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The temperature dependence of the thermodynamic potential of quantum chromodynamics (QCD), the

specific heat, and the quark effective mass are calculated for imbalanced quark matter in the limit of a

large number of quark flavors (large-NF), which corresponds to the random-phase approximation. Also a

generalization of the relativistic Landau effective-mass relation in the imbalanced case is given, which is

then applied to this thermodynamic potential.
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I. INTRODUCTION

Landau Fermi-liquid theory has seen considerable suc-
cess in describing a wide variety of fermionic many-
particle systems, such as liquid Helium-3, electrons in
metals, nuclei and nuclear matter [1–4]. It gives an effec-
tive description of the low-lying elementary excitations
(quasiparticles) at low temperatures, i.e., at a temperature
T such that the system can be considered degenerate
(T � �, where � denotes the chemical potential) but still
in the normal phase above any symmetry breaking phase
transition (T � Tc), for example, to a magnetic or super-
conducting phase. Nevertheless, the theory is not only
important for the description of the above ‘‘normal’’
(Fermi-liquid) phase, but is also vital to correctly describe
the emergence of a possible ordered phase [5]. Indeed,
according to the Bardeen-Cooper-Schrieffer (BCS) theory
the onset of superconductivity is to be viewed as an insta-
bility of the Fermi liquid under an attractive interaction,
which results in the formation of Cooper pairs [6]. The
same is true for magnetism in the case of repulsive
interactions.

In particular, BCS theory implies that the high-density
and low-temperature region of the phase diagram of quan-
tum chromodynamics (QCD) contains a color supercon-
ducting phase of quarks [7,8]. In fact, since quarks carry
color, flavor and spin quantum numbers, many distinct
superconducting phases are possible and are characterized
by the various symmetries of the Cooper-pair wave func-
tion. These phases of cold and dense QCD might occur in
the core of neutron stars where matter is compressed to
several times the nuclear density �0 ’ 0:16 fm�3. The
presence of such a superconducting phase is expected to
have observable consequences on the cooling and magnetic
fields of neutron stars [9–11].

Strictly speaking, Landau Fermi-liquid theory is valid in
the normal phase, where the low-temperature properties of
the system can be described in terms of a gas of weakly
interacting, but possibly strongly renormalized, fermionic
quasiparticles. Nevertheless, it is well known from

superfluid Helium-3 that knowledge of the details of these
quasiparticles is necessary to correctly describe the onset
of superfluidity [12]. In color superconductivity, which is
of interest to us here, we expect that the critical tempera-
tures of the various color superconducting phases will also
be affected by Fermi-liquid effects, which will modify the
competition between these phases. A particularly interest-
ing phase in this respect is the so-called 2SC phase in
which only two flavors of quarks are paired, while the
unpaired quarks of the third flavor remain a Fermi-liquid.
This phase further illustrates the importance of understand-
ing the quark-gluon plasma, i.e., the normal phase of
quarks.
Fortunately, due to asymptotic freedom, the coupling

constant g of QCD becomes small at large chemical po-
tential �, such that a systematic study of the high-density
and low-temperature region of the QCD phase diagram is
possible using perturbation theory. At high densities the
dominant interaction between quarks is that of one-gluon
exchange, where the long-range behavior of the gluons is
screened due to the quark-gluon plasma. While the electric
gluons (longitudinal) are screened by a Debye mass
mg � g�, the magnetic (transverse) gluons are only dy-

namically screened [13,14]. This residual long-range
behavior of the magnetic gluons dominates the low-
temperature behavior of the system. Examples of the ef-
fects of magnetic gluons can be seen in the nonstandard
scaling of the critical temperature of the superconducting
phase Tc ��g�5 expð�3�2=gÞ [15–17], which depends
exponentially only on 1=g instead of showing the expected
1=g2 behavior, or of the lifetime of elementary excitations
of (grand-canonical) energy E near the Fermi surface
�ðEÞ � jEj�1 [18–21] that signals a (marginal) non-
Fermi-liquid behavior at zero temperature.
In the context of a possible deconfined phase of quarks

inside neutron stars, the Fermi system is expected to be
imbalanced due to the different chemical potentials of the
various quarks. This deconfined phase may contain u, d,
and s quarks with different densities as a consequence of
their different masses and charges. In cold atomic physics,
an analogous population imbalance has been realized
experimentally between two spin states [22,23], which*s.yin@uu.nl
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resulted in frustration of the pairing between particles. This
will cause very different behavior from the normal BCS
case and is currently a very hot topic in a wide variety of
fields [24,25]. In particular, the imbalance between differ-
ent flavors of quarks is expected to significantly alter the
properties of the QCD phase diagram, such as the 2SC
phase mentioned above or the color-flavor locked phase
where all the colors and flavors are paired [7]. In the
present paper, we therefore generalize the quasiparticle
properties based on Fermi-liquid theory to an imbalanced
system.

To do so, the effect of the dressed gluons on the thermo-
dynamic potential, specific heat and effective mass of the
quasiparticles is determined at low temperatures. The ther-
modynamic potential will be calculated for a two-flavor
quark system in the limit of a large number of quark flavors
(large-NF). This approximation corresponds to the random
phase approximation (RPA), which has been quite success-
ful in condensed-matter systems such as the interacting
electron gas in metals [26]. Using the framework of
Landau Fermi-liquid theory for relativistic systems, de-
rived in Sec. II, the effective mass of the quasiparticles
can be determined from the thermodynamic potential by
considering the specific heat. The result and its implica-
tions on the applicability of Fermi-liquid theory is dis-
cussed. As we will show, the logarithmic dependence of
the temperature, which is due to the transverse gluons,
shows the breakdown of Fermi-liquid theory at low tem-
peratures. Furthermore, even though within our approxi-
mations there is no interaction between the different flavors
of quarks in the limit of weak coupling, the RPA correction
still presents some mixing between the different flavors,
which stems from the long-wavelength screening of
the longitudinal gluons. Above and throughout the article
natural units are used, i.e., units such that ℏ ¼ c ¼ kB ¼ 1.
Other conventions and technical details of the calculation
can be found in the Appendices.

II. LANDAU FERMI-LIQUID THEORY

To describe the normal state of the quark-gluon plasma
at nonzero temperatures, which is a strongly interacting gas
of quarks, Landau Fermi-liquid theory can be used. This
theory takes as a starting point the noninteracting Fermi
gas and switches on the interaction adiabatically. As long
as the temperature of the system is much higher than the
critical temperature Tc for superconductivity, no bound
states (Cooper pairs) will form and each state of the non-
interacting Fermi gas is transformed into a state of the
interacting gas. Therefore, the excitations of such a
Fermi liquid remain of a fermionic nature. For simplicity,
Fermi-liquid theory will be introduced here for a system at
zero temperature even though the quark-gluon plasma is
formally a marginal Fermi liquid in that case. However, the
introduced concepts turn out to be valid for nonzero tem-
peratures much lower than the Fermi temperature TF,

which is expected to be around 1013 K for quarks in the
core of neutron stars.
The basis of Landau Fermi-liquid theory is to consider

the effect of a small change of the ground-state Fermi
distribution on the thermodynamic potential density, which
can be written as

�� ¼ �X
�

n���� þ 1

V

X
k;�

ð��ðkÞ ���Þ�N�ðkÞ

þ 1

2V2

X
k;�;k0;�0

f��0 ðk;k0Þ�N�ðkÞ�N�0 ðk0Þ: (1)

Here, �N�ðkÞ is a small change in the ground-state mo-
mentum distribution of species�, n� is the particle density,
��ðkÞ is the energy of a quasiparticle that for our purposes
only depends on the magnitude of the vector k, and �� is
the chemical potential. In the case of electrons the index �
specifies the spin of the electron, while for the case of
quarks it specifies the spin, color and flavor of the quark.
Hence, the quasiparticle energy and the effective interac-
tion between quasiparticles are defined as

��ðkÞ ��� � ��

�N�ðkÞ ;

f��0 ðk;k0Þ � ��

�N�ðkÞ�N�0 ðk0Þ :

An important quantity in Fermi-liquid theory is the
effective mass m�

� of a quasiparticle of species � near its
Fermi surface. It is defined in terms of the group velocity
v�
� evaluated at the Fermi momentum k�

m�
� � k�

v�
�

� k�

�
@��ðkÞ
@k

��1

k¼k�

; (2)

such that upon linearizing the quasiparticle energy around
the Fermi surface we obtain

��ðkÞ ’ �� þ k�
m�

�

ðk� k�Þ; (3)

with �� ¼ ��ðk�Þ as the Fermi energy of species �. In
the noninteracting limit, the effective mass reduces to

FIG. 1. A Galilean transformation (dotted curve) and Lorentz
boost (dashed curve) of a Fermi sphere (solid curve). The boosts
have been scaled in order to compare the shapes of the Fermi
sphere after the transformation. The volume of the Fermi sphere,
i.e., the density of the gas, becomes larger due to the Lorentz
contraction.
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m�
� ¼ m� and m�

� ¼ ��0ðk�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2� þm2

�

p
for nonrelativ-

istic and relativistic dispersions, respectively.
Using the fact that the pressure is an invariant under

Galilean or Lorentz transformations (see Appendix B 1), of
which the effect can be written as a change in the distri-
bution as shown in Fig. 1, Eq. (1) should give zero for this
particular choice of �N�ðkÞ and hence relate ��ðkÞ to
f��0 ðk;k0Þ. In other words, by performing an infinitesimal
Galilean or Lorentz transformation on the Fermi sphere,
the effective mass can be related to the effective interaction
at the Fermi surface [1,27].

To this end, consider an infinitesimal change in the

Fermi surface from k� to k� þ �k�ðk̂Þ

�N�ðkÞ ¼
8><
>:
1 k� � k � k� þ �k�ðk̂Þ �k� > 0;

�1 k� þ �k�ðk̂Þ � k � k� �k� < 0;

0 otherwise;

where the change in the Fermi surface solely depends on

the direction in momentum space denoted by k̂. The
corresponding change in the thermodynamic potential den-
sity can be written as

�� ¼ X
�

Z dk̂

ð2�Þ3
Z k�þ�k�

k�

dkk2½��ðkÞ ���� þ 1

2

X
�;�0

ZZ dk̂

ð2�Þ3
dk̂0

ð2�Þ3
Z k�þ�k�

k�

dkk2

	
Z k�0þ�k�0

k�0
dk0k02f��0 ðk;k0Þ �X

�

n����

¼ X
�

k3�
4�2m�

�

Z dk̂

4�
�k2�ðk̂Þ þ

X
�;�0

k2�k
2
�0

2ð2�2Þ2
ZZ dk̂

4�

dk̂0

4�
f��0 ðk�; k�0 ; �Þ�k�ðk̂Þ�k�0 ðk̂0Þ �X

�

n����: (4)

In the second line the integrals were expanded to second
order in �k�ðk̂Þ, and f��0 ðk�; k�0 ; �Þ was defined as the
effective interaction at the Fermi surfaces between two
species, with � the angle between the directions of k and
k0. Next we expand �k� in terms of spherical harmonics
and f��0 in terms of Legendre polynomials as

�k�ðk̂Þ ¼
X
l;m

�klm� Ylmðk̂Þ;

f��0 ðk�; k�0 ; �Þ ¼ X
l

fl;��0 ðk�; k�0 ÞPlðcos�Þ:

For an imbalanced system, the difference in density n�
results in a difference in ��, which can cause m�

� to be
different from each other even if their noninteracting bare
masses m� are the same. For each species, the particle
density obeys n� ¼ k3�=6�

