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We treat the probability distributions for quadratic quantum fields, averaged with a Lorentzian test

function, in four-dimensional Minkowski vacuum. These distributions share some properties with

previous results in two-dimensional spacetime. Specifically, there is a lower bound at a finite negative

value, but no upper bound. Thus arbitrarily large positive energy density fluctuations are possible. We are

not able to give closed form expressions for the probability distribution, but rather use calculations of a

finite number of moments to estimate the lower bounds, the asymptotic forms for large positive argument,

and possible fits to the intermediate region. The first 65 moments are used for these purposes. All of our

results are subject to the caveat that these distributions are not uniquely determined by the moments. We

apply the asymptotic form of the electromagnetic energy density distribution to estimate the nucleation

rates of black holes and of Boltzmann brains.
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I. INTRODUCTION

There has been extensive work in recent decades on the
definition and use of the expectation value of a quantum
stress tensor operator. When this expectation value is used
as the source in the Einstein equations, the resulting semi-
classical theory gives an approximate description of the
effects of quantum matter fields upon the gravitational
field. This theory gives, for example, a plausible descrip-
tion of the backreaction of Hawking radiation on black
hole spacetimes [1].

However, the semiclassical theory does not describe the
effects of quantum fluctuations of the stress tensor around
its expectation value. Quantum stress tensor fluctuations
and the resulting passive fluctuations of gravity have been
the subject of several papers in recent years [2–14].
However, most of these papers deal with effects described
by the correlation function of a pair of stress tensor opera-
tors, and ignore higher-order correlation functions.

One way to include these higher-order correlations is
through the probability distribution of a smeared stress
tensor operator. This distribution was given recently for
Gaussian averaged conformal stress tensors in two-
dimensional flat spacetime [15]. This result will be dis-
cussed further in Sec. II B. A recent attempt to define
probability distributions for quantum stress tensors in
four dimensions was made by Duplancic, et al. [16].
However, these authors attempt to define distributions for

stress tensor operators at a single spacetime point. Because
such operators do not have well-defined moments, the
resulting probability distribution is not well defined. In
our view, only temporal or spacetime averages of quantum
stress tensors have meaningful probability distributions in
four dimensions. Furthermore, these averages should be
normal ordered, resulting in a zero mean for the vacuum
probability distribution and a nonzero probability of find-
ing negative values. None of these conditions are satisfied
by the distribution proposed in Ref. [16].
The purpose of the present paper is to obtain information

about the form of the probability distribution for averaged

stress tensors in four-dimensional spacetime from calcu-

lations of a finite set of moments. This method was used in

Ref. [15] to infer the distribution for ’2, with Lorentzian

averaging, where ’ is a massless scalar field in four-

dimensional Minkowski spacetime. The result matches a

shifted Gamma distribution to extremely high numerical

accuracy. Unfortunately, the probability distribution of the

smeared energy density for massless scalar and electro-

magnetic fields cannot be found so precisely. However,

under certain assumptions to be detailed later, we are

able to give approximate lower bounds and asymptotic

tails for these cases, and to give a rough fit to the inter-

mediate part of the distribution.
An important point arises here. Throughout this paper,

all quadratic operators are understood to be normal ordered
with respect to the Minkowski vacuum state. However, the
smeared normal-ordered operators are defined, in the first
instance, only as symmetric operators on a dense domain
in the Hilbert space (assuming a real-valued smearing
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function) and it is possible that there is more than one way
of extending them to provide self-adjoint operators [17].
The operators of greatest interest to us are bounded from
below on account of quantum inequalities (see Sec. II A)
and so there is a distinguished Friedrichs extension (see
Ref. [18], Theorem X.23), whose lower bound coincides
with the sharpest possible quantum inequality bound. It is
this operator that we have in mind when we discuss the
probability distribution of individual measurements of the
smeared operator in the vacuum state. The question of
whether there is more than one self-adjoint extension,
i.e., whether the normal-ordered expressions fail to be
essentially self-adjoint, is nontrivial and not fully resolved.
Recent results (not, however, immediately applicable to
our situation) and references may be found in Ref. [19]. If
there are distinct self-adjoint extensions, their correspond-
ing probability distributions will all share the same mo-
ments in the vacuum state.

This links to the wider issue of whether or not the mo-
ments of the probability distribution determine the distribu-
tion uniquely. There is a rich theory concerning this question,
which is reviewed in Ref. [20]. As will be discussed below,
some of the moments we study grow too fast to be covered
by well-known sufficient criteria (due to Hamburger and
Stieltjes) for uniqueness. This does not prove that the distri-
bution is nonunique (nor would the existence of distinct self-
adjoint extensions prove nonuniqueness) and we have not
been able to resolve the question of uniqueness. However, in
Sec. VI we prove that any probability distribution with the
moments we find has a cumulative distribution function
close to that corresponding to the fitted asymptotic tail. As
various applications (see Ref. [21] and Sec. VII) depend only
on the rough form of the tail, the possible lack of uniqueness
is not as crucial as might be thought. Further discussion of
this point can be found in Sec. VIIIA.

II. REVIEW OF SOME PREVIOUS RESULTS

Here we will briefly summarize selected aspects of two
topics, quantum inequality bounds on expectation values,
and known results for probability distributions. Both of
these related topics are important for the present paper.

A. Quantum inequalities

Quantum inequalities are lower bounds on the smeared
expectation values of quantum stress tensor components in
arbitrary quantum states [22–28]. In two-dimensional
spacetime, the sampling may be over space, time, or
both. In four dimensions, there must be a sampling either
over time alone, or over both space and time, as there are
no lower bounds on purely spatially sampled operators
[29]. Here we will be concerned with sampling in time
alone, in which case a quantum inequality takes the formZ 1

�1
fðtÞhTðt; 0Þidt � � C

�d
; (1)

where T is a normal-ordered quadratic operator, which is
classically non-negative, and fðtÞ is a sampling function
with characteristic width �. Here C is a numerical constant,
typically small compared to unity, and d is the number of
spacetime dimensions.
Quantum field theory allows negative expectation values

of the energy density. However, quantum inequalities place
strong constraints on the extent to which this negative
energy can be used to violate the second law of thermody-
namics [22], or maintain traversable wormholes [30] or
warpdrive spacetimes [31]. The implication of Eq. (1) is
that there is an inverse power relation between the magni-
tude and duration of negative energy density.
For a massless scalar field in two-dimensional space-

time, Flanagan [26] has found a formula for the constant C
for a given fðtÞ which makes Eq. (1) an optimal inequality,
and has constructed the quantum state in which the bound
is saturated. This formula is

C ¼ 1

6�

Z 1

�1
du

�
d

du

ffiffiffiffiffiffiffiffiffi
gðuÞ

q �
2
; (2)

where fðtÞ ¼ ��1gðuÞ and u ¼ t=�. This is the c ¼ 1
special case of a general result for unitary, positive energy,
conformal field theories in two dimensions, where c is the
central charge, in which the left-hand side of (2) is multi-
plied by c [27]. In four-dimensional spacetime, Fewster
and Eveson [28] have derived an analogous formula for C,
but in this case the bound is not necessarily optimal.

B. Shifted gamma distributions

Here we briefly recall the main results of Ref. [15]. First,
we determined the probability distribution for individual
measurements, in the vacuum state, of the Gaussian
sampled energy density

� ¼ 1ffiffiffiffi
�

p
�

Z 1

�1
Tttðt; 0Þe�t2=�2dt (3)

of a general conformal field theory in two-dimensions.
This was achieved by finding a closed form expression
for the generating function of the moments h�ni of �, from
which the probability distribution was obtained by invert-
ing a Laplace transform. The resulting distribution is con-
veniently expressed in terms of the dimensionless variable
x ¼ ��2 and is a shifted Gamma distribution:

PðxÞ ¼ #ðxþ x0Þ�
�ðxþ x0Þ��1

�ð�Þ expð��ðxþ x0ÞÞ; (4)

with parameters

x0 ¼ c

12�
; � ¼ c

12
; � ¼ �: (5)

Here x ¼ �x0 is the infimum of the support of the proba-
bility distribution, which wewill often call the lower bound
of the distribution, and c > 0 is the central charge, which is
equal to unity for the massless scalar field. Using the
binomial theorem and standard integrals, the nth moment
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an ¼
Z

xnPðxÞdx; (6)

of P is easily found to be

an ¼ xn0
�ð�Þ

Xn
k¼0

ð�1Þn�k

ð�x0Þk
n
k

� �
�ðkþ �Þ

¼ ð�x0Þn2F0ð�;�n; ð�x0Þ�1Þ; (7)

where 2F0 is a generalized hypergeometric function.

The lower bound, �x0, for the probability distribution
for energy density fluctuations in the vacuum for c ¼ 1 is
exactly Flanagan’s optimum lower bound, Eq. (2), on the
Gaussian sampled expectation value and, for all c > 0,
coincides with the result of Ref. [27]. As was argued in
Ref. [15], this is a general feature, giving a deep connection
between quantum inequality bounds and stress tensor
probability distributions. The quantum inequality bound
is the lowest eigenvalue of the sampled operator, and is
hence the lowest possible expectation value and the small-
est result which can be found in a measurement. That the
probability distribution for vacuum fluctuations actually
extends down to this value is more subtle and depends
upon special properties of the vacuum state. In essence, the
Reeh-Schlieder theorem implies a nonzero overlap be-
tween the vacuum and the generalized eigenstate of the
sampled operator with the lowest eigenvalue.

There is no upper bound on the support of PðxÞ, as
arbitrarily large values of the energy density can arise in
vacuum fluctuations. Nonetheless, for the massless scalar
field, negative values are much more likely; 84% of the
time, a measurement of the Gaussian averaged energy
density will produce a negative value. However, the posi-
tive values found the remaining 16% of the time will
typically be much larger, and the average [first moment
of PðxÞ] will be zero.

The asymptotic positive tail of PðxÞ has recently been
used by Carlip et al. [21] to draw conclusions about the
small-scale structure of spacetime in a two-dimensional
model. These authors argue that large positive energy
density fluctuations tend to focus light rays on small scales,
and cause spacetime to break into many causally discon-
nected domains at scales somewhat above the Planck
length.

