radial width of the pulses narrows like
1=�3, rapidly increasing the required dynamical range in
momentum space and rapidly making the Fourier trans-
form back to position space more costly. If it were impor-
tant to pursue this, however, it could certainly be done. But,
we shall see in Sec. VI that we have an analytic under-
standing of the qualitative features in our results and that
based upon this analytic understanding, we do not expect
any qualitatively new behavior at larger � at the same R0.
However, it would be very interesting to explore the regime
in which R0�T � 1, meaning that �=�T � 1, and yet �
is so large that � � 1. In this regime, we expect narrow
pulses of radiation which are much more widely separated
in the radial direction than those we have analyzed, say in

FIG. 2 (color online). Energy density r2E=P of the strongly
coupled synchrotron radiation emitted by a quark in circular
motion with R0 ¼ 1 and � ¼ 0:5, exactly as in the top-right
panel of Fig. 1, but this time, in vacuum, at T ¼ 0, calculated as
in Ref. [45]. The color scale is the same as in the top-right panel
of Fig. 1, and the red curve in the bottom-right panel of Fig. 1 is
the profile along one radial line through this figure.

FIG. 3 (color online). Energy density r2�E=P of strongly
coupled N ¼ 4 SYM plasma in which a quark is rotating on
a circle with R0�T ¼ 0:15 and with velocity � ¼ 0:65, meaning
� ¼ 42:8. Plots extended to r ¼ 120 to show the quenching of
the beam of strongly coupled radiation.
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the right column of Fig. 1. This would allow us to learn
more about the response of the strongly coupled plasma to
a beam of synchrotron radiation since we would be able
to watch the plasma for much longer after one pulse
of radiation passed before the next pulse arrived.
Unfortunately, there is at present a serious obstacle to
doing such a calculation, more serious than can be over-
come simply by increasing the dynamical range of the
calculation. We saw in Sec. IV that the helicity-0 gauge-
invariant quantity Z which we defined in Sec. IV has
gravitational equations of motion which are badly behaved
for q � �T, but that because the energy density has sup-
port only where q * ! ¼ m�, with m an integer, this
problem only arose for m ¼ 0 modes—which we were
able to analyze using a different gauge invariant described
in the Appendix. However, if � � �T, then there are
many modes with ! � 0 and ! � �T which are impor-
tant. We have not found a gauge invariant that yields a
tractable numerical analysis for such modes—the analysis
of the Appendix only works for ! ¼ 0.

There are in fact several (related) obstacles to using our
calculation to provide definitive answers to the question of
where the energy which is initially in the gluon beam goes
as the gluon beam gets attenuated. The first we have
discussed above: we cannot watch the plasma behind one
of the pulses of radiation very long before the next pulse
comes along and obliterates whatever the previous pulse
has left behind. However, even if a resolution to the tech-
nical obstacle which currently precludes addressing this
were found, a further obstacle remains. We are analyzing a
scenario in which the quark has been moving in a circle for
an infinitely long time meaning that a steady state in which
the energy density at any position is a periodic function of
time has been achieved. We see in Figs. 1 and 3 that the
energy density in the beam falls off faster than 1=r2 at large
r. So, the natural first expectation is that the beam heats the
plasma up in the range of r over which it gets attenuated—
perhaps it first makes sound waves, but, ultimately, these
too will damp, leaving just a heated region of plasma. This
expectation cannot be correct in a steady-state calculation
like the one we have done, since a continual heating up of
some region of space blatantly contradicts the steady-state
assumption. So, what actually happens to the energy in our
calculation? We have checked that at sufficiently large r,
the energy density �E is zero. This means that at suffi-
ciently large r, there is an outward flux of energy whose
magnitude, averaged over angles, is P=ð4�r2Þ, with P the
energy lost by the rotating quark per unit time. This energy
flux corresponds to a collective outward flow of the plasma
with a velocity, averaged over angles, given by

vplasma ¼ P

4�r2ðE þ pÞ ¼
�

2N2
c

P

ð�TÞ2
1

ðr�TÞ2 ; (35)

where we have used the fact that the sum of the energy
density and pressure of the plasma in equilibrium is