2. Inserting these expansions
and using the orthogonality of the spherical harmonics,
Eq. (4) becomes

�� ¼ �X
�

n���� þ X
l;m;�

3n�j�klm� j2
2m�

�

þ X
l;m;�;�0

fl;��0 ðk�; k�0 Þk2�k2�0�klm� ð�klm�0 Þ�
8�4ð2lþ 1Þ : (5)

In the balanced case, all Fermi momenta are the same,
k� ¼ kF, �k

lm
� ¼ �klmF , then Eq. (5) reduces to

�� ¼ �n��þX
l;m

3n

2m� j�klmF j2
�
1þ Fl

2lþ 1

�
; (6)

where the intensive quantities m�, �, kF and Fl are the
same for all species, and n is the total density, i.e., the
density summed over all species. The (dimensionless)
Landau Fermi-liquid parameters Fl are defined as

Fl ¼
X
�0

k2Ffl;��0 ðkFÞ
2�2

�
@�ðkÞ
@k

��1

kF

¼ X
�0

kFm
�fl;��0 ðkFÞ
2�2

:

(7)

Note that Fl is species independent, but the interspecies
and intraspecies interactions can be different, so the sub-
script � is shown explicitly in fl;��0 but not in Fl. From the
above it is possible to derive the equation for the effective
mass, as we first show for the simpler balanced case.
Consider a change in the distribution due to a Lorentz

transformation as shown in Fig. 1. The shape of the Fermi
sphere is determined from the equation � ¼ �k�u

�,

where k� ¼ ð�ðkÞ;kÞ is the four-momentum, u� ¼
ð	; 	vÞ is the four-velocity of the Fermi sphere with the

Lorentz factor 	 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
. The minus sign in the

previous expression and in u�u
� ¼ �1 are a consequence

of our choice of the metric 
�� ¼ diagð�1; 1; 1; 1Þ. In the

rest frame, where u� ¼ ð1; 0Þ, the above reduces to the
condition �ðkFÞ ¼ �. Similarly, the shape of the Fermi
surface can be determined from the Lorentz transformation
of the momentum to a frame moving with velocity �v,

k ! k� v̂ðv̂ 
 kÞð1� 	Þ þ �ðkÞv	;
which for an infinitesimal Lorentz transformation reduces
to k ! kþ �ðkÞv and in the nonrelativistic limit to
k ! kþmv. Note that the deformation of the Fermi
sphere due to the Lorentz contraction shows up only in
higher-order terms of v.
First, consider the nonrelativistic case in which an in-

finitesimal Galilean transformation shifts all momenta
from k to kþmv. This results in a change of the Fermi

surface according to �kF ¼ mk̂ 
 v ¼ mvY10ðcos�Þ=
ffiffiffi
3

p
,
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such that �klmF ¼ �l1�m0mv=
ffiffiffi
3

p
. Furthermore, the total

energy of the system transforms as E ! Eþ 1
2Mv2, where

M is the total mass of the system, which induces a change
in the chemical potential � ¼ @E=@N ! �þ 1

2mv2.

Inserting this into Eq. (6) gives the well-known Landau
effective-mass relation in the balanced case [1–4]

m� ¼ m

�
1þ 1

3
F1

�
: (8)

Secondly, for a relativistic system the momenta

are shifted by k ! kþ �ðkÞv such that �klmF ¼
�l1�m0�v=

ffiffiffi
3

p
. Since the total energy of the system trans-

forms as E ! 	E ’ Eþ 1
2Ev

2, the change in the chemical

potential is �� ¼ 1
2�v2. Inserting these into Eq. (6) gives

the relativistic Landau effective-mass relation [27]

m� ¼ �

�
1þ 1

3
F1

�
: (9)

Note that in the right-hand side F1 also depends on �,
because the Fermi momentum kF is a, in general compli-
cated, function of �.

Now for the more general imbalanced case. Since the
Lorentz transformation is applied uniformly to each spe-
cies, according to the symmetry of the formula, we can
expect that the contribution from each species in Eq. (5)
should vanish, namely,

n��
2
�v

2

2m�
�

þX
�0

f1;��0 ðk�; k�0 Þk2�k2�0����0v2

72�4

� n���v
2

2
¼ 0:

Then we get the general expression for the effective mass,

m�
�¼��

�
1þX

�0

f1;��0 ðk�;k�0 ÞN�0 ð0Þ
3

��0k�0m�
�

��k�m
�
�0

�
; (10)

where N�ð0Þ ¼ m�
�k�=2�

2 is the density of states at the
Fermi energy of species �. The arguments in f1 emphasize
that, in the imbalanced case, the interaction may depend
not only on the angle between the momenta but also on the
absolute value of the Fermi momentum of each species. In
fact, the same expression of m�

� can be obtained more
strictly by considering the addition of a single particle to
the system and comparing the energy increase in two
different frames.

We can introduce the average effective mass, which is of
practical importance, as m� ¼ P

�m
�
�=N with N the total

number of species. Correspondingly, the average chemical
potential is � ¼ P

���=N. In order to get a similar ex-
pression as in Eq. (9), we introduce the relative weight of
each species as x� ¼ ��=N� such that

P
�x� ¼ 1, and

then generalize the Landau effective-mass relation with
average values as

m� ¼ �

�
1þ 1

3

X
��0

f1;��0 ðk�; k�0 ÞN�0 ð0Þ x�0k�0m�
�

k�m
�
�0

�
; (11)

where the double-sum term, which can be defined again as
F1, plays the role of the Landau parameter in the balanced
case as in Eq. (9), therefore we obtain now

F1 ¼
X
��0

f1;��0 ðk�; k�0 ÞN�0 ð0Þ x�0k�0m�
�

k�m
�
�0

;

which, obviously, reduces to Eq. (7) as the system becomes
balanced.
In the following sections the effective mass will be

derived from a microscopic RPA calculation. In particular,
in Sec. VI it will be determined from the specific heat. The
specific heat (per volume) for low temperatures can be
expressed in terms of the effective masses by

CV ¼ 1

V

�
@E

@T

�
V;N

¼ 1

V

�X
k;�

@E

@N�ðkÞ
@N�ðkÞ
@T

�
V;N

’X
�

k�m
�
�

6
T ¼ X

�

�2

3
N�ð0ÞT; (12)

where it was used that @ðE=VÞ=@N�ðkÞ ¼ @�=@N�ðkÞ þ
�� � ��ðkÞ and for the temperature derivative the
Sommerfeld expansion was used, c.f. Eq. (E8). This result
is a trivial generalization of the single species or balanced
case, since the effective mass already contains the effect of
interactions, such that the contribution to the heat capacity
of a single quasiparticle is additive.

III. RANDOM PHASE APPROXIMATION

Our starting point is the partition function

Z ¼
Z

D �cDcDA�D �
D
 exp

�
�
Z

d4xLE
QCD

�
;

containing the Euclidean QCD Lagrangian density fixed in
a linear gauge f�A

a
� ¼ 0,

LE
QCD ¼ X

f

�c fð	�D� þmf � 	0�fÞc f þ 1

4
Ga

��G
a
��

þ �
að@�f��ab þ gfabcAc
�f�Þ
b þ 1

2�
ðf�Aa

�Þ2;

where c f is the quark field of flavor f (the color c and spin

s degrees of freedom are not shown explicitly) with mass
mf and chemical potential �f, A

a
� are the gluon fields, 
a

are the ghost fields, g is the QCD coupling constant, � is a
gauge-fixing parameter, fabc are the fine-structure con-
stants of the color SU(3) group, the covariant derivative
D� ¼ @� � igtaAa

� and the antisymmetric gluon field

tensor Ga
�� ¼ @�A

a
� � @�A

a
� þ gfabcAb

�A
c
�. For large

densities, the fermionic degrees of freedom become
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increasingly important, such that the large-NF limit could
give insight into the behavior of quarks at high densities.
Therefore, consider the large-NF limit with a fixed rescaled
coupling ~g2 ¼ g2NF,

L E
QCD ¼ X

f

�c fð6@þmf � 	0�f � ~gN�ð1=2Þ
F i	�t

aAa
�Þc f

þ 1

2
Aa
�

�
@�@� � @2��� � 1

�
f�f�

�
Aa
�

þ �
að@�f��ab þ ~gN�ð1=2Þ
F fabcAc

�f�Þ
b

þ 1

2
~gN�ð1=2Þ

F ð@�Aa
� � @�A

a
�ÞfabcAb

�A
c
�

þ 1

4
~g2N�1

F fabcfadeAb
�A

c
�A

d
�A

e
�;

Integrating out the fermions and the ghosts gives

L eff
QCD ¼ �Trc;f;s ln½�G�1

0f ð1þ ~gN�ð1=2Þ
F G0fi	�t

aAa
�Þ�

� Trc lnð@�f��ab þ ~gN�ð1=2Þ
F fabcAc

�f�Þ

þ 1

2
Aa
�D

�1
0;���

abAb
� þ 1

2
~gN�ð1=2Þ

F ð@�Aa
�

� @�A
a
�ÞfabcAb

�A
c
�

þ 1

4
~g2N�1

F fabcfadeAb
�A

c
�A

d
�A

e
�;

where the subscripts fc; f; sg explicitly indicate that the
trace should also be taken over color, flavor and spin space.
When we expand the first line in NF, the first-order con-
tribution will vanish due to conservation of color, i.e.,
Trc½ta� ¼ 0. Only the second-order expansion in NF of
the first line will give a contribution. Thus, expansion in
powers of NF gives

L eff
QCD ¼ �Trc;f;s lnð�G�1

0f Þ � Trc lnð@�f��abÞ

þ 1

2
Aa
�

�
D�1

0 þX
f

�f

�
ab

��
Ab
� þOðN�ð1=2Þ

F Þ;

where we defined the polarization tensor �ab
f;�� from the

contribution of the quark with flavor f as

�ab
f;�� ¼ �g2Trc;sðG0f	�t

aG0f	�t
bÞ;

which is shown diagrammatically in Fig. 2. The polariza-
tion tensor�ab

f;�� is diagonal in color space, as can be seen

explicitly from Eq. (E1). Upon integrating out the gluons,
the thermodynamic potential density is

�ðT; f�fgÞ ¼ �V�1�1 lnZ

’ 1

V

�
�NCTrf;s lnð�G�1

0 Þ

þ NG

2
Tr

�
lnðD�1

0 Þ � 2 lnð@�f�Þ � ln
1

�

�

þ NG

2
Tr ln

�
1þD0

X
f

�f

��
; (13)

where NC is the number of colors, NG ¼ N2
C � 1 is the

number of gluons, and we use the QCD values NC ¼ 3 and
NG ¼ 8 in the following. The first two terms are the ideal
Fermi and Bose gas contributions to the thermodynamic
potential density, where the term Tr lnð@�f�Þ cancels the
two unphysical degrees of freedom from Tr lnðD�1

0 Þ. The
last term is the RPA correction (ring sum) to the thermo-
dynamic potential density, as is shown in Fig. 3. Since we
are mainly interested in the temperature dependence of �
and the fact that the above definition contains (divergent)
zero-temperature contributions, the T ¼ 0 expression
will be subtracted, i.e., we consider ��ðT; f�fgÞ �
�ðT; f�fgÞ ��ð0; f�fgÞ. In Sec. IV, an example is con-

sidered to check the expression for the Landau effective
mass analytically and in Sec. VI the above thermodynamic
potential density is calculated numerically for the case of a
two-flavor imbalanced quark system.

IV. FERMI-LIQUID PARAMETERS
IN WEAK COUPLING

In the limit of weak coupling the interaction contribution
to the thermodynamic potential density is given solely by
the exchange diagram

�int ¼ NG

2V

X
f

TrðD0�fÞ:

Using the definition of the free gluon propagator in the
Lorentz gauge, this can be written asFIG. 2. The polarization tensor �ab

�� to the first order.