In Ref. [15], we also reported on calculations of the
moments of :’2: averaged with a Lorentzian, where ’ is
a massless scalar field in four-dimensional spacetime. It
appears that the probability distribution is also a shifted
gamma function in this case. Define a dimensionless vari-
able x by

x ¼ ð4��Þ2
Z 1

�1
fðtÞ’2dt; (8)

where

fðtÞ ¼ �

�ðt2 þ �2Þ : (9)

There is good evidence that the probability distribution is
to be Eq. (4) with the parameters

� ¼ 1

72
; � ¼ 1

12
; x0 ¼ 1

6
: (10)

These parameters were determined empirically by fitting to
the first three calculated moments. However, the resulting
distribution matches the first 65 moments exactly (agree-
ment had been checked up to the twentieth moment at the
time of writing of Ref. [15]), so there can little doubt that it
is correct. The details of this calculation are given in
Sec. III and Appendix A.
Furthermore, the probability distribution for both the

two-dimensional stress tensor and the four-dimensional
:’2: is uniquely determined by its moments, as a conse-
quence of the Hamburger moment theorem [20]. This
states that if an is the nth moment of a probability distri-
bution PðxÞ, then there is no other probability distribution
with the same moments provided there exist constants C
and D such that

janj � CDnn! (11)

for all n. This condition is a sufficient, although not neces-
sary, condition for uniqueness, and is fulfilled by the mo-
ments of the shifted Gamma distribution. The Hamburger
moment theorem is also an existence result: given a real
sequence fang, n ¼ 0; 1; 2; . . . with a0 ¼ 1, such that the

N � N matrix HðNÞ
mn ¼ amþn (0 � m, n � N � 1) is

strictly positive definite for every N ¼ 1; 2; . . . , then there
exists at least one associated probability distribution for
which the an are the moments.

III. MOMENTS AND MOMENT GENERATING
FUNCTIONS

A. Explicit calculation of moments

In this section, we describe how the moments of a
quadratic quantum operator may be calculated explicitly.
Let� be a free quantum field or a derivative of a free field,
and let T be the smeared normal-ordered square of �:

T ¼
Z

:�2:ðxÞfðxÞdx; (12)

where f is a sampling function. In our detailed calcula-
tions, the smearing will be in time only, and f ¼ fðtÞ will
be the Lorentzian function of Eq. (9), but our preliminary
discussion can be more general. The nth moment�n of T is
formed by smearing the vacuum expectation value

Gnðx1; . . . ; xnÞ ¼ h:�2:ðx1Þ � � � :�2:ðxnÞi (13)

over n copies of f. By Wick’s theorem, this quantity is
equal to the sum of all contractions of the form
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The contractions are subject to the rules that no �ðxiÞ is
contracted with the other copy of itself and all fields are
contracted, with each contraction

contributing a factor h�ðxiÞ�ðxjÞi.
It is convenient to represent the contractions by graphs

with n vertices labelled x1; . . . ; xn placed in order from left
to right so that (1) every vertex is met by exactly two lines;
(2) every line is directed, pointing to the right; (3) no vertex
is connected to itself by a line. For each graph every line
from xi to xj contributes the factor h�ðxiÞ�ðxjÞi and we

supply a combinatorial factor that gives the number of
contractions represented by a given graph; we then sum
over all distinct graphs of the above type to obtain
Gnðx1; . . . ; xnÞ. For example, the graph in Fig. 1(a) de-
scribes the two contractions which contribute to the second
moment

�2 ¼ 2
Z

dx1dx2fðx1Þfðx2Þh�ðx1Þ�ðx2Þi2; (16)

so the combinatorial factor for n ¼ 2 is 2, while Fig. 1(b)
corresponds to the eight contractions pairing a�ðx1Þwith a
�ðx2Þ, a �ðx1Þ with a �ðx3Þ and a �ðx2Þ with a �ðx3Þ, e.g.,

and

Note that the moments �n have dimensions of inverse
powers of length, which depend upon the specific choice of
�. It is convenient to rescale the �n and define dimension-
less moments an. Our explicit calculations of moments
assume the Lorentzian sampling function of width � given
in Eq. (9). In the case that � ¼ ’, the massless scalar field
in four dimensions, we take

an ¼ ð4��Þ2n�n: (19)

For the case that � ¼ _’, we take

an ¼ ð4��2Þ2n�n: (20)

We also take the latter form for the cases of the squared
electric field, and scalar and electromagnetic field energy
densities.

B. Moment generating functions

For n � 4, the Wick expansion involves both connected
and disconnected graphs. However, we need not consider
the disconnected graphs explicitly, as the moment generat-
ing function M is the exponential of W, the generating
function for the connected graphs. The full moment gen-
erating function is defined by

Mð�Þ ¼ X1
n¼0

�nan
n!

; (21)

so the nth moment has the expression

an ¼
�
dnM

d�n

�
�¼0

: (22)

The connected moment generating function, W, has an
analogous definition,

Wð�Þ ¼ X1
n¼0

�nCn

n!
; (23)

where Cn is the nth dimensionless connected moment, and

Cn ¼
�
dnW

d�n

�
�¼0

: (24)

The Cn are the moments which arise from counting only
connected graphs. For n ¼ 2, there is a single connected
graph, with combinatorial factor 1 as already described.
For n > 2, there are 1

2 ðn� 1Þ! distinct connected graphs,

each with a combinatorial factor 2n [32]. Of course, the
enumeration of these graphs becomes rapidly unmanage-
able, and one must exploit further degeneracies among the
graphs to reduce the counting. For sampling using the
Lorentzian function, it is possible to reduce the number
of terms to the number of distinct partitions of n into an
even number of terms. This grows much more slowly than
1
2 ðn� 1Þ!: for example, for n ¼ 30, we require 2811 terms

instead of 29!=2 � 4:4� 1030. Further details can be
found in Appendix A. There is a simple relation between
the full and the connected moment generating functions:

M ¼ eW: (25)

The same relation holds between the generating functions
for connected diagrams and for all diagrams in interacting
field theory. This case is discussed in several references on
quantum field theory, such as Ref. [33]. In the case of
perturbative interacting field theory, one is dealing with
time-ordered products, rather than Wick ordering, but the
proof of Eq. (25) is essentially the same in both cases.

. .

. . .

(a)

(b)

x1 x2

x1 x
x3

2

FIG. 1. The graphs for n ¼ 2 (a) and n ¼ 3 (b) are illustrated.
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Our procedure will be to explicitly compute a finite
number N of connected moments, which allows W to be
approximated as an Nth degree polynomial in �. We then
use Eq. (25) to findM, which may also be approximated as
an Nth degree polynomial. Finally, the first N moments an
may be read off from the coefficients of this polynomial.
We emphasize that this procedure makes sense whether or
not the series (21) converges; expressions such as (25) are
simply convenient expressions for the combinatorial rela-
tion between different moments and may be understood as
formal power series.

Consider the case of ’2 in four dimensions, where ’ is a
massless scalar field and the average is in the time direction
only. The two-point function which appears in the integrals
for the moments is now

h�ðtÞ�ðt0Þi ¼ h’ðtÞ’ðt0Þi ¼ � 1

4�2ðt� t0 � i	Þ2

¼ 1

4�2

Z 1

0
d��e�i�ðt�t0�i	Þ: (26)

The corresponding dimensionless moments were calcu-
lated using MAPLE for N � 65, and the resulting moments
up to N ¼ 23 are listed in the first column of Table I. Our
computations were exact and give the an as rational num-
bers. However, for ease of display, the results have been
rounded to five significant figures. The full set of exact

moments is available as Supplementary Material [34]. As
stated earlier, these moments may be used to infer that the
probability distribution of the quantity in (8) is a shifted
gamma given by Eqs. (4) and (10). Only the first three
moments are needed for this fit, but the result reproduces
the first 65 moments exactly, a spectacular agreement.
Next we turn to the case where � ¼ _’ and calculate

several of the moments of the Lorentz-smearing of _’2. In
this case we use

h�ðtÞ�ðt0Þi ¼ h _’ðtÞ _’ðt0Þi ¼ 3

2�2ðt� t0 � i	Þ4

¼ 1

4�2

Z 1

0
d��3e�i�ðt�t0�i	Þ: (27)

As before, the moments were computed exactly as rational
numbers using MAPLE for N � 65 [34], and the resulting
moments up to N ¼ 23 are listed in the second column of
Table I.
Once we have a finite set of moments for _’2, we can

calculate the corresponding moments for several other
operators of physical interest: we give the examples of
the energy densities for the massless scalar and electro-
magnetic fields, and the squares of the electric and mag-
netic field strengths as particular examples. These all take
the form

TABLE I. Lorentzian smearings of the Wick square of the free massless field ’2, the Wick square of its time derivative _’2, the
square of the electric field strength E2, and the energy densities of the scalar and electromagnetic fields �S and �EM respectively.

n ’2 _’2 E2 �S �EM

0 1 1 1 1 1

1 0 0 0 0 0

2 2 9=2 6 3=2 3

3 48 1890 1680 525=2 420

4 1740 2:5516� 106 1:5121� 106 1:6538� 105 1:8903� 105

5 83904 8:5527� 109 3:3789� 109 2:7057� 108 2:1119� 108

6 5:0516� 106 6:0498� 1013 1:5934� 1013 9:4918� 1011 4:9794� 1011

7 3:6472� 108 7:9890� 1017 1:4027� 1017 6:2499� 1015 2:1918� 1015

8 3:0708� 1010 1:7862� 1022 2:0908� 1021 6:9804� 1019 1:6334� 1019

9 2:9538� 1012 6:2613� 1026 4:8861� 1025 1:2231� 1024 1:9086� 1023

10 3:1956� 1014 3:2427� 1031 1:6870� 1030 3:1669� 1028 3:2949� 1027

11 3:8406� 1016 2:3696� 1036 8:2184� 1034 1:1570� 1033 8:0257� 1031

12 5:0767� 1018 2:3561� 1041 5:4477� 1039 5:7522� 1037 2:6600� 1036

13 7:3196� 1020 3:0960� 1046 4:7723� 1044 3:7793� 1042 1:1651� 1041

14 1:1432� 1023 5:2487� 1051 5:3938� 1049 3:2036� 1047 6:5843� 1045

15 1:9226� 1025 1:1252� 1057 7:7085� 1054 3:4338� 1052 4:7049� 1050

16 3:4641� 1027 2:9981� 1062 1:3693� 1060 4:5748� 1057 4:1789� 1055

17 6:6572� 1029 9:7841� 1067 2:9791� 1065 7:4647� 1062 4:5458� 1060

18 1:3592� 1032 3:8605� 1073 7:8364� 1070 1:4726� 1068 5:9787� 1065

19 2:9384� 1034 1:8209� 1079 2:4642� 1076 3:4730� 1073 9:4000� 1070

20 6:7046� 1036 1:0164� 1085 9:1702� 1081 9:6935� 1078 1:7491� 1076

21 1:6103� 1039 6:6549� 1090 4:0026� 1087 3:1733� 1084 3:8172� 1081

22 4:0607� 1041 5:0695� 1096 2:0327� 1093 1:2087� 1090 9:6927� 1086

23 1:0727� 1044 4:4604� 10102 1:1923� 1099 5:3172� 1095 2:8427� 1092
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A ¼
Z 1

�1
dtfðtÞX

I

�I:�
2
I :ðt; 0Þ; (28)

where�I are constants and the�I are (components of) free
fields (in the sense that the Wick expansion is valid) with
two-point functions obeying

cI
IJh _’ðt;xÞ _’ðt0;x0Þix¼x0¼0 (29)

in the vacuum state, where ’ is the massless free scalar
field as before and the cI are constants. Defining the
dimensionless moments for A in the same way as for _’2,
one easily sees that the contribution of any connected
diagram becomes a sum over I of the contributions from
each species �I, with no cross terms mixing different
species in any given term. Thus

CnðAÞ ¼
X
I

ð�IcIÞnCnð _’2Þ; (30)

from which we may infer

WðA; �Þ ¼ X1
n¼0

�nCnðAÞ
n!

