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The deconfinement phase transition of SU(2) Yang-Mills theory is investigated in the Hamiltonian

approach in Coulomb gauge assuming a quasiparticle picture for the grand canonical gluon ensemble. The

thermal equilibrium state is found by minimizing the free energy with respect to the quasigluon energy.

Above the deconfinement phase transition the ghost form factor remains infrared divergent but its infrared

exponent is approximately halved, while the gluon energy, being infrared divergent in the confined phase,

becomes infrared finite in the deconfined phase. For the effective gluon mass we find a critical exponent of

0.37. Using the lattice results for the gluon propagator to fix the scale, the deconfinement transition

temperature is obtained in the range of 275 to 290 MeV.
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I. INTRODUCTION

Understanding the phase diagram of quantum chromo-
dynamics (QCD) is one of the major challenges of particle
physics. Running and upcoming, respectively, high-energy
heavy-ion experiments at LHC, RHIC, SPS and FAIR,
NICA and J-PARC call for a deeper understanding of
hadronic matter under extreme conditions. The central
issues are the equation of state of QCD and the nature of
the phase transition from the confined hadronic phase with
chiral symmetry spontaneously broken to the deconfined
quark gluon plasma with chiral symmetry restored. The
deconfinement phase transition is expected to be driven by
the gluon dynamics, while the chiral phase transition,
obviously, is due to strong interaction of the quarks, which,
of course, is also mediated by the gluons. It is therefore by
far nontrivial that both phase transitions occur at roughly
the same temperature as observed on the lattice [1].

In quenched QCD the deconfinement phase transition is
related to the center of the gauge group. Center symmetry
is realized in the low temperature confined phase and
spontaneously broken in the high-temperature deconfined
phase [2]. When quarks are included center symmetry is
explicitly broken and the deconfinement transition is ex-
pected to become a crossover. The features of the chiral
phase transition dominantly depend on the quark masses,
which explicitly break chiral symmetry, but also on the
strength of the chiral anomaly. Furthermore, lattice calcu-
lations also show that confinement is generated exclusively
by the low-energy gluonic modes while also medium-
energy gluon modes contribute to the order parameter of
spontaneous breaking of chiral symmetry, the quark con-
densate [3].

Meanwhile by various theoretical studies evidence has
been accumulated that the phase structure of hadronic
matter is much richer than originally thought [4]. As the
chemical potential or baryon density is increased one ex-
pects, on the basis of large-Nc arguments, the existence of a

‘‘quarkyonic phase’’ where quarks and gluons are still
confined but chiral symmetry is restored [5]. At even larger
chemical potential the transition to color superconducting
quark matter occurs with color-flavor locking [6]. There
are also speculations on the existence of a chiral critical
endpoint for finite baryon density [7].
Clearly the understanding of the phase structure and, in

particular, the deconfinement phase transition requires, like
the understanding of the confined phase itself, nonpertur-
bative methods. A rigorous nonperturbative treatment of
QCD is achieved on the lattice. The lattice method has
been quite successful for quenched QCD but becomes
extremely expensive when dynamical quarks are included
and fails at large baryon densities due to the notorious
fermion sign problem at nonvanishing chemical potential.
Therefore, alternative nonperturbative methods which rely
on the continuum formulation of QCD and thus do not
suffer from the problem connected with the lattice treat-
ment of fermions are very desirable. In recent years sub-
stantial progress has been made in first principle
continuum QCD calculations, which rely on functional
methods and do not suffer from the fermion problems of
the lattice. Among these methods are Dyson-Schwinger
equations (DSEs) in Landau [8] and Coulomb gauge [9],
functional renormalization group (FRG) flow equations in
Landau gauge [10] and Hamiltonian Coulomb gauge [11],
and variational approaches to the Hamilton formulation of
Yang-Mills theory in Coulomb gauge [12,13]. These vari-
ous continuum methods have all their own advantages and
drawbacks, and by combining them one expects to gain
new insights into the nonperturbative regime of the theory.
So far the deconfinement phase transition has been studied
mainly in the FRG approach [14,15] or in the DSE ap-
proach [16]. The deconfinement temperature was extracted
either directly from the Polyakov loop [15], which (in the
absence of quarks) is the order parameter of confinement,
or from the dual condensate [16], which can be related to
the Polyakov loop [17].
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In this paper we study this transition in a variational
approach to Hamiltonian Yang-Mills theory extending pre-
vious work [13] to finite temperature.