E þ p ¼ �2N2
cT

4=2. Since we are working in the
large-Nc limit, the velocity vplasma is infinitesimal. So, in

our steady-state calculation, the energy from the gluon
beam ultimately finds its way into an infinite wavelength
mode with infinitesimal amplitude. A mode like this can
equally well be thought of as a sound wave with infinite
wavelength and infinitesimal amplitude (i.e. infinitesimal
longitudinal velocity) or as a diffusive mode with infinite
wavelength.2 This is the only possible answer to the ques-
tion of where the energy from the gluon beam ultimately
ends up in a steady-state calculation like the one which we
have done. In a sense, this energy flux corresponding to an
infinitesimal-velocity outward flow of the plasma is the
closest which a steady-state calculation can come to de-
scribing the heating up of a region of the plasma—which
cannot happen in steady state.

VI. DISCUSSION

We turn now to a discussion of our results. Much can be
learned about the qualitative features of the results illus-
trated in Fig. 1 by studying the quasinormal modes of the
AdS-BH spacetime which provides the dual gravitational
description of the physics. In the dual gravitational picture,
the moving string excites a full spectrum of gravitational
quasinormal modes, which propagate outwards and even-
tually get absorbed by the black hole. The propagation and
absorption of these quasinormal modes manifests itself on
the boundary as the propagation and attenuation of the
spirals of energy density shown in Fig. 1. The dispersion
relations !ðqÞ of the helicity-0 quasinormal modes are
given by solutions to [62]

detLð!; qÞ ¼ 0; (36)

where the linear operatorLð!; qÞ is defined in Eq. (25) and
where the determinant is to be evaluated in the space of
functions satisfying the appropriate boundary conditions
which we have described earlier. Upon introducing a com-
plete basis of functions of u which satisfy the boundary
conditions and then truncating that basis, L becomes a
matrix, and Eq. (36) can be solved for !ðqÞ numerically.
Figure 4 shows a plot of the quasinormal mode disper-

sion relation for the lowest quasinormal mode (i.e. the one
with the smallest imaginary part). For q � �T, the dis-
persion relation has the asymptotic form expected for the
hydrodynamics of any conformal fluid, [61]

!sðqÞ ¼ csq� i�q2 þ �

cs

�
c2s�� � �

2

�
q3 þOðq4Þ; (37)

2In a relativistic plasma, an infinitesimal increase in the
temperature in some region must correspond to an infinitesimal
increase in the pressure in that region, meaning that it corre-
sponds to sound waves. So, in this case, this mode is better
thought of as an infinite wavelength sound wave rather than as a
diffusive mode.
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where in N ¼ 4 SYM theory, with its classical gravity
dual, all the constants are known analytically: the low-q

speed of sound is cs ¼ 1=
ffiffiffi
3

p
, the sound attenuation con-

stant � is given by �T� ¼ 1=6, and the relaxation time ��
is given by �T�� ¼ ð2� log2Þ=2. These modes represent
propagating soundwaves which attenuate over a time scale:

t
damping
s � 1

�q2
: (38)

The dispersion relation (37) is plotted in Fig. 4; it describes
the full dispersion relation very well for q & 2�T. This
supports our observation that thewaves in the left column of
Fig. 1 are sound waves. Since these waves are not mono-
chromatic (and since in the dual gravitational description,
they are not described solely by the lowest quasinormal
mode), they cannot be compared quantitatively to Eq. (37),
but their velocity is as Eq. (37) predicts for q� 1:2�T,
which is comparable to the q� 1:35�T obtained from their
peak-to-peak wavelength. Using q� 1:2�T in Eq. (38)
predicts a sound attenuation time scale ð�tÞsound �
4:5=ð�TÞ � 30R0, which is comparable to but a little
shorter than the exponential decay time for the amplitude
of the waves in the left column of Fig. 1, which is closer to
40R0. So, although a quantitative comparison is not pos-
sible, it does seem that the low-q regime of the dispersion
relation in Fig. 4 which describes sound waves does a
reasonable job of capturing the qualitative features of the
waves seen in the left column of Fig. 1.