FIG. 3. The thermodynamic potential in the large-NF or RPA
approximation where the double gluon line signifies the dressed
gluon propagator.
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�int ¼ NG

2

X
f

X
!q

Z d3q

ð2�Þ3
�f;��ði!q;qÞ

!2
q þ q2

¼ g2
NG

4

X
f

X
s1;s2;s3¼�1

Z d3pd3q

ð2�Þ6 F f
s1;s2;s3ðp;qÞ

	 ½Ns2
f ðqÞNs3

B ðp� qÞð1� Ns1
f ðpÞÞ � Ns1

f ðpÞ
	 ð1� Ns2

f ðqÞÞð1þ Ns3
B ðp� qÞÞ�;

where the Fermi and Bose distributions are defined as

Ns
fðpÞ ¼

1

e½s�0fðpÞ��f� þ 1
; Ns

BðpÞ ¼
1

e½s�gðpÞ� � 1
;

respectively, the explicit expression for �f;�� is shown in

Eq. (E3), the Matsubara sum over the bosonic frequencies

!q was performed, �0fðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

f

q
denotes the free

quark dispersion while �gðpÞ ¼ p is the free gluon disper-
sion, and the function F was defined as

F f
s1;s2;s3ðp;qÞ ¼

s3
�0fðpÞ�0fðqÞ�gðp� qÞ

��0fðpÞ�0fðqÞ þ s1s2ðp 
 qþ 2m2Þ
s1�0fðpÞ � s2�0fðqÞ � s3�

gðp� qÞ ; (14)

which will soon be shown to play the role of the interaction
between two quarks (s1 ¼ s2 ¼ 1), two antiquarks
(s1 ¼ s2 ¼�1) or a quark and an antiquark (s1¼�s2¼1
or s1 ¼ �s2 ¼ �1) mediated by the emission or absorp-
tion of a gluon (depending on the sign of s3 relative to s1
and s2).

The quasiparticle energy and effective interaction can be
obtained by varying the thermodynamic potential with
respect to the Fermi distribution. In the flavor-imbalanced
case, the distributions depend only on the flavor but not on

the color and spin indices. To distinguish between the

different contributions for each particle species it can be

checked that the multiplication factor NG=4 could be writ-

ten as
P

c;c0;s;s0t
a
cc0t

a
c0c=8, where s and s0 are just dummy

indices denoting the spin degrees of freedom, which are

helpful to arrive at the following expressions. Note that

�int is independent of the spin index, and in fact the spin

degrees of freedom has already been summed over in the

expression for F . Explicitly, we find for these quantities

�c;f;sðkÞ ��f � ��

�Nþ
c;f;sðkÞ

¼ ½�0fðkÞ ��f� �
X
s0

g2

4

X
c0
tacc0 t

a
c0c

X
s2;s3¼�1

Z d3q

ð2�Þ3 F
f
þ;s2;s3

ðk;qÞ

	 ½ð1þ Ns3
B ðk� qÞð1� Ns2

f ðqÞÞ þ Ns3
B ðk� qÞÞNs2

f ðqÞ�; (15)

ffc;f;sg;fc0;f0;s0gðk;k0Þ � �2�

�Nþ
c;f;sðkÞ�Nþ

c0;f0;s0 ðk0Þ ¼
g2

4
tacc0t

a
c0c�ff0

X
s3¼�1

F f
þ;þ;s3

ðk;k0Þ; (16)

where
P

c0t
a
cc0 t

a
c0c ¼ NG

2NC
and tacc0 t

a
c0c ¼ 1=2� �cc0=2NC, according to the definitions in Appendix A 1.

In the quasiparticle energy Eq. (15) the first term is the noninteracting part, while the second term corresponds to the
quark self-energy, as is shown in Appendix G. The angular averaged interaction parameters are defined by the coefficients
of the Legendre polynomial expansions of the effective interaction Eq. (16) evaluated on the Fermi sphere, by denoting

cos� ¼ k̂ 
 k̂0,

fl;fc;f;sg ¼
X

c0;f0;s0
fl;fc;f;sg;fc0;f0;s0g ¼ 2lþ 1

2

X
c0;f0;s0

Z
d� sin�ffc;f;sg;fc0;f0;s0gðk̂kf; k̂0kf0 ÞPlðcos�Þ;

which gives for the zeroth and first interaction parameters

f0;f ¼ g2NGNS

8NC

1

�2
0f

�
1þ �2 þ 2m2

f

4k2f
ln

�
�2

�2 þ 4k2f

��
;

f1;f ¼ g2NGNS

8NC

3

�2
0f

�2 þ 2m2
f

2k2f

�
1þ �2 þ 2k2f

4k2f
ln

�
�2

�2 þ 4k2f

��
;

(17)
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where NS ¼ 2 is the number of spin degrees of freedom,

and a regulatory gluon mass � was introduced, i.e., �gk ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ �2

p
. We see that in this approximation the interaction

is color- and spin-independent. For the sake of simplicity,
therefore, we from now on omit the unnecessary color and
spin indices, and use kf and �0f for the Fermi momentum

and the noninteracting Fermi energy of the quark
with flavor f. The effective mass of the balanced case,
Eq. (9), can be obtained from the interaction parameters
Eq. (17) and (7) by expanding to the first order in the
coupling constant

m� ¼ �þX
�0

�

3

kFm
�

2�2
f1;��0 ¼ �þ kF�

2
0

6�2
f1 þOðg4Þ;

(18)

where it was used that � ¼ �0 þOðg2Þ as follows from
Eq. (15). For the imbalanced case, a similar result can be
obtained for each species according to Eq. (10),

m�
f ¼ �f þ

�ff1;fðkfÞNfð0Þ
3

� �f þ
kf�

2
0f

6�2
f1;fðkfÞ;

(19)

where the Kronecker delta �ff0 in the interaction simplifies

the expression considerably, such that we obtain the similar
expression as in Eq. (18).

As a special case, we can use the above results to discuss
a two-flavor imbalanced system, where the average effec-
tive mass and chemical potential can be defined as m� ¼
ðm�þ þm��Þ=2 and � ¼ ð�þ þ��Þ=2 with the subscripts
þ and � for the majority and minority flavors, respec-
tively. The imbalance can be quantified as h ¼
ð�þ ���Þ=ð�þ þ��Þ. For small imbalance, the factors
k�f1;� can be expanded in h with respect to the value in

the balanced case, namely k�f1;�ðk�Þ � kFf1ðkFÞ	
ð1� �1�hþ�2�h2Þ. Note that the linear coefficients of
the expansion can, in general, be different for each flavor.
We obtain the expression of m� for small h

m� ¼ �þ kF�
2f1ðkFÞ
12�2

½2þ ð�1þ ��1�Þh
þ ð2þ 2�1þ þ 2�1� þ �2þ þ �2�Þh2 þOðh3Þ�;

where the h2 term is kept since the linear term may vanish
for the symmetric case, namely �1þ ¼ �1�, and we have
replaced �0 with � because the difference is in higher-
order of g. Compared with Eq. (11), the effective Landau
parameter for the average effective mass is

F1 ¼ kF�f1ðkFÞ
4�2

½2þ ð�1þ � �1�Þh
þ ð2þ 2�1þ þ 2�1� þ�2þ þ �2�Þh2 þOðh3Þ�:

Similarly, we can obtain the effective mass difference
�m� ¼ ðm�þ �m��Þ=2 as a function of h:

�m� ¼ �hþ kF�
2f1ðkFÞ
12�2

½ð4þ�1þ þ�1�Þh
þ ð2�1þ � 2�1� þ�2þ � �2�Þh2 þOðh3Þ�:

It is quite natural to find �m� / h in the leading order.
The consistency of the above results will now be verified

to the lowest order in the coupling constant using the quark
self-energy. Starting from the dispersion and self-energy of
Eq. (15), the effective mass in Eq. (18) or Eq. (19) can also
be derived in a different manner. The quasiparticle pole of
the quark propagator is

�fðpÞ � �0fðpÞ þ �þ
c;f;sð�0fðpÞ ��;pÞ;

where �þ is the renormalized positive-energy projected
self-energy. The effective mass corresponding to this pole
is most easily defined from the Fermi velocity of the
quasiparticle

m�
f

�f

� kf
v�
f�f

¼ kf

�
1

�fðpÞ
�
@�fðpÞ
@p

��1
�
p¼kf

:

Inserting the definition of the quasiparticle pole into the
above gives, using @�0fðpÞ=@p ¼ p=�0fðpÞ,

m�
f ¼ �fkf

�
�0fðpÞ

@�0fðpÞ
@p

þ @�0fðpÞ�þ
c;f;sð�0fðpÞ ��f;pÞ

@p

��1

p¼kf

þOðg4Þ

¼ �f �
�@�0fðpÞ�þ

c;f;sð�0fðpÞ ��f;pÞ
@�0fðpÞ

�
p¼kf

þOðg4Þ:

(20)

Using that the explicit form of the self-energy in the zero-
temperature limit can be written as (c.f. Eq. (G2))

�þ
c;f;sð�0fðpÞ ��f;pÞ

¼ X
c0;f0;s0

Z d3q

ð2�Þ3 ffc;f;sg;fc0;f0;s0gðp;qÞN
þ
f0 ðqÞ;

and the relation Eq. (B1) between the vector derivatives of
the effective interaction, the derivative in Eq. (20) can be
rewritten as
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�
@p

@�0fðpÞ
@�0fðpÞ�þ

c;f;sð�0fðpÞ��f;pÞ
@p

�
p¼kf

¼�0f

kf

� X
c0;f0;s0

Z d3q

ð2�Þ3 p̂

@�0fðpÞffc;f;sg;fc0;f0;s0gðp;qÞ

@p
Nþ

f0 ðqÞ
�
p¼kf

¼��0f

kf

Z dq

2�2
q2�0fðqÞ�ðq�kfÞ13

�
3
Z dq̂

4�
p̂
 q̂ X

c0;f0;s0
ffc;f;sg;fc0;f0;s0gðp;qÞ

�
p¼kf

¼�kf�
2
0f

2�2

f1;fc;f;sgðkfÞ
3

;

where partial integration was used and �ff0@qN
þ
f0 ðqÞ ¼��ff0 q̂�ðq� kfÞ at zero temperature. Therefore Eq. (20)

is identical to Eq. (19), which shows that the phenomeno-
logical Landau argument is indeed consistent with the
microscopic diagrammatic calculation.

V. DRESSED GLUON PROPAGATOR

Before we start the calculation of the temperature de-
pendence of the large-NF thermodynamic potential, it is
useful to examine the dressed gluon propagator, which is a
crucial ingredient of the RPA theory. The most physical
gauge to study the propagator is the Coulomb gauge, since
its form results from considering linear response [13,14].
This is also by far the most used gauge in condensed-
matter theory. In this gauge, the gluon propagator is [13]

D��ðQÞ ¼ PT
��

Q2 þGðQÞ þ
Q2

q2
��0��0

Q2 þ FðQÞ þ
�Q2

q4
Q�Q�

Q2

� DTðQÞPT
�� �DLðQÞ��0��0 þ �Q2

q4
Q�Q�

Q2
;

where PT
�� is the three-dimensional transverse projector

defined in Appendix A 2, F and G are related to the
longitudinal and transverse projections of ��� including

the contributions of various species as well as the vacuum.
More details can be found in Appendix E.