¼ X
I

Wð _’2; �IcI�Þ (31)

and

MðA; �Þ ¼ eWðA;�Þ ¼Y
I

Mð _’2; �IcI�Þ: (32)

These results hold for arbitrary smearing on the time axis.
Consider the energy density operator for the massless

scalar field:

�S ¼ 1
2ð _’2 þ @i’@

i’Þ: (33)

Because

h _’ðtÞ@i’ðt0Þix¼x0¼0 ¼ 0; (34)

there will be no cross terms involving both time and space
derivatives in the moments of �S, leading to

Cnð�SÞ ¼ Cn

�
1

2
_’2

�
þ Cn

�
1

2
@i’@

i’

�

¼ 1

2n
½Cnð _’2Þ þ Cnð@i’@i’Þ�: (35)

Next we note that

h@i’ðtÞ@j’ðt0Þix¼x0¼0 ¼ 1
3
ijh _’ðtÞ _’ðt0Þix¼x0¼0; (36)

which is seen by direct computation of the left-hand side
and comparison with Eq. (27). This relation implies that

Cnð@i’@i’Þ ¼ 3

3n
Cnð _’2Þ: (37)

A factor of 3 arises from the contraction of a product of n
Kronecker deltas; the final contraction yields 
i

i ¼ 3. Thus
we find

Cnð�SÞ ¼
�
1

2n
þ 3

6n

�
Cnð _’2Þ: (38)

Thus Eq. (23) implies

Wð�S; �Þ ¼ Wð _’2; 12�Þ þ 3Wð _’2; 16�Þ; (39)

and Eq. (25) leads to

Mð�S; �Þ ¼ Mð _’2; 12�Þ½Mð _’2; 16�Þ�3: (40)

Again, these results should be understood as a relation
between formal power series. Concretely, given the first
N moments of _’2, we can approximate Mð _’2; �Þ as a
polynomial, and then use the above relation to find the first
N moments of �S. The results are tabulated in the fourth
column of Table I.
Similarly, the components of the square of the electric

and magnetic field strength Ei and Bi obey

hEiðtÞEjðt0Þix¼x0¼0 ¼ hBiðtÞBjðt0Þix¼x0¼0

¼ 2
3
ijh _’ðtÞ _’ðt0Þix¼x0¼0: (41)

Following the same line of reasoning as before, we find

CnðE2Þ ¼ CnðB2Þ ¼ 3

�
2
3

�
n
Cnð _’2Þ; (42)

WðE2; �Þ ¼ WðB2; �Þ ¼ 3W

�
_’2; 23�

�
; (43)

and

MðE2; �Þ ¼ MðB2; �Þ ¼
�
M

�
_’2; 23�

��
3
: (44)

This result leads to the moments of the squared electric
field, tabulated in the third column in Table I. The results
for the square of the magnetic field are identical.
Finally, because we also have

hEiðt;xÞBjðt0;x0Þix¼x0¼0 ¼ 0; (45)

the energy density of the electromagnetic field

�EM ¼ 1
2ðE2 þ B2Þ (46)

has connected moments

Cnð�EMÞ ¼ 2

�
1
2

�
n
CnðE2Þ ¼ 6

�
1
3

�
n
Cnð _’2Þ; (47)

and hence

Wð�EM; �Þ ¼ 2W

�
E2; 12�

�
¼ 6W

�
_’2; 13�

�
; � � � (48)

and

Mð�EM; �Þ ¼
�
M

�
E2; 12�

��
2 ¼

�
M

�
_’2; 13�

��
6
; (49)

leading to the remaining entries in Table I.
An important observation is that these moments (apart

from those of the Wick square) grow too rapidly to satisfy
the Hamburger moment criterion, Eq. (11). This may be
confirmed by noting that in all cases lnan grows faster with
increasing n than n lnnþ c1nþ c0 for any constants c0
and c1. In fact, the growth for _’2 is shown in Appendix B to
be of the form

an � CDnð3n� 4Þ!; (50)
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where the constant D is proved to lie in the range
3:221667<D< 3:616898 (our numerical evidence sug-
gests D� 3:3586). For probability distributions known to
be confined to a half line, which is the case here, there is a
sufficient condition for uniqueness which is weaker than
the Hamburger moment criterion. This is the Stieltjes
criterion [20], which is

an � CDnð2nÞ!: (51)

Unfortunately, this criterion is also not fulfilled here. This
means that we cannot be guaranteed of finding a unique
probability distribution PðxÞ from these moments. This
issue will be discussed further in Sec. VIII A.

Note that in four dimensions, the operators ( _’2, E2, �S,
and �EM) all have dimensions of length�4. Their probabil-
ity distributions PðxÞ will be taken to be functions of the
dimensionless variable [see Eq. (20)]

x ¼ ð4��2Þ2A; (52)

whereA is the Lorentzian time average of ( _’2,E2,�S,�EM).

C. Lower bounds

In general, we may use relations between different mo-
ment generating functions to find relations between the
corresponding probability distributions, and especially be-
tween the lower bounds of these distributions. (Strictly,
these are the infima of the support of the distributions.) Let
pðxÞ and qðxÞ be two probability distributions, with mo-
ment generating functions Mðp; �Þ and Mðq; �Þ, respec-
tively. These generating functions can be expressed in
terms of the bilateral Laplace transforms of their probabil-
ity distributions:

Mðp; �Þ ¼
Z 1

�1
pðxÞe�xdx (53)

and

Mðq; �Þ ¼
Z 1

�1
qðxÞe�xdx: (54)

These integrals are guaranteed to converge at the lower
limits, due to the lower bounds on the support of our
probability distributions. To assure convergence at the
upper limit, we may assume Re� < 0. However, many of
our arguments below do not require convergence of the
integrals, which may be regarded as formal power series in
� on replacing the exponential by its Taylor series. Now let
p 	 qðxÞ be a probability distribution defined as the con-
volution of p and q:

p 	 qðxÞ ¼
Z 1

�1
dx0pðx� x0Þqðx0Þ: (55)

As is well known in probability theory, this is the distribu-
tion for the random variable obtained as the sum of inde-
pendent random variables with distributions p and q, and
its moment generating function is

Mðp 	 q; �Þ ¼
Z 1

�1
dx

Z 1

�1
dx0pðx� x0Þqðx0Þe�x

¼
Z 1

�1
dx0

�Z 1

�1
dxpðx� x0Þe�ðx�x0Þ

�
qðx0Þe�x0

¼
�Z 1

�1
dupðuÞe�u

��Z 1

�1
dx0qðx0Þe�x0

�
¼ Mðp; �ÞMðq; �Þ; (56)

where u ¼ x� x0. Thus the moment generating function
of a convolution is the product of the individual generating
functions; again, this holds in the sense of formal power
series, irrespective of convergence issues.
We can also give the relation of the lower bounds. As is

also well known in probability theory, the support of a
convolution p 	 q of two distributions consists of all values
expressible as the sum of a value in the support of p and a
value in the support of q. In particular, the greatest lower
bound on the support is the sum of the lower bounds of
the individual distributions. Explicitly, if bp and bq are the

lower bounds of p and q, then

pðxÞ ¼ 0 if x<bp; qðxÞ ¼ 0 if x<bq: (57)

The integrand of Eq. (55) vanishes if either x0 < bq, or

x� x0 < bp. This implies that

p 	 qðxÞ ¼ 0 if x < bp þ bq; (58)

and in fact this is the greatest lower bound. Thus the lower
bound of p 	 q is the sum of the bounds of p and of q.
Next consider the effect of a rescaling of �, and let

p�ðxÞ ¼ j�jpð�xÞ, where � � 0. Then

Mðp�; �Þ ¼ j�j
Z 1

�1
pð�xÞe�xdx ¼

Z 1

�1
pðx0Þeð�=�Þx0dx0

¼ M

�
p;

�

�

�
: (59)

Provided �> 0, p� ¼ 0 if x < bp=�, so the effect of

rescaling � in M is a rescaling of the lower bound by the
same factor. If �< 0, the lower bound on the support of p�

is�j�j�1 times the upper bound on the support of p, if this
exists; if there is no upper bound on the support of p, then
evidently p� has no lower bound in this case.
Now we may combine these results to relate the lower

bounds of various probability distributions to that for _’2.
Applied to a general operator of the form (28), they suggest
that the probability distribution for A is a convolution of
several copies of the probability distribution for _’2, with
various scalings. For example, Eq. (40) suggests that the
probability distribution for the energy density �S, smeared
along the time axis, is equal to the convolution of four
copies of the probability distribution for _’2, with various
scalings. In particular, recalling that x0ðAÞ denotes the
greatest lower bound on the support of the distribution
for A smeared in time, this suggests that
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x0ðAÞ ¼
�X

I

�IcI

�
x0ð _’2Þ (60)

Hence Eq. (40) suggests that x0ð�SÞ ¼ ð1=2þ 3�
1=6Þx0ð _’2Þ ¼ x0ð _’2Þ. Similarly, Eq. (44) suggests that
x0ðE2Þ ¼ 3� ð2=3Þx0ð _’2Þ ¼ 2x0ð _’2Þ, and Eq. (49) sug-
gests that x0ð�EMÞ ¼ 2� ð1=2Þx0ðE2Þ ¼ x0ðE2Þ. In
summary,

x0ð�EMÞ ¼ x0ðE2Þ ¼ 2x0ð�SÞ ¼ 2x0ð _’2Þ: (61)

Likewise, if we consider a combination such as the pres-
sure T11 ¼ ð1=2Þð _’2 þ ð@1’Þ2 � ð@2’Þ2 � ð@3’Þ2Þ, we
obtain the expected result that the probability distribution
is unbounded both from above and below. The above
derivations should be taken as suggestive, rather than
rigorous proofs, because of concerns about the uniqueness
of the underlying probability distributions. However, it
would be possible to prove them by writing the smeared
operator for �S, for example, as a sum of mutually com-
muting self-adjoint operators, each of which was essen-
tially a multiple of the smeared _’2 operator (under a
suitable unitary transformation). This could be done by
writing the field in a basis of spherical harmonics, in this
framework, the three powers of Mð _’2; �=6Þ arise from the
‘ ¼ 1 angular momentum sector, while the single power of
Mð _’2; �=2Þ arises from the ‘ ¼ 0 sector. Indeed, one of the
first quantum inequality bounds on the expectation value of
�S used precisely this decomposition [24]. More generally,
Eq. (29) could be used in conjunction with Wick’s theorem
to show that timelike smearings of :�2

I : and :�
2
J: commute

for I � J, at least in matrix elements between states
obtained from the vacuum by applying polynomials of
smeared fields, and might be used to put the other relation-
ships above on a firmer footing; we will not pursue
this here.