In the variational approach at zero temperature the en-
ergy density is minimized using Gaussian-type ansätze for
the Yang-Mills vacuum wave functional [12,13]. So far,
this approach has been mainly applied to study the infrared
sector of Yang-Mills theory [18,19], but was recently ex-
tended to full QCD [20]. In the present paper we extend
this approach to finite temperatures and study the decon-
finement phase transition. For this purpose we will mini-
mize the free energy after making an appropriate ansatz for
the density matrix. Some initial investigations in this di-
rection were undertaken in Ref. [21], where, for simplicity,
only the so-called subcritical solutions [22] were consid-
ered, which do not produce confinement in the sense that
they yield an infrared (IR) finite gluon energy and not a
linearly rising (static) quark potential. As a consequence
the deconfinement phase transition could not be studied.
Furthermore, in Ref. [21] the projection of the grand
canonical gluon ensemble onto zero color was considered
and it was found that the effect of color projection is
negligible. We will therefore ignore color projection in
the present paper.

The organization of the paper is as follows: In Sec. II we
briefly summarize the basic ingredients of the Hamiltonian
approach to Yang-Mills theory in Coulomb gauge, which
are needed for its extension to finite temperatures. In
Sec. III we introduce the grand canonical ensemble of
Yang-Mills theory. We define here the complete basis of
the gluon Fock space as well as the density matrix follow-
ing Ref. [21]. In Sec. IV we present the DSEs for the ghost
and Coulomb propagator. In Sec. V we calculate the par-
tition function, the entropy and the free energy. The varia-
tion of the free energy is carried out in Sec. VI and the
renormalization of the resulting DSEs is given in Sec. VII.
In Sec. VIII we present the results of an infrared analysis of
the coupled DSEs and discuss the importance of the
Coulomb term of the Yang-Mills Hamiltonian in Sec. IX.
Finally, in Sec. XI we present the numerical solution of
these DSEs and determine, in particular, the deconfinement
transition temperature. A short summary and our conclu-
sions are given in Sec. XII. The details of the IR analysis
are presented in the Appendix.

II. HAMILTONIAN APPROACH TO YANG-MILLS
THEORY IN COULOMB GAUGE

Below we briefly summarize the basic ingredients of the
Hamiltonian approach to Yang-Mills theory in Coulomb
gauge [13] needed for its extension to finite temperatures
[21].

To simplify the bookkeeping we will use the compact
notation Aa1

k1
ðx1Þ ¼ Að1Þ for colored Lorentz vectors like

the gauge potential and an analogous notation for colored
Lorentz scalars like the ghost Ca1ðx1Þ ¼ Cð1Þ. A repeated

label means summation over the discrete color (and
Lorentz) indices along with integration over the d spatial
coordinates

A � B ¼ Að1ÞBð1Þ ¼
Z

ddx
Xd
i¼1

XN2
c�1

a¼1

Aa
i ðxÞBa

i ðxÞ: (1)

We define in coordinate space

�ð1; 2Þ ¼ �a1a2 ti1i2ðx1Þ�ðx1 � x2Þ; (2)

where

tijðxÞ ¼ �ij �
@i@j

@2
(3)

is the transverse projector. Furthermore, indices will be
suppressed when they can be easily restored from the
context.
After resolving Gauss’s law in Coulomb gauge the

Yang-Mills Hamiltonian [23] reads in our notation

H ¼ 1

2
½J�1

A �ð1ÞJA�ð1Þ þ Bð1ÞBð1Þ�

þ g2

2
J�1
A �ð1ÞJAFAð1; 2Þ�ð2Þ

� HK þHB þHC; (4)

where �ð1Þ ¼ �i�=�Að1Þ is the canonical momentum
(electric field) operator, Bð1Þ is the non-Abelian magnetic
field

B a ¼ r�Aa þ g

2
fabcAb �Ac ðd ¼ 3Þ; (5)

g is the coupling constant, and

JA ¼ DetG�1
A ;

G�1
A ð1; 2Þ ¼ ð��a1a2@2x1

� gÂa1a2
i ðx1Þ@x1

i Þ�ðx1 � x2Þ
(6)

is the Faddeev-Popov determinant with Âab ¼ facbAc

being the gauge field in the adjoint representation of the
gauge group SUðNcÞ with structure constants fabc.
Furthermore,