Consider the spectral functions of the transverse and
longitudinal propagator, which are defined by

�T;Lð!;qÞ � 1

�
=½DT;Lð!þ i0;qÞ�:

In general the spectral function depends on the gauge,
however, the positions of the poles are gauge independent,
and the Coulomb gauge has the additional property
�T;Lð!;qÞ> 0 for!> 0 as required of a physical spectral
function. For the balanced case, the spectral functions are
shown in Fig. 4 for several values of � and in Fig. 5 for
several values of T. The latter includes a small-T correc-
tion to F and G, see Eq. (E9) [28]. The transverse and
longitudinal plasmon modes and the large contribution due
to the decay of the gluon into the particle-hole continuum
(0<!< q) are clearly visible. Note that massless quarks
are used in the limit of high density, c.f. Appendix E.
However, a small but finite quark mass is necessary to
renormalize the real part of the polarization tensor of the

vacuum, as shown in Eq. (E7). Since the vacuum contri-
bution plays no significant role in the following calcula-
tion, we simply take this nonzero quark mass m in the
vacuum term the same for different flavors.
For the two-flavor imbalanced case, it is clear from

Eq. (13) that in the leading-order correction each flavor
contributes separately to the polarization tensor. Because
of the above setting, there is no mass imbalance in the
present system, therefore it is enough to consider only
positive h due to the symmetry. Following the notation in
Sec. IV, all the above results can be easily generalized to
such an imbalanced system by using �ð1þ hÞ to replace
�þ, and�ð1� hÞ for��. As h ! 0, the system reduces to

0 10 20 30 40

T

0 10 20 30 40

L

FIG. 4 (color online). The spectral function of the transverse
(upper panel) and longitudinal (lower panel) gluon propagators
as a function of frequency ! for several values of � in the
balanced case. Shown here for T ¼ 0, m ¼ 1, q ¼ 20, g ¼ 1=2,
NF ¼ 2 and for different curves � ¼ 1, 20, 50, 100, 200, 300
from red to purple.
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the balanced case. Now the low temperature condition
requires T � �ð1� hÞ, such that h cannot be too close
to 1, namely, the extremely imbalanced case. The spectral
function for a two-flavor imbalanced system is shown for
various h in Fig. 6. Comparing with Fig. 5, we see that
increasing h has a similar effect as increasing T.

The dispersion relations of the modes can be found by
solving

<½D�1
T;Lð!; qÞ� ¼ 0: (21)

In the transverse case there is a single solution �TðqÞ> q,
however, in the longitudinal case there are two solutions
�L
1 ðqÞ< q< �L

2 ðqÞ, as shown in Fig. 7. Note that �L
1 ðqÞ is

not a real propagating mode because the imaginary part in
the region 0<!< q is large due to particle-hole creation
processes, as explained in Appendix E. The two plasmon
modes �TðqÞ and �L

2 ðqÞ approach the so-called plasma
frequency !pl as q ! 0. The plasma frequency of the

transverse and longitudinal mode can be found by expand-
ing the inverse propagators for small q and small !, which
in the zero-temperature limit gives for both cases

1� 2

3

m2
g

!2

�
1� !2

4�2
ln

!2

4�2

�
¼ 0;

whose solution for small coupling constant yields !pl ’ffiffiffiffiffiffiffiffi
2=3

p
mg [13]. Here, mg is the gluon thermal mass whose

expression is obtained in the hard dense and hard thermal

0 10 20 30 40 50

T

0 10 20 30 40 50

L

FIG. 5 (color online). The spectral functions of the transverse
(upper panel) and longitudinal (lower panel) gluons as functions
of ! for various T in the balanced case, with � ¼ 200, m ¼ 1,
q ¼ 20, g ¼ 1=2, NF ¼ 2 and for different curves T ¼ 1, 40, 80,
120, 160, 200 from red to purple. (In principle, T should be much
smaller than �, but here we show also large values of T to
demonstrate the differences between the curves more clearly.)

0.00 0.05 0.10 0.15 0.20

T
0.00 0.05 0.10 0.15 0.20

L

FIG. 6 (color online). The spectral functions of the transverse
(upper panel) and longitudinal (lower panel) gluons as functions
of ! for various h, with T ¼ 0, m ¼ 0:001, q ¼ 0:1, � ¼ 1,
g ¼ 1=2 and for different curves h ¼ 0, 0.2, 0.4, 0.6, 0.8 from
red to blue.

0.0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

q

FIG. 7. The solutions of Eq. (21) at T ¼ h ¼ 0, with the dot-
dashed curve for �T , the dashed curve for �L

2 , and dotted curve

for �L
1 . The solid line is a guide to the eye and corresponds to the

dispersion of undressed gluons, ! ¼ q.
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loop approximation as shown in Eq. (E10). In the limit q �
mg � g� all solutions reduce to ! ¼ q, see Eq. (E11).

Furthermore, for the limit !, q � � the vacuum
becomes increasingly dominant such that Eq. (21) has
a zero at large Q called the Landau pole, Q2 ¼
expð53 þ 24�2

g2NF
Þm2 � �2

L [29], c.f. Eq. (E11), which, how-

ever, plays no role for our purpose as we are interested in
the low-temperature behavior of the theory that is hardly
influenced by the high-energy behavior of the gluon propa-
gator. The dispersion relations for the case with nonzero T
or h is similar but just with a little higher mpl. In fact, as a

generalization of Eq. (E10), the thermal mass of a two-
flavor imbalanced quark system reads

m2
g ¼ g2

4�2

�
�2ð1þ hÞ2 þ�2ð1� hÞ2 þ 2�2T2

3

�
;

where h thus plays the same role as �T=
ffiffiffi
3

p
�.

VI. THE FULL LARGE-NF THERMODYNAMIC
POTENTIAL

The full ideal-gas contribution to the thermodynamic
potential density with the zero-temperature contribution
subtracted is (c.f. Appendix F)

��0 ¼ �NC

�
NF

7�2T4

180
þX

f

T2�2
f

6

�
� NG

T4

45�2
:

The first part is the contribution of an ideal massless Fermi
gas, while the second part is the Stefan-Boltzmann law of
an ideal Bose gas. The RPA correction to�, the last term in
Eq. (13), can be written as

�RPAðT; f�fgÞ ¼ NG

2V

X
!n;q

Tr lnð1þD0�Þ

¼ NG

2V

X
!n;q

ln Det

�
1þ FPL

Q2
þGPT

Q2

�

¼ NG

2V

X
!n;q

ln

�
1þ F

Q2

��
1þ G

Q2

�
2
;

where the Lorentz gauge is used, while for the Coulomb
gauge the second identity is not valid but the last result is
still the same, which is a consequence of the gauge invari-
ance of the thermodynamic potential density. Using con-
tour deformations to carry out the Matsubara sum, as
shown in Appendix D, we obtain

�RPAðT; f�fgÞ ¼ NG

2�

Z dqd!

ð2�Þ3 4�q
2½2NBð!Þ þ 1�

	 f=½ln ~Fð!þ;qÞ� þ 2=½ln ~Gð!þ;qÞ�g;

where ~Fð!þ;qÞ ¼ 1þ Fð!þ;qÞ=ð�!2þ þ q2Þ, and simi-

lar for ~G by replacing F with G. The temperature depen-
dence can be obtained by subtracting the zero-temperature
contribution. Since F and G contain corrections of order
T2, the leading-order correction in��RPA comes from two
parts,

��RPAðT; f�fgÞ ¼ NG

2�3

Z
dqd!q2

�
NBð!Þ

�
arctan

=ð ~F0Þ
<ð ~F0Þ þ ��½�<ð ~F0Þ�sgn½=ð ~FÞ0� þ 2 arctan

=ð ~G0Þ
<ð ~G0Þ

þ 2��½�<ð ~G0Þ�sgn½=ð ~G0Þ�
�
1

2
½=ðln ~FTÞ � =ðln ~F0Þ þ 2=ðln ~GTÞ � 2=ðln ~G0Þ�

�
;

where the superscript T or 0 means the corresponding
terms are taken at nonzero T or T ¼ 0. We will refer to
the first part as the NB term and the second as the non-NB

term. The leading correction from the non-NB term can be
shown to be proportional to T2 and is not of great interest in
our study, since we will concentrate on the anomalous and
dominant T dependence, which is a consequence of the NB

term. In the NB term, the arctangent terms can be inter-
preted as contributions due to production and decay of
thermal gluons, because of their dependence on the imagi-
nary part of the gluon self-energies F and G, while the
theta function terms are interpreted as a correction to the
ideal gas law due to thermal plasmon modes.

The frequency integral over the theta function can be
performed explicitly. In both the transverse and longitudi-
nal case the sign of the imaginary part is positive when the

real part is negative, such that after the frequency integra-
tion the result of the integral is proportional to

T4
Z 1

0
x2 ln

1� e��2ð�1xÞ

1� e��1ð�1xÞ dx;

where x ¼ q=T and �1 <!< �2 signifies the region
where <F;G < 0. In the limit of low temperature this

integral will go to a constant. The theta-function contribu-
tion can thus be neglected since it is of higher order in the
temperature than is of interest to us here.
Next we perform the integrals over the arctangents,

whose structure at T ¼ h ¼ 0 is shown in Fig. 8. Note
that, for the study of the leading-order T corrections, it is
not necessary to include the T2 term in F and G since the
integral with NBð!Þ at low T is already in the order of T2.
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The dominant contribution for small temperatures
(T � �) comes from the frequency integration over the
domain ! 2 ½0; q� for the case q < 2�, which is due to
particle-hole creation. For the two-flavor balanced case
(NF ¼ 2, h ¼ 0), it was found numerically that the integral
in the limit of small temperatures is

g2�2T2

�2
ðcL1 � cL2 lng

2Þ

for the electric (longitudinal) gluons and

2
g2�2T2

�2

�
�cT1 þ cT2 ln

g2T

�

�

for the magnetic (transverse) gluons, with cL1 ’ 0:48,
cL2 ’ 0:16, cT1 ’ 0:42, and cT2 ’ 0:056. These results are
quite close to the analytic results for the leading-order
correction terms at small g and T obtained in Ref. [30],
where cL1 ¼½lnð4�2Þ�1�=6�0:4460, cL2 ¼1=6�0:1667,

cT1 ¼ ½	E � 6� 0ð2Þ=�2 þ 3=2 þ lnð32�Þ�=18 � 0:4032,
and cT2 ¼ 1=18 � 0:05556.
For the imbalanced case, the above result for the trans-

verse gluons can be generalized to

1

2

X
s¼�1

2
g2�2ð1þ shÞ2T2

�2

�
�cT1 þ cT2 ln

g2T

�ð1þ shÞ
�
;

(22)

where the contributions from both flavors with chemical
potentials �ð1� hÞ are additive. The longitudinal
part needs some further discussion. Since the static
long-wavelength longitudinal modes are screened
(c.f. Appendix E), the two chemical potentials contributing
to <F can not be separated even in the lowest-order term.
This is different from the result obtained in weak coupling,
as shown in Eq. (16), where no interaction between the two
flavors is involved. Therefore it is not surprising to find
that a simple generalization of the balanced case, asP

s¼�1g
2�2ð1þ shÞ2T2ðcL1 � cL2 lng

2Þ=2�2, does not fit
well with the numerical results. To obtain a reasonable
ansatz for the longitudinal part, we integrate the corre-
sponding arctangent term of the imbalanced case in the
low temperature limit up to Oðg2Þ to obtain

1

2

X
s¼�1

g2�2ð1þ shÞ2T2

�2

�
1

6
ln
4�2ð1þ shÞ2
g2ð1þ h2Þ � 1

6

�
; (23)

where we see that the factor ð1þ h2Þ ¼ 1
2

P
s¼�1ð1þ shÞ2

is a mixture effect of the two flavors. This expression fits
the numerical results very well with an error of only 3.5%.
Furthermore, just based on the numerical data, we find
another ansatz which fits the results even better

1

2

X
s¼�1

g2�2ð1þ shÞ2T2

�2

�
cL1 � cL2 ln

g2

1þ sh

�
; (24)

where the mixture effect is shown implicitly in the loga-
rithm, since the denominator becomes dimensionless by
canceling with the average chemical potential � ¼P

s¼�1�ð1þ shÞ=2 in the numerator.
The specific heat (per volume) at fixed volume and

particle number is [31]

CV ¼ T

�
@S

@T

�
V
¼ T

�
@S

@T

�
�f

�X
f

½ð@nf=@TÞ�f
�2

ð@nf=@�fÞT ;

where the entropy density S ¼ ð@�=@TÞV and particle
number density nf ¼ �ð@�=@�fÞV . In the low-

temperature limit the second term can be neglected, there-
fore the specific heat can be obtained, using Eqs. (22) and
(23), as
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0.07

0 1 2 3 4 5
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FIG. 8 (color online). The structure of arctanð=F=<FÞ (upper
panel) and arctanð=G=<GÞ (lower panel) with T ¼ 0, m ¼
0:001 �, h ¼ 0, g ¼ 1=2, and for different curves, q=� ¼ 0:8
(red), 1.6 (green), and 2.4 (blue), respectively. The contribution
for maxð0; q� 2�Þ<!< q is solely due to particle-hole con-
tributions, while the contribution q < !<1 is due to particle-
antiparticle processes (a combination of finite density and vac-
uum processes). The discontinuities at ! ¼ q correspond to the
plasmon modes shown in Fig. 7. The constant tails are due to the
vacuum contribution, which, however, will not cause divergence
because of the Bose distribution function NBð!Þ.