IV. LOWER BOUND ESTIMATES

Here we will discuss a technique, a Stieltjes moment
test, by which knowledge of a finite number of moments
may be used to obtain an approximate estimate of the lower
bound. If PðxÞ is a probability distribution with a lower
bound at x ¼ �x0, then its moments are

an ¼
Z 1

�x0

xnPðxÞdx: (62)

Let

IðyÞ ¼
Z 1

�x0

ðxþ yÞjqðxÞj2PðxÞdx; (63)

where qðxÞ is a polynomial and y � x0. We see that
IðyÞ � 0 because the integrand in Eq. (63) is non-
negative. If

qðxÞ ¼ XN�1

n¼0

�nx
n; (64)

then

IðyÞ ¼ XN�1

m;n¼0

MmnðN; yÞ�	
m�n � 0; (65)

where MðN; yÞ is a real symmetric N � N matrix with
elements

MmnðN; yÞ ¼ amþnþ1 þ yamþn; ð0 � m; n � N � 1Þ:
(66)

Let �n be the components of an eigenvector with eigen-
value �, then

P
N�1
n¼0 MmnðN; yÞ�n ¼ ��m, and IðyÞ ¼

�
P

N�1
m¼0 j�mj2. It follows that MðN; yÞ has no negative

eigenvalues, that is, it is a positive semidefinite matrix,
which we denote byMðN; yÞ � 0. This holds for all N and
all y � x0. However, as y decreases below x0, the lowest
eigenvalue is eventually zero and then negative eigenvalues
can occur. Define yN as the minimum value of y at which
MðN; yÞ � 0; in practice, it is easiest to compute yN as the
largest root of the Nth degree polynomial equation

detMðN; yÞ ¼ 0: (67)

Because MðN; yÞ is a leading principal minor of
MðN þ 1; yÞ, MðN þ 1; yÞ � 0 implies that MðN; yÞ � 0.
Consequently, yNþ1 � yN and the sequence inN converges
to a limit with

y1 ¼ lim
N!1yN � x0: (68)

Given a set of moments an of an unknown probability
distribution, we may form the matrices MðN; yÞ as above
and determine the values of yN . The above argument shows
that if yN ! 1 then the an cannot be the moments of a
probability distribution whose support is bounded from
below. On the other hand, suppose that a finite limit y1
exists. Then for any probability distribution ~P with the
same moments and support bounded below by �~x0, we
have y1 � ~x0. In particular, there is no probability distri-
bution accounting for the given moments with support
contained in ð�y1;1Þ.
Let us first apply this method to the case of the ’2

distribution, given by Eqs. (4) and (10), for which the exact
lower bound is known. The results of the calculation of the
yN through N ¼ 32 are given in Table II (computations
were performed in MAPLE to 40-digit accuracy; the re-
ported rounded figures are stable under increase of
the number of digits). We can improve the estimate of
the lower bound by extrapolation. A trial function of the
form yN ¼ aþ b=N þ c=N2 and a least-squares fit using
MAPLE [35] to determine values of a, b and c leads to
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yNð’2Þ � 0:166666666057� 0:167821368174

N

þ 0:001164170336

N2
: (69)

The above fit was obtained using the data points for 21 �
N � 33, with residuals of order 10�12 over these values,
and no more than 1:1� 10�6 for 2 � N � 20. Using the fit
displayed above, our lower bound estimate now becomes
y1 ¼ 0:166666666057, in extremely good agreement with
the exact bound, x0 ¼ 1=6, obtained from Eq. (10). This
suggests the conjecture that �y1 might also coincide with
the lower bound of the probability distribution in other
cases as well, but note the caveat at the end of this section.

A different numerical approach is to use an accelerated
convergence trick: given any sequence y ¼ ðyNÞ, define a

new sequence LðkÞy with terms

ðLðkÞyÞN ¼ N þ 1

k
ðyNþ1 � yNÞ þ yN; (70)

for finite sequences, LðkÞy is one term shorter than y. This is
a linear map on sequences, preserving constants and acting
on yN ¼ 1=Np by

ðLðkÞyÞN ¼ 1� p=k

Np þOð1=Npþ1Þ (71)

for any p, k > 0. Thus if yN ¼ aþ bN�k þ cN�‘ þ � � � ,
with ‘ > k, the sequence LðkÞy converges to a as

OðN�minf‘;kþ1gÞ, rather than OðN�kÞ. This trick may be

repeated: in the situation above, Lð2ÞLð1Þyð’2ÞN would be
expected to converge with OðN�3Þ speed to the limit. The
results give values differing from 1=6 by less than 10�6 for
all 11 � N � 31. Part of the ‘accelerated’ sequence is
given in Table III.
We may now apply the same procedure to the case of _’2,

where the exact bound is not known. The yNð _’2Þ are also
given in Table II, and clearly converge more slowly than
those of the yNð’2Þ. Indeed, successive differences

yNþ1ð _’2Þ � yNð _’2Þ appear to decay as OðN�3=2Þ. A

least-squares fit to the trial function yNð _’2Þ¼aþb=N1=2þ
c=Nþd=N3=2 gives

yNð _’2Þ � 0:0236174942666� 0:012425890959

N1=2

� 0:002768353926

N
� 0:006533917931

N3=2
(72)

using 21 � N � 33, with residuals less than 1:2� 10�10

on these values, and no more than 10�5 on 6 � N � 20.

Applying the acceleration technique,Lð3=2ÞLð1ÞLð1=2Þyð’2ÞN
gives a sequence differing from 0:02361 by no more than
8:1� 10�6 on 11 � N � 30. Taking this together with the
least-squares fit gives reasonable confidence in an estimate
y1ð _’2Þ ¼ 0:02361
 1� 10�5.

TABLE II. Table of the lower bounds, yN , for both ’2 and _’2.

N yNð’2Þ yNð _’2Þ
2 0.08304597359 0.01071401240

3 0.11085528820 0.01414254029

4 0.12478398360 0.01584995314

5 0.13314891433 0.01690199565

6 0.13872875370 0.01762865715

7 0.14271593142 0.01816742316

8 0.14570717836 0.01858660399

9 0.14803421582 0.01892432539

10 0.14989616852 0.01920370321

11 0.15141979779 0.01943965011

12 0.15268963564 0.01964226267

N yNð’2Þ yNð _’2Þ
13 0.15376421805 0.01981864633

14 0.15468536476 0.01997396248

15 0.15548374872 0.02011206075

16 0.15618237796 0.02023587746

17 0.15679884907 0.02034769569

18 0.15734684979 0.02044932047

19 0.15783718730 0.02054219985

20 0.15827850807 0.02062751059

21 0.15867781217 0.02070622001

22 0.15904082736 0.02077913144

23 0.15937228553 0.02084691828

N yNð’2Þ yNð _’2Þ
24 0.15967613018 0.02091014970

25 0.15995567400 0.02096931050

26 0.16021372020 0.02102481644

27 0.16045265677 0.02107702642

28 0.16067453067 0.02112625203

29 0.16088110659 0.02117276528

30 0.16107391397 0.02121680481

31 0.16125428495 0.02125858099

32 0.16142338519 0.02129828002

TABLE III. Table of the accelerated lower bounds for both ’2

and _’2.

N Lð2ÞLð1ÞyNð’2Þ Lð3=2ÞLð1ÞLð1=2ÞyNð _’2Þ
21 0.16666653954 0.02361472123

22 0.16666655611 0.02361451051

23 0.16666656993 0.02361432088

24 0.16666658153 0.02361414978

25 0.16666659135 0.02361399500

26 0.16666659972 0.02361385460

27 0.16666660689 0.02361372693

28 0.16666661307 0.02361361053

29 0.16666661843 0.02361350416

30 0.16666662310 0.02361340672

31 0.16666662718
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In contrast, the nonoptimal bound for _’2 and �S, given
by the method of Fewster and Eveson [28], is
x0ðFEÞ ¼ 27=128 � 0:21, which is an order of magnitude
larger. [This bound is given by minus the right-hand side of
Eq. (5.6) inRef. [28]multiplied by ð4��2Þ2.] If, in fact,�y1
coincides with the lower bound of the probability distri-
bution, we can now use the results in Eq. (61) to write
our estimates of the probability distribution lower
bounds as

�x0ð�EMÞ ¼ �x0ðE2Þ � �0:0472;

�x0ð�SÞ ¼ �x0ð _’2Þ � �0:0236:
(73)

These are also estimates of the optimal quantum inequality
bounds for each field.

There is an important caveat to this reasoning, however.
If the moments do not correspond to a unique probability
distribution (i.e., if they are indeterminate in the
Hamburger sense) then there will exist probability distri-
butions, called von Neumann solutions in Ref. [20], with
the given moments that are pure point measures, in contrast
to the continuum probability distribution that would be
expected for the quantum field theory operators we study
(and which we find for the �2 case). As the moments arise
from a probability distribution supported in a half line,
there is a distinguished von Neumann solution, called the
Friedrichs solution in Ref. [20], that is supported in a half
line ½�xF;1Þ and has the property that no other solution to
the moment problem can also be supported in ½�xF;1Þ.
(See Appendix C1 of [20] for a brief summary.) Hence if
operator A has Hamburger-indeterminate moments, we
would have y1ðAÞ ¼ xFðAÞ< x0ðAÞ. Nonetheless, the re-
sults in Eq. (73) would still be true if the approximation
signs are replaced by & .

It is of interest to note that the magnitudes of the
dimensionless lower bounds, given in Eq. (73), are small
compared to unity. Given that the probability distribution
must have a unit zeroth moment and a vanishing first
moment, this implies that PðxÞ � 1 in at least part of the
interval �x0 < x< 0. Thus the spike at the lower bound
found in the two-dimensional case may be a generic fea-
ture. The small magnitudes of x0ð�SÞ and x0ð�EMÞ imply
strong constraints on the magnitude of negative energy
which can arise either as an expectation value in an arbi-
trary state, or as a fluctuation in the vacuum. They also
imply that an individual measurement of the sampled
energy density in the vacuum state is very likely to yield
a negative value.

V. FITS FOR THE APPROXIMATE FORM OF THE
PROBABILITY DISTRIBUTION

In this section, we explore the extent to which knowl-
edge of a finite set of moments may be used to obtain
information about PðxÞ beyond the lower bounds found in
Sec. IV.