The dispersion relations of the higher quasinormal
modes (those with more negative imaginary parts) can
also be determined by solving Eq. (36) numerically. At q �
�T, they approach the asymptotic form ! ¼ ð~a� i~bÞ�T,

where ~a and ~b are mode-dependent Oð1Þ constants, with
values which are larger and larger for higher and higher

modes. (For the lowest quasinormal mode, ~a ¼ ~b ¼ 0.) At
low q, disturbances of the plasma described by higher
quasinormal modes attenuate on a time scale of order

1=ð~b�TÞ which is much shorter than that for the sound
waves described by the lowest quasinormal mode, namely,
Eq. (38).
Let us turn now to q � �T. By fitting to our results for

the dispersion relation for the lowest quasinormal mode,
we find that in this regime, the dispersion relation takes the
asymptotic form

!rad ¼ qþ �Tða� ibÞ
�
�T

q

�
1=3 þ . . . ; (39)

as argued for on general grounds in Ref. [63], where we
find a � 0:58 and b � 1:022. At q � �T, the dispersion
relations of all quasinormal modes approach the asymp-
totic form (39), with a and b mode-dependent Oð1Þ con-
stants, again with values that are larger and larger for
higher and higher modes. Therefore, generically, the high
q modes propagate at close to the speed of light and
attenuate over a time scale

tdamping
rad � 1

�Tb

�
q

�T

�
1=3

; (40)

where we shall use the value b � 1:022 from the lowest
quasinormal mode in making estimates, keeping in mind
that if the contribution of higher quasinormal modes were
important, this would increase the effective b somewhat.
The fact that the pulses of energy in Fig. 1 are far from
being monochromatic waves introduces a larger uncer-
tainty into our discussion than does not knowing how
much the higher quasinormal modes contribute.
We have plotted the large-q asymptotic expression (39)

for the dispersion relation for the lowest quasinormal mode
in Fig. 4, and we see that it describes the full result very
well for q * 20�T and has the right shape at a qualitative
level down to about q� 5�T. This is consistent with our
observation that the narrow pulses of synchrotron radiation
in the middle column, where the pulses have a full width
at half maximum (FWHM) �2:5R0, corresponding very
roughly to q� 6�T, and the right column, where the
pulses have a FWHM �R0, corresponding very roughly
to q� 15�T, propagate outwards at the speed of light.
Converting the widths of these pulses into estimates of q is
very rough because the pulses are neither sinusoidal nor
Gaussian. If we nevertheless try substituting q� 15�T

into Eq. (40), we find that it predicts t
damping
rad � 16R0, which

is roughly half the exponential decay time for the ampli-
tude of the waves in the lower-right panel of Fig. 1. Again,
quantitative comparison is not possible, but inferences
drawn from the large-q dispersion relation for the lowest
quasinormal mode (39) is at least in the right ballpark.

FIG. 4 (color online). A plot of the real and imaginary parts of
the dispersion relation of the lowest quasinormal mode. We plot
Re!=q and Im !=ð�TÞ since these ratios are both of order 1.
For q � �T, the dispersion relation is that of sound waves
whose dispersion relation is given up to order q3 by Eq. (37)
and is plotted as dashed lines in the figure. For q � �T, the
dispersion relation is that of waves which propagate at the speed
of light. The large-q asymptotic expression (39) which we have
obtained by fitting the results in this figure is plotted as the dotted
lines.
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We can also compare t
damping
rad for the radiation emitted by

the quark moving with � ¼ 0:5 in the right column of
Fig. 1 with that emitted by the quark moving with
� ¼ 0:65 in Fig. 3. Since the pulses of synchrotron radia-
tion narrow proportionally to 1=�3 as � increases, Eq. (40)

predicts that t
damping
rad should increase proportionally to �,

namely, by about 14% in going from � ¼ 0:5 to � ¼ 0:65.
It is hard to define and extract a damping time from the
figures with sufficient accuracy to test this prediction
quantitatively, but, again, it is in the right ballpark.