FERMI-LIQUID THEORY OF IMBALANCED QUARK MATTER PHYSICAL REVIEW D 85, 125030 (2012)

125030-11



CV � C0
V ¼ �T

�
@2��

@T2

�
�f

¼ � 1

2

X
s¼�1

2g2�2ð1þ shÞ2T
�2

	
�
1

6
ln
4�2ð1þ shÞ2
g2ð1þ h2Þ � 1

6

� 2cT1 þ 3cT2 þ 2cT2 ln
g2T

�ð1þ shÞ
�
; (25)

where the specific heat C0
V ¼ �Tð@2��0=@T

2Þ�f
of an

ideal gas has been subtracted.
The effective mass and the first Landau parameter can be

determined in the high-density limit by comparing Eq. (12)
and (25),

m�� ¼ �� þ g2�ð1� hÞ
�2

�
ln
4�2ð1� hÞ2
g2ð1þ h2Þ

� 1� 12cT1 þ 18cT2 þ 12cT2 ln
g2T

�ð1� hÞ
�
; (26)

where we used k� ¼ �� ¼ �ð1� hÞ in the massless limit
at high density. The first term in the effective mass is due to
the ideal-gas specific heat. However, as pointed out before,
the factor (1þ h2) shows the mixing of the two flavors,
unlike the weak-coupling results obtained in Sec. IV, e.g.,
Eq. (19). This is because, with the RPA correction, we
incorporate the sum of an infinite chain of gluon self-
energies, which incorporates interactions between different
quark flavors. Since the longitudinal gluon is screened in
the static long-wavelength limit, the mixing is even present
in the low-T and small-g limit. The numerical fit in
Eq. (24) also provides another expression for the effective
mass,

m�� ¼ �� þ g2�ð1� hÞ
�2

�
6cL1 � 6cL2 ln

g2

1� h

� 12cT1 þ 18cT2 þ 12cT2 ln
g2T

�ð1� hÞ
�
: (27)

As expected, all the above results return to the balanced
case as h ! 0. As mentioned previously, the contribution
from the non-NB term is not included, which acts as a
constant shift on the cL1 and c

T
1 factors. In Fig. 9, the change

of effective mass due to the interaction is given as a
function of imbalance at various temperatures. Finally,
we emphasize again that h should not be too close to 1
even though the divergence from lnð1� hÞ is suppressed
by the prefactor (1� h), because in such an extremely
imbalanced case the condition T � �� is not satisfied
for the minority flavor.

VII. SUMMARYAND DISCUSSION

We have calculated the thermodynamic potential pertur-
batively in the large-NF limit and the effective mass of the
quarks is determined by using Fermi-liquid theory for an
imbalanced cold dense quark system. The temperature
dependence is obtained by using the gluon self-energy,
from which the contributions from transverse and longitu-
dinal gluons are explicitly shown. For the two-flavor im-
balanced quark system, the effective mass is obtained both
analytically within the weak-coupling limit, and numeri-
cally within the RPA approximation. We find that, in con-
trast to the weak-coupling result, where the effective mass
of each flavor is independent of each other due to the
lack of an interflavor interaction, the effective mass
obtained from the RPA calculation depends on the chemi-
cal potentials of both flavors, which is a consequence
of the static screening of the electric gluons at long
wavelength.
From the RPA results, the logarithmic dependence on

temperature of the specific heat and effective mass signals
a breakdown of Fermi-liquid theory at zero-temperature.
Non-Fermi-liquid behavior, due to unscreened long-range
magnetic interactions, was already discussed several dec-
ades ago for the case of the electron gas [32,33]. In the
large-NF limit the QCD thermodynamic potential is essen-
tially the same as that of QED, apart from group theory
factors. The non-Abelian effects of QCD only show up if
gluon self-interaction corrections are included. The loga-
rithmic behavior in the balanced case has previously been
seen in analytic and numerical calculations of the QCD
thermodynamic potential and specific heat using the
large-NF limit, dimensional reduction, and hard-dense
loop QCD perturbation theory [30,34–38]. We expect
that such a logarithmic dependence shall have important
effects on the imbalanced QCD phase diagram at low
temperatures and directly influence the properties of quark
matter in the core of neutron stars. As we pointed out in the
introduction, with the effective masses and Landau
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0.3
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0.1

0.0

h

m

FIG. 9 (color online). The RPA correction to the effective mass
as a function of h, with the red curves for the majority flavor (þ )
and the blue curves for the minority flavor (� ). The solid curves
correspond to the expression in Eq. (26) while the dashed curves
to Eq. (27), and their difference is rather small. g ¼ 1=2 and for
each group of curves the temperature is T=� ¼ 10�6, 10�4 and
10�2 from bottom to top, respectively.
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parameters obtained, we are now able to investigate how
Landau Fermi-liquid theory modifies the properties of the
various color superconducting phases. As a consequence of
the color and flavor degrees of freedom, there can be many
different kinds of pairing between quarks, of which some
involve quarks with momenta of different magnitudes.
Therefore, the results with imbalance we obtained here
will play an important role to describe the competition
between these imbalanced and superfluid phases. To better
understand these effects, it is ultimately even necessary to
go further, such as including the gluon self-interaction and
extending our discussion to the three-flavor-imbalanced
case. We hope progress along these directions will be
achieved in the near future.
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APPENDIX A: CONVENTIONS

1. Euclidean conventions

The four-momentum vectors in Euclidean space-time
will be written with capital letters Q ¼ ðiði!nÞ;qÞ, while
for the Wick-rotated case (i!n ! !þ i0) the roman capi-
tal letters Qþ ¼ ðið!þ i0Þ;qÞ are used. Three momentum
vectors are written in bold face q and its length as q. And
!� i0 are sometimes written as !� for short.

The Euclidean gamma matrices in the standard repre-
sentation are

	0 ¼ 1 0
0 �1

� �
; 	i ¼ �i

0 �i

��i 0

� �
;

	5 ¼ 	0	1	2	3 ¼ 0 1
1 0

� �
:

All the above entries are 2	 2 matrices and �i are the
Pauli spin matrices

�1 ¼ 0 1
1 0

� �
; �2 ¼ 0 �i

i 0

� �
;

�3 ¼ 1 0
0 �1

� �
:

The gamma matrices obey the following relations:

f	�; 	�g ¼ 2���; f	5; 	�g ¼ 0; 	2
5 ¼ 1:

The charge conjugation matrix is

C ¼ 	0	2 ¼ �i
0 �2

�2 0

� �
;

which satisfies

C	T
�C ¼ 	�; CT ¼ C�1 ¼ �C:

The eight generators of the fundamental representation
of SU(3) are taken to be

t1 ¼ 1

2

0 1 0
1 0 0
0 0 0

0
@

1
A; t2 ¼ 1

2

0 �i 0
i 0 0
0 0 0

0
@

1
A;

t3 ¼ 1

2

1 0 0
0 �1 0
0 0 0

0
@

1
A; t4 ¼ 1

2

0 0 1
0 0 0
1 0 0

0
@

1
A;

t5 ¼ 1

2

0 0 �i
0 0 0
i 0 0

0
@

1
A; t6 ¼ 1

2

0 0 0
0 0 1
0 1 0

0
@

1
A;

t7 ¼ 1

2

0 0 0
0 0 �i
0 i 0

0
@

1
A; t8 ¼ 1

2
ffiffiffi
3

p
1 0 0
0 1 0
0 0 �2

0
@

1
A;

and have been normalized according to Tr½tatb� ¼ 1
2�

ab. In

general, the product of the generators is

taijt
a
kl ¼

NC � 1

4NC

ð�ij�kl þ �il�kjÞ

� NC þ 1

4NC

ð�ij�kl � �il�kjÞ:

Furthermore, one will frequently encounter the following
group-theory factors:

fabcfabd ¼ NC�
cd; �aa ¼ N2

C � 1 � NG;

tailt
a
lj ¼

N2
C � 1

2NC

�ij ¼ NG

2NC

�ij;

in the above expressionsNC is the number of colors andNG

the number of gluons.
Fourier transforms are normalized as

c ð�;xÞ ¼ 1ffiffiffiffi


p X
n

Z d3p

ð2�Þ3=2 c ði!n;pÞeip
x�i!n�

¼
Z d4Pffiffiffiffiffiffi

V
p c ðPÞeiP�x� ;

where !n ¼ �ð2nþ 1Þ= are the fermionic Matsubara
frequencies, V ¼ ð2�Þ3 is the imaginary time phase
space volume and P� ¼ ðiði!nÞ;pÞ and x� ¼ ð�;xÞ.
The Dirac equation in Euclidean space is

ð6@þmÞc ðxÞ ¼ 0;

where 6@ ¼ 	�@�. In momentum space, the Dirac equation

reads

ði 6PþmÞc ðPÞ ¼ 0:

The eigenvalues of the matrix i 6P are �m, since ði 6PÞ2 ¼
�P2 ¼ m2. The eigenspinors corresponding to these ei-
genvalues are

i 6PusðpÞ ¼ �musðpÞ; i 6PvsðpÞ ¼ mvsðpÞ:
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Note that i 6P is not a Hermitian matrix and that vsð�pÞ
satisfies the same equation as usðpÞ. However, they can
also be viewed as the eigenspinors of a Hermitian matrix

	0ðip 
 ~	þmÞusðpÞ ¼ �pusðpÞ;
	0ðip 
 ~	þmÞvsð�pÞ ¼ ��pvsð�pÞ:

The positive and negative energy eigenspinors have the
following form:

usðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�p þm

2�p

s
�s

p
 ~�
�pþm�s

 !
; (A1)

vsð�pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�p þm

2�p

s
� p
 ~�

�pþm�s

�s

 !
; (A2)

where �" ¼ ð1; 0ÞT and �# ¼ ð0; 1ÞT . They are orthonormal

in the sense that

uys ðpÞu0sðpÞ ¼ vy
s ð�pÞv0

sð�pÞ ¼ �ss0 ;

vy
s ð�pÞu0sðpÞ ¼ uys ð�pÞv0

sðpÞ ¼ 0;

and satisfy the completeness relationX
s

½usðpÞuys ðpÞ þ vsð�pÞvy
s ð�pÞ� ¼ 1:

Using the above eigenspinors, the positive and negative
energy projectors can be defined as

Pþ
E ðpÞ �

X
s

usðpÞuys ðpÞ ¼
�p	0 � i ~	 
 pþm

2�p
	0;

P�
E ðpÞ �

X
s

vsð�pÞvy
s ð�pÞ ¼ �p	0 þ i ~	 
 p�m

2�p
	0;

which in the massless case reduce to

Ps
Eðp; m ¼ 0Þ ¼ 1þ si	0 ~	 
 p̂

2
:

The helicity projection operators project the spin along the
momentum of the particle and read

P sðpÞ ¼ 1þ s� 
 p̂
2

¼ 1þ si	5	0 ~	 
 p̂
2

;

where

� ¼ i	5	0 ~	 ¼ ~� 0
0 ~�

� �

is the spin operator. Note that ½Ps
EðpÞ	0;P s0 ðpÞ� ¼ 0.