A. A procedure to find the parameters of the tail of PðxÞ
We begin with the large x limit. Let us adopt the ansatz

that

PðxÞ � c0x
be�axc ; (74)

for large x. We assume that we can use this form of the tail
to compute the large n moments, and find

an ¼
Z 1

�x0

xnPðxÞdx � c0
Z 1

0
xnþbe�axc

¼ c0
c
a�ðnþbþ1Þ=c½ðnþ bþ 1Þ=c� 1�!; (75)

for n � 1. We expect the dominant contribution to come
from x � 1, so we set the lower limit in the second integral
to zero for convenience.
Next we compare Eq. (75) with Eq. (50) for the large n

form of the moments. This comparison reveals that we
should have

c ¼ 1
3; b ¼ �2; a ¼ D�1=3; c0 ¼ CD=3:

(76)

With these values for c and b, the ratio of successive
moments from Eq. (75) becomes

anþ1

an
� 3ðn� 1Þð3n� 2Þð3n� 1Þ

a3
: (77)

Now we may use the computed values of two successive
moments, such as n ¼ 64 and n ¼ 65, to find the value of
a, and then the value of c0 from Eq. (75). The results for the
different operators are listed in Table IV. It should be noted
that knowledge for further moments beyond n ¼ 65 could
change the values in this table. A rough error analysis
suggests that these values are correct to about five signifi-
cant figures.
The values of the constants a and c0 for the various cases

can be related to one another by means of the relations
between the connected moments, Eqs. (38) and (47), de-
rived in Sec. III B. First, we need the fact that the connected
moments and the full moments rapidly approach one
another for large n, specifically

Cn � anð1þOðn�4ÞÞ; n � 1: (78)

This relation may be demonstrated analytically, or inferred
numerically from the computed moments. This means that
Eqs. (38) and (47) hold for the full moments, an when n is
large. The former relation may be simplified to anð�SÞ �
2�nanð _’2Þ. The asymptotic form, Eq. (50), for the mo-
ments of _’2 also holds for the other operators, but with
different choices of the constants C and D:

Cð _’2Þ ¼ Cð�SÞ ¼ 1
3CðE2Þ ¼ 1

6Cð�EMÞ and

Dð _’2Þ ¼ 2Dð�SÞ ¼ 3
2DðE2Þ ¼ 3Dð�EMÞ: (79)

For example, anð�EMÞ ¼ 6ð1=3Þnanð _’2Þ, from Eq. (47),
implies the above relations between Cð _’2Þ and Cð�EMÞ
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and between Dð _’2Þ and Dð�EMÞ. These relations and
Eq. (76) imply that

c0ð _’2Þ ¼ 2c0ð�SÞ ¼ 1
2c0ðE2Þ ¼ 1

2c0ð�EMÞ and

að _’2Þ ¼ 2�1=3að�SÞ ¼
�
2
3

�
1=3

aðE2Þ ¼ 3�1=3að�EMÞ:
(80)

These relations are borne out by the values in Table IV.

B. Estimating when our tail fit is a good approximation

Since the Hamburger and Stieltjes moment conditions
are not fulfilled for our moments, we do not know whether
our probability distributions are unique. However, if we
assume that they are, then we can estimate the range in x
where we expect our fitted tails to give a good estimate of
the actual distributions. Our general form for the tails of the
probability distributions is approximately

PfitðxÞ � c0x
�2e�ax1=3 : (81)

As an example, for �EM, this gives a good fit ð� 10%Þ for
n ¼ 4, 5, 6, 7, 8 and a better fit ð� 1%Þ for 9 � n � 64.
(We used n ¼ 65 to set c0, so it should not count.) Let

fnðxÞ ¼ xnPfitðxÞ ¼ c0x
n�2e�ax1=3 ; (82)

so

An ¼
Z 1

�x0

fnðxÞdx (83)

is our predicted moment from the above form. The maxi-
mum of the function fnðxÞ will be where f0nðxÞ ¼ 0,
corresponding to

xmax ¼
�
3ðn� 2Þ

a

�
3
: (84)

If PfitðxÞ gives a good approximation for An, then it should
give a good approximation to the exact PðxÞ for x�
OðxmaxÞ.

For the electromagnetic energy density a � 1, so for
n ¼ 4, xmax � 216, and for n ¼ 65, xmax � 6751269. Thus
if Pfit gives reasonable fits to the moments for 4 � n � 65,
then it should be a fair approximation to the exact distri-
bution in the range, roughly, 102 � x � 107, assuming
uniqueness of the distribution.

C. Approximate fits for PðxÞ including the inner part

One can attempt to model the entire probability distri-
bution, including the inner part, by experimenting with
functions of the form

PðxÞ ¼ c1ðx0 þ xÞ�� exp½��ðx0 þ xÞ��
þ c0ð�0 þ ðx0 þ xÞ2Þ�1 exp½�aðx0 þ xÞ1=3�: (85)

A reason for using this form is that one need not bother
with trying to match inner and outer parts of the function.
Depending on the choices of the constants, one can possi-
bly get the first term to dominate for small x, and the
second for large x. We use the values of a, b1 from the
tail fits and the values of x0 from the quantum inequality
bounds given earlier in Sec. IV.
The most interesting case is the distribution for �EM, the

electromagnetic energy density. For the values of the con-
stants given in Table V, the fractional errors between the
calculated and fitted moments in the 0th through 22nd mo-
ments are given in Table VI. Since the exact value of the first
moment is 0, we list the fitted value separately as:
1stmoment ¼ 0:0247001. The errors in the fourth and fifth
moments are somewhat large (� 15%), but the errors tend to
progressively decrease as we go to large n. So this heuristic
model distribution gives a reasonably good fit for the inner-
most part of the distribution and the tail, but does somewhat
poorly for the middle part of the distribution.
The graph of PðxÞ vs x for this case is given in Fig. 2. It

has a spike (an integrable singularity) at the quantum in-
equality lower bound. However, our method may not be
sufficiently sensitive to conclude the existence of this sin-
gularity. It is possible that there are nonsingular distributions
which fit the first several moments as well as does our
postulated form. Thus we cannot conclude whether the
actual distribution has a spike in it at the lower quantum
inequality bound, as indicated in the plot. The distributions
for �S and _’2 in two-dimensional spacetime, which are
known exactly and uniquely, both have a spike at the quan-
tum inequality lower bound, as does the distribution for ’2

in four dimensions [15]. In Tables V and VI, we list the
fitting constants and fractional errors, respectively, for the

TABLE IV. Values of the parameters for the tails, in the form
of Eq. (74).

Operator c0 a b c

_’2 0.47769605 0.6677494904 �2 1=3
E2 0.95539211 0.7643823521 �2 1=3
�S 0.23884802 0.8413116390 �2 1=3
�EM 0.95539211 0.9630614156 �2 1=3

TABLE V. Fitting constants for the model distribution for �EM

in Eq. (85).

Constant �EM

a 0.9630614156

c0 0.95539211

x0 0.0472

�0 610

c1 0.028

� 19.65

� 1.05

� 0.9999
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�EM probability distribution. The values of the constants
were obtained by calculating the moments from Eq. (85) and
using the MATHEMATICA Manipulate command to adjust the
values of the constants to get the smallest fractional errors
between the fitted moments and the actual moments.

VI. BOUNDS ON THE CUMULATIVE
DISTRIBUTION FUNCTION

As already mentioned, it is possible that the moment
problem is indeterminate and that there are many proba-
bility distributions with these moments. Here, we show that
no such distribution can have a tail decreasing much more
slowly than that studied above. Our tool for this purpose is
a simple variant of Chebyshev’s inequality: if X is any
random variable taking values in ½�x0;1Þ, with moments
an, then the probability ProbðX � �Þ that X exceeds any
given � is bounded by

Prob ðX � �Þ � an þ ProbðX < 0Þxn0
�n (86)

for all n. To prove this, let d�ðxÞ be the probability
measure of X and then compute

�nProbðX � �Þ ¼ �n
Z 1

�
d�ðxÞ �

Z 1

�
xnd�ðxÞ

�
Z 1

0
xnd�ðxÞ ¼ an �

R
0
�x0

xnd�ðxÞ
� an þ ProbðX < 0Þxn0 : (87)

[The term ProbðX < 0Þxn0 is only needed for odd n, in fact.
We have also written d�ðxÞ, rather than PðxÞdx for the
probability measure to emphasise that we are not assuming
a continuous probability density function.] In our case, we
know that x0 < x0ðFEÞ< 1, so we have

Prob ðX � �Þ � inf
n2N

an þ 1

�n : (88)

Now, for moments growing as an � CDnð3n� 4Þ!, the
ratio of successive terms in the infimum is

anþ1 þ 1

�ðan þ 1Þ �D
ð3n� 1Þð3n� 2Þð3n� 3Þ

�
; (89)

so, for each fixed �, the sequence will decrease until the

term where n� ð1=3Þð�=DÞ1=3 and will increase there-
after. This gives an asymptotic bound on the tail probability

Prob ðX � �Þ

& C

�
D

�

�ð1=3Þð�=DÞ1=3
�ðð�=DÞ1=3 � 3Þ

� ffiffiffiffiffiffiffi
2�

p
C

�
D

�

�
7=6

e�ð�=DÞ1=3 : (90)

as � ! 1.
This gives an upper bound on the tail probability distri-

bution, which is not much more slowly decaying than
that for our fitted tail, for which the tail probability would

0.0 0.1 0.2 0.3 0.4

0.2

0.4
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1.0
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x)
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FIG. 2 (color online). The graph of PðxÞ vs x of our fit to the
probability distribution function for �EM, the electromagnetic
energy density sampled in time with a Lorentzian of width �.
Here x ¼ 16�2�4�EM. The distribution has an integrable singu-
larity at the conjectured optimal quantum inequality bound x ¼
�x0 ¼ �0:0472.

TABLE VI. Table of fractional errors. Here the fractional error
is ½anðfitÞ � an�=an, where the an are given in Table I, and the
anðfitÞ are computed from Eq. (85). For the n ¼ 1 case, the
fractional error is not defined, since the first moment is 0.
Fractional errors in succeeding moments beyond n ¼ 5 are
progressively smaller. Although all moments through n ¼ 65
were used, we display the fractional errors through n ¼ 21.

n �EM

0 0.00450644

1st moment not applicable

2 �0:00661559
3 �0:0770297
4 �0:152164
5 �0:150279
6 �0:117773
7 �0:0843077
8 �0:0590582
9 �0:0420107
10 �0:0308225
11 �0:0233756
12 �0:0182526
13 �0:0145945
14 �0:0118911
15 �0:00983456
16 �0:0082327
17 �0:00696063
18 �0:00593416
19 �0:00509465
20 �0:00440012
21 �0:00381978
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be decaying like CðD=�Þ4=3e�ð�=DÞ1=3 . The following
discussion sketches how information on the lower bound
can be obtained; this could be developed into a rigorous
discussion (and probably sharpened) with further work. In
fact, we do not seek a strict lower bound on the tail
probability, but rather aim to show that it must be very
often of the order of the fitted tail or higher.