�ð1Þ � �a1ðx1Þ ¼ Rð1; 2; 3ÞAð2Þ�ð3Þ;
Rð1; 2; 3Þ ¼ fa1a2a3�i2i3�ðx1 � x2Þ�ðx1 � x3Þ

(7)

is the color charge density of the gluons and

FAð1; 2Þ � Fa1a2
A ðx1;x2Þ ¼ GAð1; 3ÞG�1

0 ð3; 4ÞGAð4; 2Þ
(8)

is the so-called Coulomb kernel, with G�1
0 being the bare

inverse ghost operator, obtained by setting A ¼ 0 in
Eq. (6). In the presence of matter fields with color charge
density �mð1Þ, the gluon charge �ð1Þ in the Coulomb term
HC [Eq. (4)] is replaced by the total charge �ð1Þ þ �mð1Þ
and the vacuum expectation value of FAð1; 2Þ acquires the
meaning of the static non-Abelian Coulomb potential.
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The gauge-fixed Hamiltonian Eq. (4) is highly nonlocal
due to Coulomb kernel FAð1; 2Þ, Eq. (8), and due to the
presence of the Faddeev-Popov determinant JA, Eq. (6). In
addition, the latter also occurs in the functional integration
measure of matrix elements of operators O between
Coulomb gauge wave functionals

hc 1jOjc 2i ¼
Z

DAJAc
�
1½A�Oc 2½A�; (9)

where the integration runs over transverse field configura-
tions. In practical calculations the elimination of unphys-
ical degrees of freedom via gauge fixing is usually
beneficial (and sometimes unavoidable), in spite of the
increased complexity of the gauge-fixed Hamiltonian
Eq. (4). The nontrivial Faddeev-Popov determinant reflects
the intrinsically nonlinear structure of the space of gauge
orbits and dominates the IR behavior of the theory. Once
Coulomb gauge is implemented, any functional of the
(transverse) gauge field is a physical state.

III. THE GRAND CANONICAL ENSEMBLE OF
YANG-MILLS THEORY

We are interested in the behavior of Yang-Mills theory at
finite temperatures. For this purpose we consider the grand
canonical ensemble of Yang-Mills theory, which is defined
in the Hamiltonian approach by the density matrix

D ¼ expð��HÞ (10)

with � ¼ 1=kBT being the inverse temperature measured
in units of the Boltzmann constant kB. Formally, D
[Eq. (10)] looks like the canonical ensemble since the
chemical potential of the gluon vanishes. However, the
thermal expectation values

hhOii ¼ TrDO
TrD

¼
P

khkjDOjkiP
khkjDjki (11)

have to be taken over the whole Fock space, i.e. over states
fjkig with an arbitrary number of gluons. Since H is non-
linear and nonlocal it is clear from the very beginning
that we have to resort to approximations. We will use
an analogous approximation scheme as in the zero-
temperature case, see Ref. [13].

The trace in Eq. (11) can, in principle, be calculated in
any complete basis fjkig. Since we are mainly interested in
hhHii we will choose a basis which is adapted to the
structure of the Yang-Mills Hamiltonian. Following
Refs. [13,21] we choose the basis of the gluonic Fock
space of the form

hAjki ¼ J�1=2
A hAj~ki; (12)

where j~ki denotes a complete set of states of the Yang-
Mills Fock space to be specified later. This ansatz removes
the Faddeev-Popov determinant from the integration

measure in Eq. (9). In this basis the thermal expectation
value Eq. (11) reads

hhOii ¼
P

kh~kj ~D ~O j~kiP
kh~kj ~Dj~ki ¼: h ~Oi; (13)

where we have introduced the abbreviation

~O ¼ J1=2A OJ�1=2
A ; (14)

which yields for the density matrix Eq. (10)

~D ¼ J1=2A DJ�1=2
A ¼ e�� ~H: (15)

The transformed Yang-Mills Hamiltonian ~H defined by
Eq. (14) is obtained by replacing in the Yang-Mills
Hamiltonian Eq. (4) the momentum operators J�1

A �JA�

by ~�y ~�, where1

~� ¼ J1=2A �J�1=2
A ¼ �þ i

2

� lnJA
�A

: (16)