The qualitative prediction from Eq. (40) that narrower
pulses, with higher q, can penetrate farther into the
strongly coupled quark-gluon plasma is apparent in com-
paring the � dependence of the results in the top-right panel
of Fig. 1 with the T ¼ 0 results in Fig. 2. We see that in
vacuum, the pulses of synchrotron radiation get broader
and broader as you decrease � from �=2, going from the
equator toward the poles. And, indeed, just as Eq. (40)
predicts, we see in Fig. 1 that in the quark-gluon plasma,
the radiation heading in polar directions is quenched much
more quickly than that radiated in narrower pulses near the
equator.

We can also use the quasinormal mode dispersion rela-
tion to understand why the pulses do not broaden signifi-
cantly in the radial direction as they propagate. The increase
in the width of a pulse as it propagates for a time t is
�t�qd2!=dq2, where �q is the width of the pulse in q
space. Taking �q� q and using the large-q dispersion
relation (39), we find that after the radiation damping time
given by Eq. (40), the pulse should have broadened by
�4a=ð9bqÞ. If the pulse had a Gaussian profile, this would
correspond to broadening by about 10% of the original
FWHM of the pulse. So, the quasinormal mode dispersion
relation predicts that by the time the pulses have been
significantly attenuated, they should have broadened by
an amount that is parametrically of the order of their initial
width, but smaller by a significant numerical factor. It is
therefore not surprising that we see no significant broad-
ening in Fig. 1.

By this point, we have understood many of the most
interesting features of our results qualitatively, and even
semiquantitatively, by analyzing the quasinormal mode
dispersion relations. This gives us confidence that no new
qualitative phenomena emerge for narrower pulses (higher
q; e.g. from a rotating quark with larger �) than we have
been able to study, since it is clear that our results at
� ¼ 0:5 and � ¼ 0:65 are already exploring the high-q
regime of the dispersion relation in Fig. 4, where the
asymptotic expression (39) is a good guide. It is also
important to stress that the quasinormal mode frequencies
are determined entirely by L, from the left-hand side of
Eq. (24). This means they reflect properties of the strongly
coupled plasma itself and have nothing to do with the
source on the right-hand side of Eq. (24), namely, the
rotating quark. Given that we have been able to use

the quasinormal mode dispersion relations so successfully
to understand the propagation, rate of attenuation, and lack
of broadening of a beam of gluons, we are confident that
these phenomena are independent of how the beam of
gluons is created.
Our results also have interesting qualitative implications

for understanding the formation of quark-gluon plasma via
the thermalization of some initially far-from-equilibrium
state. If short-wavelength excitations present in the initial
conditions or created during the far-from-equilibrium evo-
lution are sufficiently long-lived, they can spend much of
their lifetime propagating through nearly equilibrated
quark-gluon plasma, where their evolution can be under-
stood via the quasinormal mode dispersion relations. Our
analysis of these dispersion relations suggests that the
maximum thermalization time for modes of momentum

q � �T is �q1=3ð�TÞ�4=3. Similar results were also re-
ported in Ref. [64], where correlation functions were
studied far from equilibrium. In this way, our results cor-
roborate the conclusion of Ref. [64] that the correlation
functions describing short-wavelength modes thermalize
more slowly than those describing modes with momenta
of order �T. These conclusions do not disagree with those
of Refs. [65,66], where equal-time correlators for confor-
mal field theory operators with very high dimension were
found to thermalize first at short wavelengths. The short-
wavelength modes that we and Ref. [64] find to be long-
lived are (nearly) on-shell and correspond to low-dimension
operators.
Finally, we can use our understanding of the quasinor-