Let QðxÞ ¼ ProbðX � xÞ. Then we have, for any
�> �> x0,

an � �nProbðX < �Þ þ
Z 1

�
xnd�ðxÞ; (91)

� �nProbðX < �Þ þQð�Þ�n þ n
Z 1

�
QðxÞxn�1dx; (92)

� �n þ n
Z �

�
QðxÞxn�1dx

þ ffiffiffiffiffiffiffi
2�

p
CDn�1n

Z 1

�

�
x

D

�
n�13=6

e�ðx=DÞ1=3dx; (93)

� �n þ n
Z �

�
QðxÞxn�1dx

þ 3
ffiffiffiffiffiffiffi
2�

p
CDnn�ð3n� 7=2; ð�=DÞ1=3Þ ; (94)

in which we have integrated by parts in the second line and
used the fact that Qð�Þ ¼ 1� ProbðX < �Þ, as well as the
upper bound found above; �ðN; zÞ is the upper incomplete
�-function. We can now make n-dependent choices of �
and � so that the first and third terms are negligible in
comparison with an for large enough n. For example,
� ¼ ð4nÞ3D and � ¼ n3D will do: it is a simple applica-

tion of Stirling’s formula to see that �n=ðDnð3n� 4Þ!Þ �
const� n7=2ðe=3Þ3n ! 0; for the upper end we first esti-

mate �ð3n� 7=2; 4nÞ � 4ð4nÞ3n�9=2e�4n using Laplace’s
method (see [36], Section 4.3) [37] which gives

n
�ð3n� 7=2; 4nÞ

ð3n� 4Þ! � 1ffiffiffiffiffiffiffi
2�

p
�
3

4

�
7=2
�
64

27e

�
n ! 0: (95)

With these choices of � and � in force, we set

FðxÞ ¼ xQðxÞeðx=DÞ1=3 , whereupon we have

n
Z �

�
FðxÞxn�2e�ðx=DÞ1=3dx * CDnð3n� 4Þ! (96)

from (94). Now let S be the subset of x 2 ½�;�� for which
FðxÞ � ð1=2ÞCDðD=xÞ1=3. We bound F from above byffiffiffiffiffiffiffi
2�

p
CDðD=xÞ1=6 on S, and by ð1=2ÞCDðD=xÞ1=3 on the

complement Sc of S in ½�;��, to giveZ �

�
FðxÞxn�2e�ðx=DÞ1=3dx

� ffiffiffiffiffiffiffi
2�

p
CD7=6

Z
S
xn�13=6e�ðx=DÞ1=3dx

þ CD4=3

2

Z
Sc
xn�7=3e�ðx=DÞ1=3dx: (97)

Now the first integral on the right-hand side can be
bounded from above by the supremum of the integrand
multiplied by the Lebesgue measure jSj of S, while the
second is bounded by the integral over all ½0;1Þ. The
supremum mentioned occurs for x ¼ ð3n� 13=2Þ3D, and
we find

CDnð3n� 4Þ! & jSj ffiffiffiffiffiffiffi
2�

p
CDn�1

� nð3n� 13=2Þ3n�13=2e�ð3n�13=2Þ

þ 1
2CD

n3n�ð3n� 4Þ: (98)

Rearranging and using Stirling’s formula, this requires

jSj * ð3n� 4Þ!e3n�13=2Dffiffiffiffiffiffiffi
8�

p
nð3n� 13=2Þ3n�13=2

� 27

2
Dn2: (99)

Summarizing, we have shown that in the interval
½n3D; 4n3D�, for n sufficiently large, we have

Prob ðX � xÞ � 1

2
C

�
D

x

�
4=3

e�ðx=DÞ1=3 (100)

on a set with measure at least ð27=2ÞDn2. It seems likely
that this is a substantial underestimate of the measure of S,
as some of the estimates used in the last part of the argu-
ment are rather weak.
Thus the broad behavior of the tail of the probability

distribution is determined by the moments, even if the
exact probability distribution is not uniquely determined.
In the applications we give below, it is only the broad
behavior that is required.

VII. POSSIBLE APPLICATIONS FOR THE TAIL

A. Black Hole Nucleation

The fact that the energy density probability distribution
has a long positive tail implies a finite probability for the
nucleation of black holes out of the Minkowski vacuum via
large, though infrequent positive fluctuations. This proba-
bility cannot be too large, of course, or it will conflict with
observation. Let us sample a spacetime region (a cell) over
a size ‘ � �, where � equals the sampling time. For an
energy density �, which is roughly constant in space, the
associated mass will beM � �‘3. This can be a black hole
if GM � ‘, or ‘2pM � ‘, in units where ℏ ¼ c ¼ 1 and ‘p
is the Planck length, which implies � � 1=ð‘2p‘2Þ. Here we
chose � � ‘, so that the sampling time is approximately
the light travel time across the black hole.
Note that we should really use the probability distribu-

tion for energy density sampled over a spacetime volume,
with the spatial and temporal dimensions approximately
equal. For the purpose of an order of magnitude estimate,
we assume that the probability distribution for sampling in
time alone will yield roughly similar results.
Let our observation volume be V and our total observa-

tion time be T. The number of cells in this spacetime
volume is N ¼ VT=‘4. Because black hole nucleation
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will be a rare event, we assume that different nucleation
events will be widely separated and uncorrelated. The
number of black holes, n, nucleated in this spacetime
volume, VT is then n � NPn, where Pn is the probability
of a black hole nucleation in our sampled spacetime vol-
ume ‘4. Let us estimate that

Pn �
Z 2x

x
PðyÞdy; (101)

where

x ¼ 16�2�4� ¼ 16�2 ‘
2

‘2p
¼ 16�2

�
M

mp

�
2
; (102)

and mp is the Planck mass. Here Pn is the probability of

nucleating a black hole in the range between x and 2x.
However, in the limit of large x, Pn will be independent of
the exact upper limit in Eq. (101). Let the probability
distribution have a tail of the form given by Eq. (81).
Then

Pn � c0
Z 2x

x
y�2e�ay1=3dy

¼ 3c0a
3
Z u2

u1

u�4e�udu

¼ 3c0a
3½�ð�3; u1Þ � �ð�3; u2Þ�: (103)

Here u ¼ ay1=3, u1 ¼ ax1=3, u2 ¼ 21=3u1, and �ð�3; uÞ is
an incomplete gamma function. This function has the
asymptotic form

�ð�3; uÞ � u�4e�u (104)

for u � 1. From this form, we see that the contribution
from the lower integration limit dominates, and we
have

Pn � 3c0
a

x�ð4=3Þe�ax1=3 (105)

for large x.
Thus we have for the mean number of nucleated black

holes

n ¼ VT

‘4
Pn ¼ VT

‘p
8M4

Pn; (106)

or, using Eq. (105),

n � 3c0
a

ð16�2Þ�4=3

�
VT

‘p
4

��
mp

M

�
20=3

exp½�a0ðM=mpÞ2=3�;
(107)

where a0 ¼ ð16�2Þ1=3a. For the energy density of the EM
field, c0 � 0:955, a � 0:963 so a0 � 5:2. Therefore for
this case we have

n � 10�2

�
VT

‘p
4

��
mp

M

�
20=3

exp½�5:2ðM=mpÞ2=3�: (108)

To estimate the probability of black hole nucleation, let
us first choose V ¼ 1 cm3, T ¼ 1 sec , and n ¼ 1, which
gives VT=‘4p � ð1033Þ31043 � 10142. We want the proba-

bility of one black hole forming in one cubic centimeter of
space over an observation time of one second. We can use
Eq. (108) to determine the resulting mass of the black hole,
which turns out to beM � 400mp. Let us now consider our

observation volume and time to be the size and age of the
Universe, which gives VT=‘4p � ð1028=10�33Þ4 � 10244.

Taking n ¼ 1 again, and using Eq. (108), yields M �
990mp. Therefore, if we observe a volume the size of the

Universe for a time equal to the age of the Universe, we are
likely to see the nucleation of only about one 103mp black

hole from the vacuum.
Thus nucleation of black holes of mass �102mp is

common, but 103mp black holes are very rare. Why do

we not notice these 400mp � 10�2 g black holes?

Presumably they must appear for a very short time and
be surrounded by negative energy which quickly destroys
them.

B. Boltzmann brains

Recently, the ‘‘Boltzmann brain’’ problem has become
the subject of increasing interest in cosmology [38,39].
This is the possibility that conscious entities, which may
or may not resemble biological brains, might spontane-
ously nucleate and exist for a finite time. Anthropic
reasoning requires a count of observers, as the anthropic
prediction for the value of an observable is the value most
likely to be found by a typical observer. If the typical
observer is a Boltzmann brain in intergalactic space, and
not an observer on an Earthlike planet, this would greatly
alter anthropic predictions. As a somewhat more specula-
tive application, we consider what the tails of our
probability distributions have to say about the probability
of nucleating Boltzmann brains in four-dimensional
Minkowski spacetime. This calculation is similar to the
one above for the nucleation of black holes.
Consider a spatial region of size ‘, a timescale �, and a

massM, so that the mean energy density is � � M=‘3. We
want to use the tail of the EM energy density probability
distribution to estimate the probability of mass M appear-
ing in this specific region in a particular interval �. Our
sampled energy density is x ¼ 16�2�4� � �4M=‘3. So we
have that

PðxÞ / e�ax1=3 � e�x1=3 � exp

�
��4=3

M1=3

‘

�
(109)

where we have ignored the prefactor and used a � 1. The
prefactor would contain information about the fraction
of massM’s that could think. Even if very small, this factor
is likely to pale in importance compared to the exponential
factor derived below. Let M ¼ 1 kg � 1041 cm�1,
‘ ¼ 10 cm, and � ¼ 0:3 sec� 1010 cm. These values give
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�4=3
M1=3

‘
� 1026; (110)

so

P � e�1026 : (111)

This is much larger than the expð�1050Þ estimate of Page
[40], who assumes that P / e�I, where I ¼ Mt ¼ action.
So our energy density probability distribution makes the
Boltzmann brain problem worse. Although the probability
per unit volume for the nucleation of a Boltzmann brain
may seem exceedingly low, the available volume could
make them more numerous than other observers. Note
that in this case, the energy density has been averaged
over a spacetime region which is much larger in the time
direction than in the spatial directions, � � ‘. Hence the
probability distribution for the energy density averaged in
time alone should be a good approximation here.

VIII. DISCUSSION

A. Uniqueness Issues

As was noted in Sec. III B, the moments which we
calculate for : _’2: and related operators satisfy neither the
Hamburger condition, Eq. (11), nor the Stieltjes condition,
Eq. (51) for uniqueness. Thus none of our results for PðxÞ
are rigorously guaranteed to be unique. However, there are
some observations which are relevant here. First, these are
sufficient, but not necessary, conditions for uniqueness.
There is a necessary and sufficient condition [20], but
this condition requires detailed knowledge of all moments
and does not seem to be testable in our problem. Second,
rapid growth of moments does not automatically mean
nonuniqueness. There are examples of sets of moments
which grow at arbitrary rates, but nonetheless are associ-
ated with unique probability distributions.