2. The Green’s functions

The Green’s functions of quarks and gluons in Euclidean
space are defined by

Gð�;x; �0;x0Þ ¼ �hc ð�;xÞ �c ð�0;x0Þi;
D��ð�;x; �0;x0Þ ¼ hA�ð�;xÞA�ð�0;x0Þi:

In momentum space, the free quark propagator is

G0ðPÞ ¼ ði!n þ�Þ	0 � i ~	 
 pþm

ði!n þ�Þ2 � p2 �m2
¼ i 6P�m

P2 þm2
:

In the Lorentz gauge ð@�A� ¼ 0Þ, the momentum-space

free gluon propagator is

D0;��ðQÞ ¼ 1

Q2

�
��� � ð1� �ÞQ�Q�

Q2

�

¼ P��

Q2
þ �

Q2

Q�Q�

Q2
;

while in the Coulomb gauge (@iAi ¼ 0) it is [13]

D0;�� ¼ PT
��

Q2
þQ2

q2
��0��0

Q2
þ �

Q2

q4
Q�Q�

Q2
;

where � is a gauge-fixing parameter and the projectors can
be written as

P�� ¼ ��� �
Q�Q�

Q2
; PT

ij ¼ �ij �
qiqj

q2
;

PT
�0 ¼ PT

0� ¼ 0; PL
�� ¼ P�� � PT

��:

Note that the free gluon propagator in the Lorentz gauge
satisfies Q�D0;�� ¼ �Q�=Q

2, such that in the Landau

gauge (� ¼ 0) it is purely four-momentum transverse,
i.e., Q�D0;�� ¼ 0. The free gluon propagator in the

Coulomb gauge satisfies qiD0;i� ¼ �q2Q�=Q
4, such that

in the Landau gauge it is three-momentum transverse.
These propagators are diagonal in color space.

APPENDIX B: LORENTZ TRANSFORMATION
PROPERTIES

In this section, the Lorentz transformation properties of
some quantities are summarized, such as the thermody-
namic potential, the distribution function and the effective
interaction. The Lorentz transformation to a frame moving
with velocity v is

���ðvÞ ¼

�	 
 
 
 �	vT 
 
 

..
. . .

.

	v �ij þ vivj
v2 ð	� 1Þ

..

. . .
.

0
BBBBBB@

1
CCCCCCA;

such that the four-momentum P� ¼ ð�ðpÞ;pÞ of a particle
transforms as

�ðpÞ
p

� �
! 	ð�ðpÞ � v 
 pÞ

pþ v̂ðp 
 v̂Þð	� 1Þ � 	�ðpÞv
� �

:

Not to be confused with the Dirac matrices 	�, the 	 used

in this section is the Lorentz factor 	 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
.
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1. Lorentz invariance of the thermodynamic
potential density

The invariance of the thermodynamic potential density
under Lorentz transformations can be shown using the
stress-energy tensor. Consider the change in the thermody-
namic potential density under a Lorentz transformation
from the rest frame to a frame moving with velocity v.
Since an interacting gas of quarks in the rest frame is
specified only by an energy density � and a pressure p,
the stress-energy tensor is diagonal and of the form

T�� ¼ diagð�; p; p; pÞ��;

such that under a Lorentz transformation the thermody-
namic potential density � ¼ ���n ¼ �p changes as

�� ¼ �T00 � �ð�nÞ ¼ 	2v2ð�þ pÞ � �ð�nÞ
¼ �n	2v2 � �ð�nÞ:

The transformation of the chemical potential (� ¼
@E=@N) follows from the Lorentz boosted total energy of
the system E ! 	ðE� v 
 PÞ ¼ 	E, where P ¼ 0 is the
total momentum of the system in the rest frame, which
results in � ! 	�. The transformation of the density is
due to a Lorentz contraction in the volume n ! 	n.
Thus the total change in �n is �ð�nÞ¼ð	2�1Þ�n¼
	2v2�n, such that under a Lorentz transformation
�� ¼ 0. For an alternative derivation which uses the

pressure transforms the same way as a force per area, see
Ref. [39].

2. Transformation properties of fðp;p0Þ
Consider the lowest-order correction to the free thermo-

dynamic potential density

�int ¼ 1

2

X
�;�0

Z d3pd3p0

ð2�Þ3 f��0 ðp;p0ÞN�ðpÞN�0 ðp0Þ:

Note that the distribution function NðpÞ is a Lorentz in-
variant, which can be easily derived from the fact that the
number of particles in a volume d3xd3p of phase space is
invariant under Lorentz transformations [40], i.e., ~Nð~pÞ ¼
NðpÞ where the tilde signifies the Lorentz transformed
quantity. Subsequently, it is possible to derive a transfor-
mation law for fðp;p0Þ by using that the distribution, the
thermodynamic potential density and dp=�0ðpÞ are
Lorentz invariant. It follows that �0�ðpÞ�0�0 ðp0Þf��0 ðp;p0Þ
should be Lorentz invariant, giving

�0�ðpÞ�0�0 ðp0Þf��0 ðp;p0Þ ¼ ~�0�ð~pÞ~�0�0 ð~p0Þ~f��0 ð~p; ~p0Þ;

where �0�ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

�

p
. Expand ~f to the lowest order

in v, using ~�0ð~pÞ ¼ �0ðpÞ � v 
 pþOðv2Þ, ~p ¼
p� �0ðpÞvþOðv2Þ, and p=�0ðpÞ ¼ @�0ðpÞ=@p,

f��0 ðp;p0Þ ¼ ~f��0 ð~p; ~p0Þ
�
1� v 
 p

�0�ðpÞ
��

1� v 
 p0

�0�0 ðp0Þ
�
þOðv2Þ

¼ ~f��0 ðp;p0Þ � �0�ðpÞv 
 @f��
0 ðp;p0Þ
@p

� �0�0 ðp0Þv 
 @f��0 ðp;p0Þ
@p0

� f��0 ðp;p0Þ
�
v 
 @�0�ðpÞ

@p
� v 
 @�0�0 ðp0Þ

@p0

�
þOðv2Þ

¼ ~f��0 ðp;p0Þ � v 

�
@�0�ðpÞf��0 ðp;p0Þ

@p
þ @�0�0 ðp0Þf��0 ðp;p0Þ

@p0

�
þOðv2Þ:

If it is assumed that to the lowest order the interaction does not depend on any distribution functions, i.e., ~f��0 ðp;p0Þ ¼
f��0 ðp;p0Þ, the above implies

@�0�ðpÞf��0 ðp;p0Þ
@p

¼ � @�0�0 ðp0Þf��0 ðp;p0Þ
@p0 : (B1)

Note that the above derivation is similar to that given in
Ref. [27].

APPENDIX C: FROM MINKOWSKI TO
EUCLIDIAN SPACE

In this section, we summarize how to turn the
Minkowski quantum field theory of quantum chromody-
namics into a Euclidean statistical field theory suitable for
studying the dynamical properties of a many-particle

system. The starting point is the gauge-fixed path integral
for QCD

Z
DA�D �cDcD �
D
 exp

�
i
Z

LQCDd
4x

�
; (C1)

where A� are the gluon fields, c and �c ¼ ic y	0 the

quark fields, 
 and �
 ¼ i
y	0 the ghost fields and the
QCD Lagrangian in Minkowski space fixed in a linear
gauge (f�Aa

� ¼ 0) is given by
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LQCD ¼ �X
f

½ �c fð6@þmfÞc f þ ig �c f	
�tac fA

a
�� � 1

2
A�
a ð@�@� � @2
��ÞA�

a � �
a@�@
�
a � gfabcð �
a@�
bÞAc

�

� 1

2
gð@�A�

a � @�A�
a Þfabc
��
��A

�
bA

�
c � 1

4
g2fabcfade
��
��A

�
a A�

cA
�
dA

�
e þ 1

2�
ðf�Aa

�Þ2; (C2)

where c f is the quark field with flavor f, and the summation over color and spin indices are shown implicitly. The metric
was chosen to be 
�� ¼ diagð�1; 1; 1; 1Þ and the Minkowski gamma matrices in the standard representation are

	0 ¼ �i
1 0
0 �1

� �
; 	i ¼ �i

0 �i

��i 0

� �
; 	5 ¼ i	0	1	2	3 ¼ 0 1

1 0

� �
: (C3)

The gamma matrices satisfy

f	�; 	�g ¼ 2
��; f	5; 	�g ¼ 0; ð	5Þ2 ¼ 1:

By performing a Wick rotation, the above quantum field
theory can be transformed into a statistical field theory. A
Wick rotation amounts to taking an analytic continuation
from real time to imaginary time (t ¼ �i�), which turns
the Minkowski metric ds2 ¼ �dt2 þ dx2 into the
Euclidean metric ds2 ¼ d�2 þ dx2. To do this consistently,
the zeroth component of all four-vectors need to change
accordingly. The procedure is most easily understood by
considering the length of the position1 four-vector

x�x� ¼ x�
��x
� ¼ ðt;xÞ �1 0

0 1

 !
t

x

 !

¼ ðit;xÞ1 it

x

 !
� xE����x

E
� ;

x�

��x� ¼ ð�t;xÞ �1 0

0 1

 ! �t

x

 !