mal mode dispersion relations to clarify the distinction
between the middle column of Fig. 1—in which we see
the pulse of radiation shedding a sound wave—and the
cases where we do not see this (like the right column of
Fig. 1 and 3.) As we described at the end of Sec. V, the fact
that we have done a steady-state calculation makes it
difficult to use our results directly to draw conclusions
about what our pulse of radiation leaves behind.
However, we can use our understanding of the quasinormal
modes to answer this question at least qualitatively.
Suppose that we could move the quark on some trajectory
such that it radiates one pulse of synchrotron radiation (i.e.
one turn of the spiral) and then no more; what would
happen to this single pulse of strongly coupled radiation
as it propagates outward through the strongly coupled
plasma? The dual gravitational description of this radiation
would be governed by Eq. (24), with the sameL and hence
the same quasinormal modes as in our analysis but with a
different source S, localized along the world sheet of the
string hanging down from the quark which excited the
single pulse of radiation. As long as we look only at
distances greater than order 1=ð�TÞ away from the location
of the string, the disturbance of the plasma must be de-
scribed by a pulse of short-wavelength radiation with the
dispersion relation (39) which moves at the speed of light
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and is attenuated on time scales (40) as well as long
wavelength sound waves with the dispersion relation (37)
which propagate outward at the speed of sound and are
attenuated on time scales (38). Since these sound waves
move more slowly, the pulse of radiation leaves them
behind—shedding them as we see in the middle column
of Fig. 1. The same would happen for shorter wavelength
pulses as in the right column of Fig. 1 or as in Fig. 3, but in
these cases, in our steady-state calculation, the next pulse
of synchrotron radiation arrives before we can see the
sound waves being left behind. In the hypothetical case
of a single short-wavelength pulse, the short-wavelength
pulse itself will get far ahead of the sound waves it has left
behind as it is attenuated only on the long time scale (40).
(The sound waves would carry the net energy of the
original pulse, as can be seen in Fig. 1 insofar as the pulses
moving at the speed of light have no net energy at late
times, meaning that they describe short-wavelength exci-
tations plus a diminution in the energy density of the
background plasma.) By the time the short-wavelength
pulse has damped away, the sound waves which it shed
will be far behind and will have become sound waves with
very small q, meaning long wavelengths and small ampli-
tudes, since Eq. (38) tells us that these are the sound modes
which last the longest. These are represented in the steady-
state calculation by the outward-going energy flux at infi-
nite wavelength and infinitesimal amplitude which we
described at the end of Sec. V. We now see that the
distinction between the middle column of Fig. 1 on the
one hand and the right column of Figs. 1 and 3 on the other
hand is that in the former case, the pulse of radiation is
never well-separated from the sound waves which it leaves
behind—if a significant pulse of radiation remains, the
sound waves are not far behind it and have themselves
not yet been attenuated—while in the latter case, the pulse
of radiation gets far ahead of the sound waves, and the
sound waves ‘‘thermalize’’ (which means increase in
wavelength and decrease in amplitude) before the pulse
of radiation has been attenuated.

VII. FROM QUENCHING A BEAM OF STRONGLY
COUPLED GLUONS TO JET QUENCHING

There are many qualitative similarities between the
quenching of the beam of strongly coupled synchrotron
radiation in the strongly coupled N ¼ 4 SYM plasma
which we have studied and the quenching of jets in heavy
ion collisions at the LHC and RHIC:

(i) As our beam of gluons propagates through the
plasma, losing a significant fraction of its energy, it
does not spread in angle. Jets in heavy ion collisions
at the LHC lose a significant fraction of their energy
but, within current experimental errors, do not
broaden in angle and do not get deflected in their
direction.