On the other hand, if the probability distribution is
continuous, with probability density function pðxÞ on
½�x0;1Þ, and

Z 1

�x0

logðpðxÞÞdxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ x0

p ð1þ xÞ>�1; (112)

then the Stieltjes problem is indeterminate for the moments
of p (assuming they all exist, and that x0 < 1 for conve-
nience); there is more than one probability distribution
supported in ½�x0;1Þ with the same moments. This is a
theorem of Krein (modified slightly to our setting); see,
e.g., Theorem 5.1 in Ref. [41]. In particular, this would
show that any distribution whose tail was exactly equal to

PfitðxÞ ¼ c0x
�2e�ax1=3 for large enough x had indetermi-

nate moments in the above sense. On the other hand, if pðxÞ
were to oscillate around PfitðxÞ, but sometimes take much
smaller values than Pfit, then the logarithm will take large
negative values; such behavior could lead the integral to
diverge and allow the moment problem to be determinate.

To illustrate how delicate the uniqueness issue can be,

we note that the probability distribution PðxÞ ¼
ð1=6Þ#ðxÞe�x1=3 has moments an ¼ ð1=2Þð3nþ 2Þ!, that
are indeterminate in the Stieltjes sense on ½0;1Þ by
Krein’s theorem. However, mild modifications of these
moments yield determinate problems. For example, by
Cor. 4.21 in Ref. [20], there exists a constant c so that
the set of moments ~a0 ¼ 1, ~an ¼ cð3n� 1Þ! is a determi-
nate problem, corresponding to a purely discrete probabil-
ity distribution.
Overall, we are not able to resolve the question of

determinacy, although on balance our expectation is that
the problem is indeed indeterminate. Certainly we have not
been able to find any positive evidence to suggest that the
moments are determinate. Nonetheless, certain features of
the probability distribution can be ascertained. We have
shown in Appendix A that our moments grow as a power
times ð3n� 4Þ!. This rate of growth seems to be just what
is needed to produce distributions with tails falling as in

Eq. (81), that is, proportional to x�2e�ax1=3 . We have
argued that any probability distribution arising from our
moments will have a broadly similar tail. This asymptotic
behavior is all that is needed for many applications of our
distributions, such as those discussed in Sec. VII.
It is also worth noting that the conclusion that the

probability distribution has a lower bound is independent
of any concerns about uniqueness, because this follows
from existing quantum inequality bounds. Our actual esti-
mates of the lower bounds, given in Sec. IV, are not strictly
independent of the uniqueness issue, but only use a finite
number of the moments. Thus the numerical answers ob-
tained only depend upon the values of these moments.

B. Summary

In this paper we have explored possible probability
distributions for averaged quadratic operators in the four-
dimensional Minkowski vacuum state. We use averaging
with a Lorentzian function of time, and investigate the
distributions for _’2, where ’ is a massless scalar field,
for �S, the associated scalar field energy density, for E

2, the
squared electric field, and for �EM. In all cases, we infer
that the distributions have some features in common with
our previous results [15] for a conformal field in two
dimensions and for ’2 in four dimensions. Specifically,
there is a lower bound on the distribution, which coincides
with the optimal quantum inequality bound on the associ-
ated expectation value in an arbitrary quantum state.
Furthermore, there is no upper bound on the distributions,
so arbitrarily large positive quantum fluctuations are
possible.
We have outlined a procedure that, in principle, allows

the calculation of an arbitrary number of moments of a
given distribution. In practice, this procedure can be car-
ried at least as far as the 65th moment, which is sufficient to
allow reasonable numerical estimates of both the lower
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bounds, and of the asymptotic tail for large argument.
These are not guaranteed to be unique, but as was argued
in the previous subsection, they may be useful.

If we accept the forms of the tails which we find, then
several physically interesting applications follow, includ-
ing the nucleation rates for black holes and Boltzmann
brains. It should also be possible to apply these results to
the study of the small-scale structure of four-dimensional
spacetime, along the lines studied in two dimensions in
Ref. [21]. It may also be possible to learn more about the
non-Gaussian density and gravity wave perturbations in
inflationary cosmology,whichwere studied inRefs. [10–12].
Another implication of our form for the tail is that vacuum
fluctuations will dominate thermal fluctuations at high
energies. The Boltzmann distribution falls exponentially
with energy, but vacuum energy density fluctuations fall
more slowly and hence eventually dominate.

There is clearly room for further work on the topic of
this paper. One obvious problem is to determine whether or
not the moment problems we have studied are determinate:
if so, one would like to know the detailed form of the
corresponding probability distributions; if not, one would
like to know how much information may be extracted from
the moments, nonetheless, along the lines of the arguments
in Sec. VI. In addition, our results have now trapped the
sharp quantum inequality bounds for various operators
between the lower bounds given by the methods of
Ref. [28] and the bounds obtained in Sec. IV, which are
an order of magnitude smaller. If the moment problem is
determinate, the latter bounds will coincide with the sharp
bound; otherwise it would be interesting to determine what
the sharp bound actually is. Recall that here we deal only
with Lorentzian sampling and only in the time direction. It
will also be of interest to investigate more general sampling
functions, and the effects of sampling in space as well as
time.

ACKNOWLEDGMENTS

This work was supported in part by the National
Science Foundation under Grants No. PHY-0855360 and
No. PHY-0968805.

APPENDIX A: COMPUTATION OF THE
MOMENTS

We describe how the moments of smeared Wick squares
may be computed for a general derivative� of the massless
field ’ in four dimensions, writing p for one more than
twice the number of derivatives, so p ¼ 1 for :’2: and
p ¼ 3 for : _’2:. Thus the two-point function for �, re-
stricted to the time axis, is given by

h�ðtÞ�ðt0Þi ¼ 1

4�2

Z 1

0
d!!pe�i!ðt�t0�i	Þ: (A1)

With smearing along the time axis against smearing func-
tion f, the rules for computing the contribution to the nth
connected moment of a given connected graph on n verti-
ces may be stated in Fourier space as follows. For each line,
the form of the two-point function entails that there is a
momentum integral over the positive half line and a factor
of the pth power of the momentum; for each vertex there is

a factor of f̂ð!j þ!kÞ if the vertex is the source of the

lines carrying momenta!j and !k, a factor of f̂ð!j �!kÞ
if the vertex is the source (resp., target) of the line carrying

momentum !j (resp., !k), or a factor of f̂ð�!j �!kÞ if
the vertex is the target of the lines carrying momenta !j

and !k; there is an overall factor of ð4�2Þ�n and a combi-

natorial factor that is 2n for n � 3 and 2 for n ¼ 2. Here f̂
is the Fourier transform, defined with the convention

f̂ð!Þ ¼
Z 1

�1
dtfðtÞei!t: (A2)

An important point is that if, as for the Lorentzian, f̂ is real
and positive, then every graph contributes positively to the
moment. Thus any individual graph on n vertices gives a
lower bound on the nth connected moment. If one wishes
to compute the dimensionless moments, defined in the text

so that an ¼ ð4��ðpþ1Þ=2Þ2n�n, the overall factor

2nð4�2Þ�n is replaced by 8n��ðpþ1Þ for n � 3 (or 32 in
the case n ¼ 2).
In the particular case of the Lorentzian (9), we have

f̂ð!Þ ¼ e�j!j�, and a simplification of the computation
rules: a vertex met by lines carrying momenta !j and !k

contributes e�j!j�!kj� if it is a target for one and a source

for the other, or e�ð!jþ!kÞ� otherwise. This means that the
overall integral over !1; . . . ; !n factorizes at each vertex
that is either a double source or a double target.
Recall that the graphs involved are drawn on n vertices

x1; . . . ; xn, placed in increasing order from left to right.
Each vertex is met by two distinct lines, and each line is
directed to the right. In particular, x1 is the source of both
lines connected to it. We may represent such a graph by a
permutation � of the set f1; . . . ; ng of integers, subject to
the conditions that �ð1Þ ¼ 1 and �ð2Þ<�ðnÞ. To recon-
struct a graph from a permutation, draw lines from x1 ¼
x�ð1Þ to x�ð2Þ, from x�ð2Þ to x�ð3Þ, and so on, finishing with a
line from x�ðnÞ to x1. [For this reason, it is convenient to
adopt a convention that �ðnþ 1Þ ¼ 1]. Then place
rightwards-pointing arrows on each line. On the other
hand, to encode a graph as a permutation, start at x1 and
follow the shorter of the two lines to the vertex it meets
(i.e., of the two vertices joined to x1, choose the one with
the smaller label), and continue along the other line meet-
ing that vertex. At each subsequent vertex, continue along
the line not previously traversed, eventually returning to x1.
Then �ðkÞ is defined to be the kth vertex met on this trip.
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A run of � is a set of consecutive integers in f1; . . . ; nþ
1g, say p, pþ 1; . . . q, such that �ðpÞ, �ðpþ 1Þ; . . . ; �ðqÞ
is a monotone sequence, either ascending or descending,
and so that no superset of consecutive integers has the same
property. The length of the run is defined to be q� p.
Every permutation used to label our graphs corresponds to
an even number of runs, alternating between ascending and
descending, whose lengths sum to n, and with consecutive
runs sharing a common endpoint. For example, the permu-
tation 14536782 [i.e., �ð1Þ ¼ 1, �ð2Þ ¼ 4, �ð3Þ ¼ 5; . . . ]
has runs 1, 2,3; 3, 4; 4, 5, 6, 7 and 7, 8, 9, of lengths 2, 1, 3,
2; representing each run by its image under the permuta-
tion, these runs are more transparently written as 145, 53,
3678, 821.

The contribution to the nth connected moment arising
from the graph corresponding to any given permutation is
easily seen to factorize into terms corresponding to the
runs, whose values depend only on the length of the run: in
our example, the graph contributes 88K2K1K3K2 ¼
88K1K

2
2K3 to the dimensionless connected moment C8,

where the Kj correspond to the special case Kj ¼ Kð0Þ
j of

the family of integrals

KðrÞ
n

¼ 2r

r!

Z
ðRþÞ�n

dk1dk2 � � � dknkpþr
1 ðk2 � � � knÞp

� e�k1e�
P

n�1
i¼1

jkiþ1�kije�kn : (A3)

(Here, ki ¼ !i� are dimensionless versions of the mo-
menta previously used).

These considerations reduce the computation of the nth
connected moment to two problems: the computation of
the Kj and the enumeration of all permutations in the class

considered with a given run structure. To address the first
of these, we note the easily proved identity

Z 1

0
dkkqe�ke�jk�
j ¼ q!e�


2qþ1

Xqþ1

r¼0

ð2
Þr
r!

; (A4)

of which the standard integral

Z 1

0
dkkpe�2k ¼ p!

2pþ1
(A5)

is the 
 ¼ 0 special case, and which entails the recurrence
relation

KðrÞ
n ¼ p!

2pþ1

pþ r
p

� � Xpþrþ1

r0¼0

Kðr0Þ
n�1: (A6)

As

KðrÞ
1 ¼ 2�ðpþ1Þp! pþ r

p

� �
;

it follows that KðrÞ
n is given by

KðrÞ
n ¼

�
p!