¼ ðit;xÞ1 it

x

 !
� xE����x

E
� ;

where it is seen that the minus sign of the Minkowski
metric is absorbed in the definition of the Euclidean four-
vectors xE� ¼ ðit;xÞ ¼ ð�;xÞ. In Euclidean space, no dis-

tinction is made between upper and lower indices. A
simple way to obtain the Euclidean form of a vector is to
multiply the contravariant vector by the matrix
diagði; 1; 1; 1Þ or the covariant vector by diagð�i; 1; 1; 1Þ
and set t ¼ �i�. Note that the spatial components do not
change. For example, the Euclidean position four-vector,
the four-divergence and the zeroth gamma matrix are in
terms of their Minkowski definitions Eq. (C3)

xE� ¼ ðix0;xÞ ¼ ð�ix0;xÞ ¼ ðit;xÞ ¼ ð�;xÞ;

@E� ¼ ði@0;rÞ ¼ ð�i@0;rÞ ¼
�
�i

@

@t
;r
�
¼ ð@�;rÞ;

	E
0 ¼ i	0 ¼ �i	0 ¼ 1 0

0 �1

� �
:

Generalizations to tensors is straightforward and follows
for instance from the example A�� ¼ a�a�. Using the

above procedure to find the Euclidean versions of all
tensors, the partition function is easily found from
Eqs. (C1) and (C2) by setting the tensors to their
Euclidean versions, taking 
�� ! ��� and t ! �i�. The

partition function is

Z ¼
Z

DA�D �cDcD �
D
e�SE ;

where the Euclidean action is defined as

SE ¼
Z

LE
QCDd�dx;

with the Euclidean Lagrangian

LE
QCD¼

X
f

½ �c fð@þmf�	0�fÞc f�ig �c f	�t
ac fA

a
��

þ1

2
Aa
�ð@�@��@2���ÞAa

�þ �
a@2
a

þgfabcð �
a@�

bÞAc

�þ1

2
gð@�Aa

��@�A
a
�ÞfabcAb

�A
c
�

þ1

4
g2fabcfadeAb

�A
c
�A

d
�A

e
�� 1

2�
ð@�Aa

�Þ2:

In the above the tensors are all Euclidean but the index E
has been dropped for convenience, the conjugate fields are

now defined as �c f ¼ c y
f	

E
0 and �
 ¼ 
y	E

0 and the

chemical potential has been added as the Lagrange multi-

plier of the density c y
fc f. Additionally, to complete the

connection between quantum field theory and statistical
field theory, the time integration domain is changed to
� 2 ½0; �, where  is the inverse temperature T of the
system. Because of the definition of the partition function
as a trace over all states, the bosonic (fermionic) fields are
required to obey symmetric (antisymmetric) boundary
conditions, namely c fð� ¼ 0;xÞ ¼ �c fð� ¼ ;xÞ.
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APPENDIX D: NONZERO TEMPERATURE
CALCULATIONS

At nonzero temperature, one needs to calculate
Matsubara summations which usually can be done using
contour integration. In the following, an expression is
derived for such summations and the interpretation of the
result is discussed. Consider to this end the sum over
bosonic Matsubara frequencies (!n ¼ 2n�T) of the func-
tion fði!nÞ

�1
X
!n

fði!nÞ ¼ 1

2�i

I
Cmats

fðzÞ 1

ez � 1
dz;

where the contour Cmats is given in Fig. 10. If
fðzÞNBðzÞz ! 0 when jzj ! 1 then it is possible to close
the contour by adding the arcs of C�

semi-circ, in which case

Cmats ¼ Cþ
semi-circ þ C�

semi-circ. In general, fðzÞ will only

have poles or branch cuts on the real axis, such that the
contours can be contracted along the real axis, which gives

�1
X
!n

fði!nÞ ¼ 1

�

Z 1

0
NBð!Þ=½fð!þ i0Þ�d!

� 1

�

Z 1

0
½1þ NBð!Þ�=½fð�!þ i0Þ�d!;

(D1)

where 2i=½fð!þ i0Þ� � fð!þ i0Þ � fð!� i0Þ and it
was used that !< 0 for the contour C�

semi-arc, such that it

is more convenient to take ! ! �! and use NBð�!Þ ¼
�1� NBð!Þ. The first line can be interpreted as due
to thermal gluons and the second line due to thermal
(anti)gluons and a vacuum contribution. The fact that
the gluon is its own antiparticle will be reflected by
=½fð�!þ i0Þ� ¼ �=½fð!þ i0Þ�.

Let us evaluate the above for the specific case fðzÞ ¼
ln½gðzÞ� which satisfies =½gð�!þ i0Þ�¼�=½gð!þ i0Þ�.
Expanding the logarithm in terms of its real and imaginary
parts

ln½gðzÞ� ¼ lnjgðzÞj þ i arctan

�=½gðzÞ�
<½gðzÞ�

�
þ i��ð�<½gðzÞ�Þsgnð=½gðzÞ�Þ;

then Eq. (D1) can be written as

�1
X
!n

ln½gði!nÞ� ¼ 1

�

Z 1

0
d!ð1þ 2NBð!ÞÞ

	
�
arctan

�=½gð!þÞ�
<½gð!þÞ�

�

þ ��ð�<½gð!þÞ�Þsgnð=½gð!þÞ�Þ
�
;

which will be used in the calculation of the RPA correction
to the thermodynamic potential.
For fermionic Matsubara frequencies a similar deriva-

tion can be done, but now the chemical potential is in-
cluded by writing fði!n þ�Þ

�1
X
!n

fði!n þ�Þ ¼ � 1

2�i

I
Cmats

fðzÞ 1

eðz��Þ þ 1
dz;

where the contour Cmats is given in Fig. 11 and NðzÞ �
ðexpðzÞ þ 1Þ�1 has poles at the fermionic Matsubara
frequencies with residue �1. If fðzÞNðzÞz ! 0 when
jzj ! 1, then it is possible to close the contour as given
in Fig. 11 by adding the arcs of C�

semi-circ and the lower- and

upper-boundaries of Cbox. The full Matsubara sum can thus
be written as a contour integral over Cmats ¼ Cþ

semi-circ þ
Cbox þ C�

semi-circ. Again if fðzÞ only has poles and branch

cuts on the real axis, contracting the contours along the real
axis gives

Re[z]

Im[z]

Cmats

C+
semi-circC-

semi-circ

FIG. 10. The contour for the bosonic Matsubara summation,
where Cmats along the imaginary axis is used to rewrite the
frequency summation as a contour integral. The contours
C�
semi-circ are the positive and negative energy semicircular con-

tours obtained by adding arcs at infinity to Cmats.

Re z

Im z

0

Cbox

Cmats

C semi circC semi circ

FIG. 11. The same as in Fig. 10 but for the fermionic case,
where Cbox, the contour between 0<!<�, is related to
processes inside the Fermi sphere.
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�1
X
!n

fði!n þ�Þ ¼ � 1

�

Z 1

�
Nð!��Þ=½fð!þ i0Þ�d!� 1

�

Z �

0
½1� Nð��!Þ�=½fð!þ i0Þ�d!

� 1

�

Z 1

0
½1� Nð!þ�Þ�=½fð�!þ i0Þ�d!; (D2)

where in the first-to-last line it was used that 0<!<�
for the contour Cbox, such that it is more convenient to
write Nð!��Þ ¼ 1� Nð��!Þ. Similarly for C�

semi-circ,
where !< 0, we take ! ! �! in the integral and write
Nð�!��Þ ¼ 1� Nð!þ�Þ. From the above it is clear
that the first line corresponds to particles above the Fermi
sphere, the second line to those in the Fermi sphere and the
last line is due to antiparticles and contains a vacuum
contribution. Note that the above formula must be used
with care, since one has to check if the above simplifica-
tions are valid on a case-to-case basis.

APPENDIX E: THE GLUON SELF-ENERGY

The gluon self-energy, or the so-called polarization ten-
sor, is given to the lowest order by

�ab
f;�� ¼ �g2taijt

b
ji

Z d4P

V
Trs½	�G0fðPþQÞ	�G0fðPÞ�

� �ab�f;��: (E1)

The polarization tensor is purely transverse, i.e.,
Q��f;�� ¼ 0, which can be easily seen using

i 6Q ¼ G�1
0f ðPþQÞ �G�1

0f ðPÞ;

and the cyclicity of the trace. Expanding the polarization
tensor in terms of the longitudinal and transverse parts
relative to the three-momentum q gives

�f;�� ¼ FfP
L
�� þGfP

T
��;

where Ff and Gf can be obtained by

Ff ¼ Q2

q2
�f;00; Gf ¼ 1

2
ð�f;�� � FfÞ: (E2)

Noticing that even in the imbalanced case, the contribution
from each flavor simply adds up to the total polarization
tensor, therefore, throughout this section, we will not ex-
plicitly write out the subscript f, and all the formulae
presented here are applicable to any flavor. However, in
the main text, we use���, F andG as the summation over

all flavors if the subscript f is not explicitly shown.
After performing the Matsubara sum, the individual

processes involved can be identified

��� ¼ g2

2

Z d3p

ð2�Þ3
�P

ss0 ½ �usðpÞ	�us0 ðpþ qÞ �us0 ðpþ qÞ	�usðpÞ�
i!q � �0ðpþ qÞ þ �0ðpÞ ½Nðpþ qÞð1� NðpÞÞ � ð1� Nðpþ qÞÞNðpÞ�

þ
P

ss0 ½ �vsðpÞ	�us0 ðpþ qÞ �us0 ðpþ qÞ	�vsðpÞ�
i!q � �0ðpþ qÞ � �0ðpÞ ½Nðpþ qÞ �NðpÞ � ð1� Nðpþ qÞÞð1� �NðpÞÞ�

þ
P

ss0 ½ �usðpÞ	�vs0 ðpþ qÞ �vs0 ðpþ qÞ	�usðpÞ�
i!q þ �0ðpþ qÞ þ �0ðpÞ ½ð1� �Nðpþ qÞÞð1� NðpÞÞ � �Nðpþ qÞNðpÞ�

þ
P

ss0 ½ �vsðpÞ	�vs0 ðpþ qÞ �vs0 ðpþ qÞ	�vsðpÞ�
i!q þ �0ðpþ qÞ � �0ðpÞ ½ð1� �Nðpþ qÞÞ �NðpÞ � �Nðpþ qÞð1� �NðpÞÞ�

�

¼ g2

2

X
s1;s2¼�1

Z d3p

ð2�Þ3
Tr½Ps1

E ðpÞ	0	�P
s2
E ðpþ qÞ	0	��

i!q � s2�0ðpþ qÞ þ s1�0ðpÞ ½Ns2ðpþ qÞð1� Ns1ðpÞÞ � ð1� Ns2ðpþ qÞÞNs1ðpÞ�; (E3)

where NsðpÞ ¼ 1
exp½ðs�0ðpÞ��Þþ1� , NþðpÞ ¼ NðpÞ is the

Fermi distribution of the corresponding flavor and �NðpÞ ¼
1

exp½ð�0ðpÞþ�Þ�þ1 ¼ 1� N�ðpÞ is the Fermi distribution for

the corresponding antiparticle. The first line is related to
particle-hole creation and annihilation, the second and
third line to particle-antiparticle (and hole-antihole) pro-
duction and annihilation, and the last line to antiparticle-

antiparticlehole creation and annihilation. Note that, as
expected, the first line vanishes in the T, � ! 0 limit and
the last line vanishes in the T ! 0 limit. The second and
third line contain infinite vacuum (T, � ¼ 0) contribu-
tions, which need to be renormalized. The gluon self-
energy will be decomposed in terms of a matter part, a
renormalized vacuum and an infinite vacuum contribution
according to
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���ðQ; T;�Þ ¼ �mat
�� þ�ren:vac:

�� þ�inf:vac:
�� ;

where the various functions have been defined as

�mat
�� � ���ðQ; T;�Þ � P��

3
���ðQ; 0; 0Þ;

�ren:vac:
�� � P��

3

�
���ðQ; 0; 0Þ �Q2

�
���ðQ; 0; 0Þ

Q2

�
Q2!0

�
;

�inf:vac:
�� � P��

3
Q2

�
���ðQ; 0; 0Þ

Q2

�
Q2!0

:

For the vacuum expressions, it is possible to extract the
projection matrix P��, since the polarization tensor is

purely transverse and for T, � ¼ 0 there is no preferential
frame such that the tensor is built up out of only two
possible quantities ��� andQ�Q�. To include the dynami-

cal properties of the vacuum expression a renormalization
procedure is necessary. In the above the renormalized

vacuum expression was obtained by extracting the infinite
contributions from the vacuum polarization tensor at the

renormalization point Q2 ¼ 0. The reason for extracting

the factor Q2 from the vacuum ��� before setting Q2 ¼ 0
is because in the vacuum the dressed gluons are massless,

i.e., ��� / Q2, c.f. Eq. (E7). Therefore, Q2 ¼ 0 is still a
pole for the vacuum expression, at which the residue is 1
after the renormalization. In conclusion, the following full
renormalized polarization tensor will be used:

�ren
�� ¼ ��� ��inf:vac:

�� ¼ �mat
�� þ�ren:vac:

�� : (E4)