(ii) As our beam of gluons propagates through the
plasma, and is significantly attenuated, it does
not spread in the direction along which it propa-
gates. In other words, the momenta of the gluons
making up the beam do not decrease even as the
beam loses a significant fraction of its energy.
Similarly, jets in heavy ion collisions at the LHC
have fragmentation functions (i.e. distributions of
the momenta of the particles making up the jet)
which are unmodified by propagation through the
strongly coupled plasma produced in the collisions
except by virtue of the overall reduction in the
energy of the jet.

(iii) In the case of a beam made up of gluons whose
wavelength is not too short, as in the middle col-
umn of Fig. 1, it is possible for a significantly
attenuated pulse of radiation to be followed closely
on its heels by a significant sound wave, trailing
behind it. In contrast, once a beam made up of
shorter wavelength gluons, as in the right column
of Fig. 1 or in Fig. 3, is significantly attenuated, the
sound waves which it left behind are far behind it
and have themselves thermalized. In our steady-
state calculation, they have ended up in the infinite
wavelength, infinitesimal-velocity, mode which we
described at the end of Sec. V. The behavior of
these shorter wavelength pulses, losing their en-
ergy to a mode in which the collective velocity of
the fluid is infinitesimal, suggests the observation
that jets at the LHC lose their energy to soft
particles at all angles relative to the jet direction.
The behavior of the longer wavelength pulses sug-
gests that there may be a regime of jet energies,
analogous to the beam of radiation in the middle
column in Fig. 1, in which, at a time when the jet
itself has been attenuated significantly, it is fol-
lowed by a significant pulse of sound waves mov-
ing in the same direction as the jet. If the jets
accessible in RHIC collisions, with energies in
the 20–40 GeV range, are in this regime, this
would indicate that they should lose their energy
to soft particles which are correlated in angle with
the jet direction, consistent with preliminary indi-
cations from RHIC data.

Comparisons along these lines will never be more than
qualitative, since the beam of strongly coupled radiation
which we have analyzed is not a jet. However, these
multiple qualitative resonances between jet quenching in
heavy ion collisions and the quenching of the beam of
strongly coupled radiation which we have analyzed sup-
port the prospect that jet quenching is a strongly coupled
phenomenon, even for the few-hundred-GeV jets produced
at the LHC. If this is so, what is to be done next? Further
directions include:
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(i) Finding a helicity-0 gauge invariant that makes the
regime with R0�T � 1 and � large enough that
� � 1 accessible, since this would give much
more time for the region of plasma through which
a pulse of radiation has passed to be analyzed before
the next pulse hits and thus would permit a more
definitive analysis of where the energy lost by the
quenched beam ends up.

(ii) Finding ways to make a beam of strongly coupled
radiation other than via synchrotron radiation, and,
in particular, finding a way to make such a beam
pointing in a pair of fixed directions rather than
rotating. For example, could multiple quarks mov-
ing in concert be engineered so as to behave like a
phased array of antennas, generating back-to-back
beams of strongly coupled radiation?

(iii) Reanalyzing the stopping of a light quark or gluon,
as in Refs. [40–42], should give another means
of accessing many of the questions we have ad-
dressed. And these analyses find a stopping dis-
tance for energetic light quarks which is

proportional to E1=3, with E the energy of the
quark. Our result for the distance scale over which

our beam of gluons is quenched, namely, tdamping
rad �

q1=3=ð�TÞ4=3 where q is the typical wave vector of
the gluons in the beam, has the same parametric
dependence as the light-quark stopping distance,
adding considerable robustness to both results.
There have been some first steps taken to compare
this relationship between quark or gluon energy or
wave vector and stopping or quenching distance
with heavy ion collision data [67,68]. Our results
further motivate these efforts.