To work out the thermal averages it is convenient to go to
momentum space

AðxÞ ¼
Z

}keik�xAðkÞ; �ðxÞ ¼
Z

}ke�ik�x�ðkÞ;
(17)

(}k � ddk=ð2�Þd) where the Fourier components satisfy
the commutation relation

½Að1Þ;�ð2Þ� ¼ i�ð1; 2Þ: (18)

In the standard fashion we express the Fourier components
in terms of creation and annihilation operators

Aa
i ðkÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!ðkÞp ðaai ðkÞ þ aayi ð�kÞÞ; (19a)

�a
i ðkÞ ¼ i

ffiffiffiffiffiffiffiffiffiffiffi
!ðkÞ
2

s
ðaayi ðkÞ � aai ð�kÞÞ; (19b)

which satisfy the usual commutation relations

½aai ðkÞ; abyj ðqÞ� ¼ �abtijðkÞð2�Þd�ðk� qÞ; (20)

where tijðkÞ ¼ �ij � k̂jk̂j, k̂ ¼ k=jkj is the transverse

projector Eq. (3) in momentum space. Here !ðkÞ is, so
far, an arbitrary (positive definite) function of momenta. It

enters the vacuum state j~0i defined by

1Note that since the color density of the gluon field � (7) is
linear in the momentum operator �, the Coulomb Hamiltonian
HC (4) has, concerning the occurrence of � and JA, the same
structure as the kinetic term �J�1

A �JA�. This is not surprising
since the Coulomb term is the longitudinal part of the kinetic

energy �J�1
A �kJA�k with ~�

k
being the longitudinal momen-

tum operator determined by the resolution of Gauss’s law.
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aai ðkÞj~0i ¼ 0; (21)

which has the ‘‘coordinate’’ representation

hAj~0i ¼ N exp

�
� 1

2
Að1Þ!ð1; 2ÞAð2Þ

�
; (22)

where N is a normalization constant. The states

j~0i; aayi ðkÞj~0i; aayi ðkÞabyj ðqÞj~0i; . . . (23)

form a complete basis in the gluonic Fock space for any
positive definite function !ðkÞ. Below we will use this
basis to evaluate the thermal expectation values Eq. (13).

Because of the nonlocal structure of the Yang-Mills
Hamiltonian [Eq. (4)], the density matrix Eq. (15) can
only be treated in an approximate fashion. To make the
actual calculation feasible we follow Ref. [21] and replace
the full Yang-Mills Hamiltonian ~H in the density operator
~D [Eq. (15)] by a single-particle operator

h ¼
Z

}kaayi ðkÞ�abðkÞabi ðkÞ; (24)

where �abðkÞ will be later determined by minimizing the
energy density, yielding

~D ¼ expð��hÞ: (25)

By global color and rotational invariance,�abðkÞ is color-
diagonal and independent of color, �abðkÞ ¼ �ab�ðkÞ,
and furthermore depends only on jkj. The same is true
for the kernel ! in the vacuum wave functional Eq. (22).

Since the transformed density matrix ~D [Eq. (25)] is the
exponential of a single-particle operator Wick’s theorem
applies to the thermal averages Eq. (13), whose tempera-
ture dependence is exclusively given by the finite-
temperature Bose occupation numbers nðkÞ, defined (in
momentum space) by

haayi ðkÞabj ðqÞi ¼ �abtijðkÞð2�Þd�ðk� qÞnðkÞ;
nðkÞ ¼ ½expð��ðkÞÞ � 1��1:

(26)

From Eqs. (19a) and (19b) one finds for the gluon propa-
gator

Dð1; 2Þ :¼ hAð1ÞAð2Þi; DðkÞ ¼ 1þ 2nðkÞ
2!ðkÞ ; (27)

for the momentum propagator

Kð1; 2Þ :¼ h�ð1Þ�ð2Þi; KðkÞ ¼ 1þ 2nðkÞ
2

!ðkÞ;
(28)

and for the ‘‘mixed’’ propagator

hAð1Þ�ð2Þi ¼ i

2
�ð1; 2Þ; (29)

the latter being independent of the temperature.