In the high-density limit (� � m), a good approxima-
tion is to evaluate the matter part for the case of massless
quarks. Thus for massless quarks in the zero-temperature
limit the matter parts of �00 and ��� can be calculated

explicitly

�mat
00 ðT ¼ 0Þ ¼ g2

2�2

�
2

3
�2 � 1

24

X
s1;s2¼�1

�
q2 � is1!q

2q
ðQ2 þ 2q2Þ

�
ln

�
1� 2s1s2�

q� is1!q

�

þ X
s2¼�1

�
s2

�ð3Q2 � 4�2Þ
24q

��2

4

i!q

q

�
ln

�1� 2s2�
q�i!q

1þ 2s2�
qþi!q

��
; (E5)

�mat
��ðT ¼ 0Þ ¼ g2

�2

�
�2

2
�Q2

8q

�
�

X
s1¼�1

s1 ln

2
41þ 2s1�

q�i!q

1� 2s1�
qþi!q

3
5þ 1

2

X
s1;s2¼�1

ðq� is1!qÞ ln
�
1þ 2s1s2�

q� is1!q

���
: (E6)

These expressions give the same result as can be found in
Refs. [41–43]. Performing an analytic continuation to real
time (i!q ! !þ i0), the above expressions have branch

cuts from maxð0; q� 2�Þ< j!j< q and q < j!j< qþ
2�, the origins of which can be found from Eq. (E3) and
are due to particle-hole processes and finite-T, � contri-
butions to particle-antiparticle production and annihilation,
respectively. Because Lorentz invariance is broken due to

the presence of the gas, �mat is a function of q0 ¼ iði!qÞ
and q separately since it can be a function of q�u� and q ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 � ðq�u�Þ2

q
, where u� ¼ ð1; 0; 0; 0Þ defines the rest

frame of the system [14].
The renormalized vacuum part �ren:vac:

�� has been found

in Ref. [44]

P��Q
2 g2

4�2

Z 1

0
dxxð1� xÞ ln

�
m2

m2 þ xð1� xÞQ2

�
¼�1

3
P��Q

2 g2

4�2

�
1

6
�
�
1� 2m2

Q2

��
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

Q2

s
ArcCoth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

Q2

s ��

’ P��

g2Q2½53þ lnðm2

Q2Þ�
24�2

; (E7)

where it was assumed that the quarks have equal masses and in the last line it was expanded for small masses. In real time,

this expression has a branch cut for j!j> ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4m2

p ’ q, which is due to particle-antiparticle production and
annihilation.

Using a Sommerfeld expansion temperature, corrections to the gluon self-energy can be obtained. The Sommerfeld
expansion can be summarized as
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Nð�p ��Þ ¼ �ð�� �pÞ �
X1
n¼1

2ð1� 21�2nÞ�ð2nÞ @2n�1

@�2n�1
p

�ð�p ��ÞT2n: (E8)

The derivation is analogous to that of the nonrelativistic Sommerfeld expansion [45]. One has to keep in mind that the
above is not a complete expansion for small temperatures since also the chemical potential depends on temperature. In this
manner the T2 correction to the gluon self-energy is found to be

�mat
00 ��mat

00 ðT ¼ 0Þ ¼ g2

2

1

6
T2

X
s¼�1

i!q þ 2s�

2q
ln

�ði!q � qÞði!q þ 2s�þ qÞ
ði!q þ qÞði!q þ 2s�� qÞ

�
;

�mat
�� ��mat

��ðT ¼ 0Þ ¼ �g2

2

1

6
T2

8�2½3ði!qÞ2 � ð2�� qÞð2�þ qÞ�
½ði!qÞ2 � ð2�� qÞ2�½ði!qÞ2 � ð2�þ qÞ2� :

(E9)

Using Eqs. (E2)–(E4) and (E6)–(E9) the behavior of F and G can be found in several limits. Keeping the ratio x ¼ q=!
fixed and expanding up to zeroth order in !, the hard dense loop and hard thermal loop (HDL/HTL) expressions are
reobtained [13,14]

lim
!!0

Fð!; q ¼ x!Þ ¼ 2m2
g

�
1� 1

x2

��
1þ 1

2x
ln

�
1� x

1þ x

����������x¼q=!
;

lim
!!0

Gð!; q ¼ x!Þ ¼ m2
g

�
1

x2
� 1

2x

�
1� 1

x2

�
ln

�
1� x

1þ x

����������x¼q=!
; where m2

g � g2

4�2

�
�2 þ 1

3
�2T2

�
;

(E10)

is the gluon thermal mass. The reason that the above limit
returns the HDL and HTL expressions, is due to the fact
that the HDL/HTL approximation (m¼0 and!�q��)
takes into account only the low-energy processes around
the Fermi surface, namely, particle-hole processes. Some
other useful limits are

lim
q!0

lim
!!0

F ¼ 2m2
g

�
1þ i

�

2

!

q

�
;

lim
q!0

lim
!!0

G ¼ �2m2
gi
�

2

!

q
;

where it can be seen that in the static long-wavelength limit
(!, q ! 0) the electric gluons (F) are screened, while
magnetic gluons (G) are dynamically screened.
Furthermore, the large momenta and frequency behavior
of the matter and vacuum parts are separately seen to be

lim
q;!!1F

mat ¼ �2ð4m2
g þ 5

3g
2T2Þ

3Q2
;

lim
q;!!1G

mat ¼ ��2ð4m2
g þ 5

3g
2T2Þðq2 þ!2Þ

3Q4
;

lim
q;!!1
T;�!0

F;G ¼ g2Q2½53 þ lnðm2

Q2Þ�
24�2

:

(E11)

The vacuum expressions are proportional to Q2 since in the
vacuum the gluons remain massless and thusQ2 ¼ 0 is still
a pole of the propagator. The logarithmicQ2 dependence is
usually absorbed into the vertex and subsequently inter-
preted as the varying of the coupling constant with the
energy scale Q.

APPENDIX F: THE THERMODYNAMIC
POTENTIAL OF IDEAL GASES

Consider first the well-known ideal Fermi gas term of a
single species

� 1

V
Tr lnð�G�1

0 Þ

¼ � 1

V

X
!n;p

lndet½ði 6PþmÞ�

¼ � 1



X
!n

Z d3p

ð2�Þ3 2 ln½�ði!n þ�0Þ2 þ �20ðpÞ�:

Using Eq. (D2) with fðzÞ ¼ ln½�z2 þ �20ðpÞ� and using the
principle value logarithm with a branch cut on the negative
real axis

lim

#0

=½fð!þ i
Þ� ¼ lim

#0

=½lnð�!2 þ �20ðpÞ � 2i!
Þ�

¼ ��½!2 � �20ðpÞ�sgnð�!Þ;
the ideal Fermi gas contribution becomes

� 2
Z d3p

ð2�Þ3
Z 1

0
½Nð!��0Þ � ð1� Nð!þ�0ÞÞ�

	�½!2 � �20ðpÞ�d!

¼ �2�1
Z d3p

ð2�Þ3 fln½1þ e�ð�0ðpÞ��0Þ�

þ ln½1þ e�ð�0ðpÞþ�0Þ�g þ 2
Z d3p

ð2�Þ3
Z 1

�2
0
ðpÞ

d!:

In the above it was assumed that the arc at infinity vanishes,
which is the case if the time-ordering in the path-integral is

VAN HEUGTEN, YIN, AND STOOF PHYSICAL REVIEW D 85, 125030 (2012)

125030-20



taken into account properly by multiplying the integrand
by e�i!n
 and taking the limit 
 # 0. The infinite vacuum
contribution is clearly visible and should be subtracted,
giving for massless fermions

�ideal-Fermi ¼ �
�
7�2T4

180
þ T2�2

0

6
þ �4

0

12�2

�
:

The ideal Bose gas follows from

1

V

1

2
Tr

�
lnðD�1

0 Þ � 2 lnð@�f�Þ � ln
1

�

�
;

which will lead to the same expression in both the Lorentz
and Coulomb gauges. In the following, the Coulomb gauge
is taken (f� ¼ ð0;rÞ�),

1

2V

�
Tr ln½D�1

0;��ðQÞ� � 2Tr lnq2 � Tr ln
1

�

�

¼ 1

2V

X
!n;q

�
ln

�
q2

�
q2ðQ2Þ2

�
� 2 lnq2 � ln

1

�

�

¼ 1

V

X
!n;q

ln½�ði!nÞ2 þ q2�:

The unphysical degrees of freedom clearly drop out due to
the ghost contribution @�f�. Using Eq. (D1) with fðzÞ ¼
lnð�z2 þ q2Þ, the ideal Bose gas contribution is

2



Z d3q

ð2�Þ3 ln½1� e�q� �
Z d3q

ð2�Þ3
Z 1

q
d!:

Again, the vacuum term is clearly present and will be
subtracted, giving the Stefan-Boltzmann law

�ideal-Bose ¼ � T4

45�2
:

APPENDIX G: THE QUARK SELF-ENERGY

For completeness also, the quark self-energy will be
derived in the Lorentz gauge to lowest order.

�ðPÞ¼
Z d4Q

V
Tr½�ig	�t

aG0ðQÞð�ig	�t
aÞD��ðP�QÞ�:

Performing the Matsubara sum gives

�ði!p;pÞ ¼ �g2
NG

2NC

Z d3q

ð2�Þ3
1

2�gðp� qÞ

8<
:

P
s½	�usðqÞ �usðqÞ	��

i!p þ�� �0ðqÞ � �gðp� qÞ ½ð1þ NBðp� qÞÞð1� NðqÞÞ

þ NBðp� qÞNðqÞ� þ
P

s½	�usðqÞ �usðqÞ	��
i!p þ�� �0ðqÞ þ �gðp� qÞ ½NBðp� qÞð1� NðqÞÞ þ ð1þ NBðp� qÞÞNðqÞ�

þ
P

s½	�vsðqÞ �vsðqÞ	��
i!p þ�þ �0ðqÞ � �gðp� qÞ ½ð1þ NBðp� qÞÞ �NðqÞ þ NBðp� qÞð1� �NðqÞÞ�

þ
P

s½	�vsðqÞ �vsðqÞ	��
i!p þ�þ �0ðqÞ þ �gðp� qÞ ½NBðp� qÞ �NðqÞ þ ð1þ NBðp� qÞÞð1� �NðqÞÞ�

9=
;;

��ði!p;pÞ ¼ �g2
NG

4NC

X
s2;s3¼�1

Z d3q

ð2�Þ3
�

s3
�gðp� qÞ

	�P
s2
E ðqÞ	0	�

i!p þ�� s2�0ðqÞ � s3�
gðp� qÞ

�

	 ½ð1þ Ns3
B ðp� qÞÞð1� Ns2ðqÞÞ þ Ns3

B ðp� qÞNs2ðqÞ � Is2;s3�: (G1)

In the last line the indicator function Is2;s3 ¼ �s2þ�s3þ � �s2��s3� is exactly the vacuum contribution such that �� is the
vacuum subtracted self-energy, i.e., ��ðT ¼ � ¼ 0Þ ¼ 0. To first order, the self-energy for a single quark and antiquark
can be found by using the free quark energy projectors and helicity projectors

�s1
s ði!p;pÞ ¼ Tr½P sðpÞPs1

E 	0�ði!p;pÞ�:

After projecting and evaluating the self-energy at i!p ¼ s1�0ðpÞ ��, the function in the first square brackets in Eq. (G1)
reduces toF s1;s2;s3ðp;qÞ defined in Eq. (14). In the zero-temperature limit the self-energy for a single quark then reduces to

lim
T!0

��þð�0ðpÞ ��;pÞ ¼ g2NG

4NC

X
s3¼�1

Z d3q

ð2�Þ3 Fþ;þ;s3ðp;qÞNþðqÞ: (G2)

Note that the final result is independent of helicity s.
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