2pþ1

�
n pþ r

p

� �

� Xpþ1þr

rn�1¼0

Xpþ1þrn�1

rn�2¼0

� � � Xpþ1þr2

r1¼0

Yn�1

k¼1

pþ rk
p

� �
(A7)

for any integers n � 1 and r � 0. Although we have not

found a closed form expression for the KðrÞ
n , the above

expressions allow for them to be computed efficiently.
To the best of our knowledge, the problem of enumerat-

ing permutations of the class we study in terms of their run
structure does not appear to have been solved in the litera-
ture on enumerative combinatorics, although related prob-
lems have been studied for over a century. A closed form
answer seems out of reach, but generating function tech-
niques allow one to build up a solution for each n in a
recursive way. The details will be reported elsewhere [42],
but the overall result is the following: for each n, let Kn

be a polynomial in the variables K1; . . . ; Kn�1, with
K2 ¼ ð1=2ÞK2

1 and subject to the recurrence relation

K n ¼X
i

Kiþ1

@Kn�1

@Ki

þX
i;j

K1KiKj

@Kn�1

@Kiþj

: (A8)

Then, for n � 3, the coefficient of Km1

1 . . .Kmn�1

n�1 in Kn is

precisely the number of permutations � of f1; . . . ; ng with
m‘ runs of length ‘ (1 � ‘ � n� 1), subject to the side
conditions �ð1Þ ¼ 1, �ð2Þ<�ðnÞ. In the case n ¼ 2, we
find half of the number of such permutations.
The generating function is extremely convenient, be-

cause it already incorporates the sum over all possible
connected graphs. Putting this together with the other
considerations above, the nth dimensionless connected
moment is given by Cn ¼ 8nKn, for any n � 2, where
the variables Kj are given the values defined above by (A3)

(recalling that Kj ¼ Kð0Þ
j ). For example, we find the ex-

plicit formulas:

C2 ¼ 32K2
1 ; (A9)

C3 ¼ 83K2K1; (A10)

C4 ¼ 84ðK3K1 þ K2
2 þ K4

1Þ; (A11)

C5 ¼ 85ðK4K1 þ 3K3K2 þ 8K2K
3
1Þ; (A12)

C6 ¼ 86ðK5K1 þ 3K2
3 þ 4K4K2 þ 13K3K

3
1

þ 31K2
2K

2
1 þ 8K6

1Þ; (A13)

C7 ¼ 87ðK6K1 þ 10K4K3 þ 5K5K2 þ 19K4K
3
1

þ 66K3
2K1 þ 123K3K

2
1K2 þ 136K2K

5
1Þ; (A14)

which can be used to provide the first few connected mo-
ments for :’2: in the case p ¼ 1 or :’2: in the case p ¼ 3.
One may check that the coefficients inside each parenthesis
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sum to ðn� 1Þ!=2, the total number of connected graphs
involved in the nth moment.

APPENDIX B: ASYMPTOTICS OF THEMOMENTS

In this Appendix we give asymptotic estimates for the
nth moments of the Lorentzian smearing of the Wick
square of the ð1=2Þðp� 1Þth derivative of ’ as n becomes
large. We rigorously establish a lower bound and also give
an upper bound, for which our reasoning is not completely
rigorous, but which appears to be satisfied on the grounds
of numerical evidence. The basic observation is that the
dominant contribution to Cn (and hence the full dimen-
sionless moment an) is 8

nKn�1K1; this is certainly a lower
bound (as all terms are positive) and numerical evidence
suggests that it gives the correct answer modulo a frac-
tional error of order n�2. Thus lower bounds on the Kj will

give rigorous lower bounds onCn, while upper bounds give
an upper bound on the Cn that seems reasonably secure,
albeit not fully rigorous. In terms of permutations and
graphs, the dominant contribution arises from the identity
permutation, and thus the graph on n vertices that has lines
from xk to xkþ1 for each k ¼ 1; . . . ; n� 1 and an line from
x1 to xn. The graphs in Fig. 1 represent the cases n ¼ 2 and
n ¼ 3.

We begin with the lower bound, which is

KðrÞ
n � nðpþ 1Þ � 1þ r

nðpþ 1Þ � 1

� �
LðrÞ
n ; (B1)

where

LðrÞ
n ¼ ðnðpþ 1ÞÞ!

n!ð2pþ1ðpþ 1ÞÞn
Yn�1

k¼1

rþ nðpþ 1Þ
rþ kðpþ 1Þ ; (B2)

in which the product over k is taken to be equal to unity in
the case n ¼ 1. The bound (B1) is proved by induction,
noting that the it is true (indeed, an equality) for n ¼ 1.
Supposing that it holds for some n � 1, we use the recur-
rence relation Eq. (A6) to show that

KðrÞ
nþ1 �

p!

2pþ1

pþ r

p

 ! ðnþ 1Þðpþ 1Þ þ r

nðpþ 1Þ

 !
Lðpþ1þrÞ
n

¼ p!

2pþ1

rþ ðnþ 1Þðpþ 1Þ
rþ pþ 1

ðnþ 1Þðpþ 1Þ � 1

p

 !

� ðnþ 1Þðpþ 1Þ � 1þ r

ðnþ 1Þðpþ 1Þ � 1

 !
Lðpþ1þrÞ
n ; (B3)

where, in the first line, we have used the fact that the

constants LðrÞ
n are clearly monotone decreasing in r for

each fixed n, and the identity (0.151.1 in Ref. [43])

XR
r¼0

qþ r
q

� �
¼ qþ 1þ R

qþ 1

� �
; (B4)

the second line is an elementary algebraic manipulation. A
further algebraic manipulation shows that

LðrÞ
nþ1 ¼

p!

2pþ1

rþ ðnþ 1Þðpþ 1Þ
rþ pþ 1

� ðnþ 1Þðpþ 1Þ � 1
p

� �
Lðpþ1þrÞ
n (B5)

which allows us to conclude that the bound on KðrÞ
n holds

for all n by induction. Noting that

Lð0Þ
n ¼ ðnðpþ 1ÞÞ!nn

ð2ðpþ1Þðpþ 1ÞÞnðn!Þ2 (B6)

we obtain a lower bound on Jn ¼ Kð0Þ
1 Kð0Þ

n�1 ¼
p!2�ðpþ1ÞKð0Þ

n�1 as

Jn � p!

2pþ1
Lð0Þ
n�1 ¼

ðpþ 1Þ!ððn� 1Þðpþ 1ÞÞ!ðn� 1Þn�1

ð2pþ1ðpþ 1ÞÞnððn� 1Þ!Þ2 :

(B7)

In a similar way, we find an upper bound

KðrÞ
n � nðpþ 2Þ � 2þ r

nðpþ 1Þ � 1

� �
UðrÞ

n (B8)

where

UðrÞ
n ¼ ðnðpþ 1ÞÞ!

n!ð2pþ1ðpþ 1ÞÞn
Yn�2

k¼0

Yp
q¼1

kðpþ 1Þ þ rþ q

kpþ rþ nþ q� 1

(B9)

and the product on k is again regarded as a factor of unity in
the case n ¼ 1. From this expression, it is clear that the

UðrÞ
n are monotone increasing in r for each fixed n. The

double product can be also be written as a ratio of products
of � functions and other simple functions; in the case r ¼ 0
there is a particularly simple expression

Yn�2

k¼0

Yp
q¼1

kðpþ 1Þ þ q

kpþ nþ q� 1
¼ ðpþ 1Þ1�n: (B10)

As before, we prove (B8) by induction, noting that it holds
with equality in the case n ¼ 1. Supposing that it is true for
some n � 1, the recurrence relation Eq. (A6) gives

KðrÞ
nþ1 �

p!

2pþ1

pþ r
p

� � Xpþrþ1

r0¼0

nðpþ 2Þ � 2þ r0
nðpþ 1Þ � 1

� �
Uðr0Þ

n :

(B11)
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Over the summation range, we have Uðr0Þ
n � Uðpþ1þrÞ

n , so

KðrÞ
nþ1 � Uðpþ1þrÞ

n
p!

2pþ1

pþ r
p

� �

� Xpþrþ1

r0¼0

nðpþ 2Þ � 2þ r0
nðpþ 1Þ � 1

� �

� Uðpþ1þrÞ
n

pþ r
p

� �
p!

2pþ1

� Xpþrþn

r00¼0

nðpþ 1Þ � 1þ r00
nðpþ 1Þ � 1

� �
; (B12)

where we have changed summation variable to r00 ¼ r0 þ
n� 1 and extended the summation range in the second
step. Using Eq. (B4), this gives

KðrÞ
nþ1 �

p!

2pþ1

pþ r
p

� �
nðpþ 2Þ þ pþ r

nðpþ 1Þ
� �

Uðpþ1þrÞ
n :

(B13)

Using the fact that

pþ r
p

� �
nðpþ 2Þ þ pþ r

nðpþ 1Þ
� �

¼ ððnþ 1Þðpþ 1ÞÞ!
ðnþ 1Þðpþ 1Þ½nðpþ 1Þ�!p!

� ðnþ 1Þðpþ 2Þ � 2þ r
ðnþ 1Þðpþ 1Þ � 1

� �Yp
q¼1

rþ q

rþ nþ q
;

(B14)

it is then easy to show that (B8) holds with n replaced by
nþ 1 and hence for all n by induction.

We may then obtain the upper bound on Jn as

Jn � ðpþ 1Þ!ðpþ 1Þ3
ð2pþ1ðpþ 1Þ2Þn

ððn� 1Þðpþ 2Þ � 2Þ!
ððn� 2Þ!Þ2 (B15)

after some manipulation.

Using Stirling’s formula, ðnA� BÞ!�ffiffiffiffiffiffiffi
2�

p ðnA=eÞnA�Bþ1=2e�Bþ1=2. Then one may check that
the lower bound in (B7) is, asymptotically,

Jn *
ðpþ 1Þ!
2�e

�
p

pþ 1

�
pþ1=2

�ðpþ 1Þpe
pp2pþ1

�
nðnp� ðpþ 1ÞÞ!

(B16)

while a similar calculation at the upper bound gives

Jn &
ðpþ 1Þ!ðpþ 1Þ3

2�ðpþ 2Þ3
�

p

pþ 2

�
pþ1=2

� ðpþ 2Þpþ2

2pþ1ðpþ 1Þ2pp

�
n

� ðnp� ðpþ 1ÞÞ! (B17)

so the ratio of the upper bound to the lower bound grows as
���n as n ! 1, with

� ¼ e

�
pþ 1

pþ 2

�
pþ7=2

; � ¼ 1

e

�
pþ 2

pþ 1

�
pþ2

;

which in the case p ¼ 3 gives � ¼ 0:6373520649, � ¼
1:122678959. So we have a reasonable control over the
leading order contribution.
As mentioned above, it is certain that the dimensionless

moment an obeys an � 8nJn, and numerical evidence
suggests that an � 8nJn at least in the case p ¼ 3 (we
believe that this is true for all p > 1 and could be proved
with more effort). On that basis, we have

0:513395� 3:221667n &
an

ð3n� 4Þ!
& 0:327213� 3:616898n (B18)

in the p ¼ 3 case, for n ! 1. This supports the growth
estimates given in the text.
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