IV. GHOSTAND COULOMB PROPAGATOR

We will resort to the same approximation used in
Ref. [13] in the T ¼ 0 case, i.e. calculating the energy up
to two loops. To this order the following representation of
the Faddeev-Popov determinant holds [24]

JA ¼ exp½�Að1Þ�ð1; 2ÞAð2Þ�; (30)

where

�ð1; 2Þ ¼ � 1

2

�
�2 lnJA

�Að1Þ�Að2Þ
�

(31)

is the so-called curvature, which, in fact, represents the
ghost loop (see below). Strictly speaking this representa-
tion was derived only for T ¼ 0. However, the proof given
in Ref. [24] can be straightforwardly extended to finite

temperatures provided the density matrix ~D is the expo-
nential of a single-particle operator, so that Wick’s theorem

holds for the thermal averages h ~Oi [Eq. (13)]. This is the
case for the density matrix Eq. (25). With the inverse
Faddeev-Popov operator GA [see Eq. (6)] the curvature
Eq. (31) can be expressed as

�ð1; 2Þ ¼ 1

2
h~�0ð1; 3; 4ÞGAð30; 3Þ~�0ð2; 40; 30ÞGAð4; 40Þi;

(32)

where

~� 0ð1; 2; 3Þ ¼ �G�1
A ð2; 3Þ
�Að1Þ (33)

is the bare ghost-gluon-vertex. Defining the ghost propa-
gator by

G ¼ hGAi (34)

and the full ghost-gluon vertex ~� by

hGA
~�0GAi ¼ G~�G; (35)

the ghost loop Eq. (32) becomes

�ð1; 2Þ ¼ 1
2
~�0ð1; 3; 4ÞGð30; 3Þ~�ð2; 40; 30ÞGð4; 40Þ: (36)

Furthermore, the ghost propagator G satisfies the Dyson
equation [13]

G ¼ G0 þG0�G; (37)

where

Gab
0 ðx; yÞ ¼ ½ð�@2Þ�1�abx;y (38)

is the free ghost propagator and

�ð1; 2Þ ¼ ~�0ð3; 1; 4ÞGð4; 40ÞDð3; 30Þ~�ð30; 40; 2Þ (39)

is the ghost self-energy. As shown in Landau gauge [25] the
ghost-gluon vertex is not renormalized; this applies also in
Coulomb gauge, see Ref. [18]. At zero temperature the

full ghost-gluon vertex ~� can be, to good approximation,
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replaced by the bare one ~�0 [26]. We assume that this
approximation works also at finite temperatures. Assuming
a bare ghost-gluon vertex and expressing the ghost propa-
gator Eq. (34) in momentum space by the ghost form factor

GabðkÞ ¼ �ab dðkÞ
gk2

(40)

the curvature Eq. (36) becomes in momentum space

�ðkÞ ¼ Nc

2ðd� 1Þ
Z

}q½1� ðk̂ � q̂Þ2� dðk� qÞdðqÞ
ðk� qÞ2 ;

(41)

and the ghost form factor dðkÞ satisfies the following DSE:

d�1ðkÞ ¼ 1

g
� IdðkÞ; (42)

where

IdðkÞ ¼ Nc

Z
}q½1� ðk̂ � q̂Þ2�dðk� qÞ

ðk� qÞ2
1þ 2nðqÞ
2!ðqÞ :

(43)

As at zero temperature we express the Coulomb propa-
gator

Fð1; 2Þ ¼ hFAð1; 2Þi (44)

by means of the Coulomb form factor fðkÞ defined in
momentum space by

g2FabðkÞ ¼ g2�abGðkÞfðkÞk2GðkÞ ¼ �ab dðkÞ2
k2

fðkÞ:
(45)

Using the operator identity

FA ¼ @

@g
ðgGAÞ (46)

and, proceeding as in the zero-temperature case (see e.g.
Ref. [13]), neglecting the g dependence of the density
matrix one finds the relation

fðkÞ ¼ �g2
@

@g
d�1ðkÞ (47)

from which one finds with Eq. (42) the following integral
equation:

fðkÞ ¼ 1þ IfðkÞ (48)

IfðkÞ¼Nc

Z
}q½1�ðk̂ � q̂Þ2�dðk�qÞ2fðk�qÞ

ðk�qÞ2
1þ2nðqÞ
2!ðqÞ :

(49)

This equation is formally the same as at zero temperature
except that the gluon propagator is replaced by its finite-
temperature counterpart, Eq. (27).