(iv) It is also interesting to note that in the calculation
of Ref. [42], a very high-energy quark which
loses, say, half of its energy leaves most of that
energy far behind it while a lower-energy quark
which loses the same amount of energy and
comes almost to rest is never well-separated
from the energy it has lost. Although described
in quite different terms, this is reminiscent of the
distinction between the middle and right panels of
Fig. 1, and perhaps of the possible distinction
between jet quenching at the LHC and at RHIC.
This distinction may also be seen in the analysis
of the energy loss of a heavy quark being dragged
through the strongly coupled plasma [27,28], in
which the world sheet of the string trailing behind
the dragging quark features a world-sheet horizon
[29–31], located near the spacetime horizon for a
low velocity quark and located closer and closer
to the boundary for quarks moving more and
more relativistically. One possible interpretation
of the world-sheet horizon is that the portion of
the string between it and the boundary describes

(ultraviolet) modes in the gauge theory which
propagate along with the heavy quark while the
portion of the string between the world-sheet
horizon and the spacetime horizon describe the
disturbance of the plasma which the quark leaves
behind [69–72]. This interpretation predicts that a
higher-energy heavy quark will be accompanied
only by shorter wavelength modes of the gauge
theory while a lower-energy heavy quark will be
accompanied by softer gauge theory modes.
Although described in terms which are different
yet again, this is again reminiscent of the possi-
bility that only lower-energy quenched jets will
be accompanied by soft particles correlated in
angle with the jet direction. All these on-the-
surface quite distinct approaches to jet quenching
point in the same direction, suggesting that the
distinction manifest in Fig. 1 between an attenu-
ated high-energy jet which has left its sound
waves far behind and an attenuated lower-energy
jet which has a pulse of sound close on its heels
may be generic to jet quenching in strongly
coupled plasma. The connections between these
different approaches must be explored and
developed.

(v) Our results also motivate further effort to determine
whether the soft particles in a heavy ion collision
corresponding to the energy lost by a quenched jet
really are more correlated with the jet direction at
lower jet energies. If so, this will point to lower jet
energies as the place to look for the hydrodynamic
response of the plasma.

(vi) On a more theoretical note, it would be very inter-
esting to repeat our analyses in a nonconformal
strongly coupled gauge theory plasma with a dual
gravitational description.
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APPENDIX A: ZERO MODE GAUGE INVARIANT

The helicity-0 gauge invariant Z which we defined in
Sec. IV is inconvenient at m ¼ ! ¼ 0 because the equa-
tions for it have apparent divergences which preclude their
numerical solution. In the static case with ! ¼ 0, a differ-
ent helicity-0 gauge invariant

Z0 � q2H 00 þ q2

2
ð2� fÞðH ii �H qqÞ (A1)
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proves convenient instead.3 As one can easily verify, Z0 is
invariant under time-independent infinitesimal diffeomor-
phisms and satisfies the equation of motion

L 0Z0 ¼ 	2
5S0; (A2)

where the linear operator L0 is given by

L 0 ¼ f
d2

du2
� 9� 8u4 þ 7u8

uð3� u4Þ
d

du
� q2 þ 16u6

3� u4
; (A3)

and the source S0 is given by

S0¼�2q2t00�q2ð3�u4Þ
3

tiiþq2ð1þu4Þtqq�32u3iq

3�u4
t0q

�8

3
q2u4t05þ4

3
q2u4ft55þ32u3iqf

3�u4
tq5: (A4)

Near the boundary, Z0 has the following expansion:

Z0 ¼ Z0
ð3Þu

3 þ Z0
ð4Þu

4 þ . . . : (A5)

The zero mode of the boundary energy density is related to
Z0
ð4Þ via [38]

E ¼ 4

3q2	2
5

Z0
ð4Þ þA; (A6)

where

A � �
ffiffiffiffi
�

p
2�

R3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2R2

0

q
qR0

@j‘ðqR0Þ
@q

Y‘0

�
�

2
; 0

�
; (A7)

with R3 � 1
6 limu!0@

3
uR and R0 ¼ limu!0R.
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