V. THE FREE ENERGY

At vanishing chemical potential the thermodynamic po-
tential of the grand canonical ensemble is given by the free
energy

F ¼ h ~Hi � TS; (50)

where S is the entropy, which is defined by

S ¼ �kB Tr

� ~D
~Z
ln

~D
~Z

�
; (51)

where

~Z ¼ Tr ~D (52)

is the partition function of the grand canonical ensemble

with ~D defined by Eq. (15). By straightforward algebraic
manipulation the entropy Eq. (51) can be converted to

S ¼ kB

�
ln ~Z� �

@ ln ~Z

@�

�
: (53)

In principle, we could calculate the free energy from the
partition function, ~Z ¼ expð��F Þ. For the exact density
matrix Eq. (15) this would yield the same result as Eq. (50).
However, in the present case, where we have replaced the
full density matrix Eq. (15) by the one of a system of
independent quasiparticles, Eq. (25), it is mandatory to
evaluate F from Eq. (50) in order to capture the essential
correlations between the gluons. Besides, the density

matrix ~D Eq. (25) has so far not been determined.

The partition function of the density matrix ~D [Eq. (25)]
is calculated in the standard fashion yielding

~Z ¼ exp

�
ðd� 1ÞðN2

c � 1ÞV
Z

}k lnð1þ nðkÞÞ
�
; (54)

where d� 1 ¼ tiiðkÞ is the number of independent polar-
ization directions in d spatial dimensions and N2

c � 1 is the
number of color degrees of freedom of the gauge bosons.
With Eq. (54) we find from Eq. (53) for the entropy density
s½n� per degree of freedom of the gauge bosons, defined by

S ¼ ðd� 1ÞðN2
c � 1ÞV 1

ð2�Þd s½n�; (55)

the expression

s½n� ¼ ð2�ÞdkB
Z

}k½�nðkÞ�ðkÞ þ lnð1þ nðkÞÞ�; (56)

where �ðkÞ is the variational kernel in the density matrix
[Eq. (24)]. To obtain the free energy from Eq. (50) we have
still to calculate the energy h ~Hi, which is done below.
In the evaluation of the expectation value of the Yang-

Mills Hamiltonian Eq. (4) we use the same approximation
as in the T ¼ 0 case keeping only terms up to two loops in
the energy [13]. The magnetic energy is straightforwardly
evaluated using Wick’s theorem. One finds
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h ~HBi¼ ðd�1ÞðN2
c�1Þ

4
V
Z
}p

p2

!ðpÞ½1þ2nðpÞ�

þg2NcðN2
c�1Þ

16
V
Z
}p}q

dðd�3Þþ3�ðp̂ � q̂Þ2
!ðpÞ!ðqÞ

�½1þ2nðpÞ�½1þ2nðqÞ�: (57)

The evaluation of the kinetic energy and the Coulomb
energy is somewhat more involved. With the representa-
tion Eq. (30) we obtain from Eq. (16)

~�ð1Þ ¼ �ð1Þ � i�ð1; 2ÞAð2Þ: (58)

For the expectation value of the two momentum operators
entering the kinetic and Coulomb terms one finds by using
Eqs. (58) and (27)–(29)

h ~�yð1Þ ~�ð2Þi¼Kð1;2Þ��ð1;2Þþ�ð1;10ÞDð10;20Þ�ð20;2Þ:
(59)

Contracting the external indices one obtains from this
expression immediately the expectation value of the kinetic
term

h ~HKi¼1

2
h ~�yð1Þ ~�ð1Þi

¼1

2
½Kð1;1Þ��ð1;1Þþ�ð1;2ÞDð2;3Þ�ð3;1Þ�

¼ ðd�1ÞðN2
c�1Þ

2
V
Z
}q½KðqÞ��ðqÞþ�2ðqÞDðqÞ�:

(60)

This expression is not obviously positive definite (as it
should be); however, it is not difficult to show that this is
indeed the case. Using Eqs. (27) and (28) and separating
the zero- and finite-temperature terms, Eq. (60) can be
written as

h ~HKi ¼ ðd� 1ÞðN2
c � 1Þ

2
V
Z

}q

�½!ðqÞ � �ðqÞ�2
2!ðqÞ

þ nðqÞ!
2ðqÞ þ �2ðqÞ

!ðqÞ
	
; (61)

from which it is seen that h ~HKi is indeed positive definite.
Restricting ourselves to including up to two (overlap-

ping) loops in the energy allows us to replace the Coulomb
kernel FAð1; 2Þ in ~HC by its expectation value Eq. (44),
resulting in the approximation

h�ð1ÞFAð1; 2Þ�ð2Þi ’ hFAð1; 2ÞiRð1; 3; 4ÞRð2; 5; 6Þ
� hAð3Þ ~�yð4ÞAð5Þ ~�ð6Þi

¼ Fð1; 2ÞRð1; 3; 4ÞRð2; 5; 6Þ
� ½hAð3ÞAð5Þih ~�yð4Þ ~�ð6Þi
þ hAð3Þ ~�ð6Þih ~�yð4ÞAð5Þi� (62)

The remaining expectation values can be straightforwardly
carried out using Eqs. (58) and (59). Then we find for the
Coulomb term

h ~HCi ¼ g2

2
Fð1; 2ÞRð1; 3; 4ÞRð2; 5; 6Þ

�
Dð3; 5Þ½Kð4; 6Þ

� �ð4; 6Þ þ �ð4; 40ÞDð40; 60Þ�ð60; 6Þ�
þ

�
1

2
�ð3; 6Þ �Dð3; 30Þ�ð30; 6Þ

�

�
�
1

2
�ð4; 5Þ � �ð4; 40ÞDð40; 5Þ

�	
: (63)

As noticed in Ref. [21], with the replacement

Fab
A ðx; yÞ ! �ab (64)

the Coulomb Hamiltonian HC [Eq. (4)] becomes

HC ! g2

2
J�1
A QaJAQ

a ¼ g2

2
QaQa; (65)

where

Qa ¼
Z

ddx�aðxÞ (66)

is the total color charge and we have used

½Qa; JA� ¼ 0: (67)

The last relation holds since the Faddeev-Popov determi-
nant JA is invariant under global color rotations, which are
generated by Qa. This is also explicitly seen by using the
representation Eq. (30). In a colorless universe

hhQaQaii � h ~Qa ~Qai ¼ hQaQai ¼ 0 (68)

holds. To ensure that this condition (68) is respected by

hHCi in Ref. [21] the Coulomb kernel g2

2 F
ab
A ðx; yÞ was

replaced by

g2

2
Fab
A ðx; yÞ � �ab: (69)

Furthermore, in Ref. [21] the Yang-Mills grand canonical
ensemble was projected onto zero total color. It was found
in there that the effects of both color projection and of the
replacement Eq. (69) is negligible. Therefore in the follow-
ing we will ignore the projection on zero color states [as
well as the replacement Eq. (69)].
Rewriting the above given thermal average of the

Hamiltonian, Eqs. (57), (60), and (63), in momentum space
one finds for the energy density per degree of freedom
e½n;!� defined by

h ~Hi ¼ ðd� 1ÞðN2
c � 1Þ V

ð2�Þd e½n;!�;
e½n;!� � eK þ eB þ eC

(70)
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the following expressions:

eK¼ð2�Þd
2

Z
}q½KðqÞ��ðqÞþ�2ðqÞDðqÞ�; (71a)

eB¼ð2�Þd
2

Z
}qq2DðqÞþg2ð2�ÞdNcðd�1Þ2

4d

�
Z
}p}qDðpÞDðqÞ; (71b)

eC¼ g2Nc

4ðd�1Þð2�Þ
d
Z
}p}q½d�2þðp̂ � q̂Þ2�FðpþqÞ

�
�
DðpÞKðqÞþDðqÞKðpÞþDðpÞDðqÞ½�ðpÞ��ðqÞ�2

þ½DðpÞ�DðqÞ�½�ðpÞ��ðqÞ��1

2

	
; (71c)

where FðkÞ is the Coulomb propagator defined by
Eqs. (44) and (45).

VI. THE FINITE-TEMPERATURE
VARIATIONAL PRINCIPLE

The kernel �ðkÞ defining the density matrix ~D [see
Eqs. (24) and (25)] is so far completely arbitrary. We will
now determine it by the finite-temperature variational prin-
ciple. At fixed temperature and volume and arbitrary par-
ticle number the thermodynamic potential to be minimized
is the grand canonical potential, which in the present case
coincides with the free energy since the chemical potential
of the gluons vanishes. Therefore we minimize the free
energy or its density

f½n;!� ¼ e½n;!� � Ts½n�; (72)

where e½n;!� is the energy density [Eq. (70)] and s½n� is
the entropy density [Eq. (56)]. Instead of varying the free
energy density with respect to �ðkÞ it is more convenient
to take the variation with respect to the occupation num-
bers nðkÞ [Eq. (26)], which is equivalent since nðkÞ is a
monotonic function of�ðkÞ. From Eq. (56) we find for the
variation of the entropy

�s½n�
�nðkÞ ¼ 1

T
�ðkÞ: (73)

Therefore stationarity of the free energy density,
�f=�n ¼ 0, requires

�ðkÞ ¼ �e½n;!�
�nðkÞ ; (74)

which, in the spirit of Landau’s Fermi liquid theory, iden-
tifies �ðkÞ as the quasigluon energy. Of course, this result
could have been anticipated from the form of the finite-
temperature Bose occupation numbers, Eq. (26).

So far the kernel !ðkÞ, which defines the vacuum wave
functional [Eq. (22)] and thus our basis of the Fock space,
is completely arbitrary and we could use any positive
definite kernel and the corresponding gluon basis to

calculate the thermodynamic averages. As long as we
include the complete set of states and keep the full canoni-
cal density operator the thermodynamical averages are
independent of !ðkÞ. Thus, in principle, the free energy
should not depend on!ðkÞ. However, due to the truncation
of the full Hamiltonian in the density operator ~D [Eq. (15)]
to a single-particle one [Eq. (25)] the actual choice of the
basis, i.e. of !ðkÞ, does matter and the optimal choice of
!ðkÞ is obtained by extremizing the free energy

�f½n;!�
�!ðkÞ ¼ 0: (75)

For the evaluation of �e½n;!�=�!ðkÞ we skip the implicit
!ðkÞ dependence of �ðkÞ and FðkÞ, since their inclusion
would give rise to higher-order loops. Ignoring this implicit
!ðkÞ dependence the energy density depends on nðkÞ and
!ðkÞ only through the gluon field and momentum propa-
gators, D [Eq. (27)] and K [Eq. (28)], i.e.

e½n;!� ¼ e½D½n;!�; K½n;!��: (76)

Using the chain rule and the explicit form of the propa-
gators [Eqs. (27) and (28)] we obtain

�e

�nðkÞ ¼ 1

!ðkÞ
�e

�DðkÞ þ!ðkÞ �e

�KðkÞ ; (77)

�e

�!ðkÞ ¼ 1þ 2nðkÞ
2

�
�e

�DðkÞ �!2ðkÞ �e

�KðkÞ
�
: (78)

Since the entropy density s½n� [Eq. (56)] does not explicitly
depend on !ðkÞ the condition Eq. (75) reduces to

�e½n;!�=�!ðkÞ ¼ 0; (79)

which in view of Eq. (78) leads to the condition

�e

�DðkÞ ¼ !2ðkÞ �e

�KðkÞ : (80)

For T ¼ 0, which implies nðkÞ ¼ 0, this equation reduces
to the gap equation obtained in Ref. [13]. Inserting the gap
equation (80) into Eq. (77) we find from Eq. (74)

�ðkÞ ¼ 2!ðkÞ �e

�KðkÞ : (81)

With the explicit expressions for the energy density given
in Eq. (71) we obtain

�ðkÞ
!ðkÞ ¼ 1þ I�ðkÞ; (82)

where

I�ðkÞ¼ g2Nc

2ðd�1Þ
Z
}q½d�2þðk̂ � q̂Þ2�Fðk�qÞ1þ2nðqÞ

!ðqÞ :

(83)

Using the explicit expressions for the energy density
[Eq. (71)], the gap equation can finally be expressed as
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!2ðkÞ ¼ k2 þ �2ðkÞ þ I0!½n� þ I!½n�ðkÞ; (84)

where

I0!½n� ¼ g2Ncðd� 1Þ2
2d

Z
}q

1þ 2nðqÞ
!ðqÞ (85)

is the tadpole term stemming from the non-Abelian part of
the magnetic energy, and

I!½n�ðkÞ ¼ g2Nc

2ðd� 1Þ
Z

}q½d� 2þ ðk̂ � q̂Þ2�Fðk� qÞ
!ðqÞ

� fð1þ 2nðqÞÞ½!2ðqÞ �!2ðkÞ
þ ð�ðqÞ � �ðkÞÞ2� � 2!ðqÞð�ðqÞ � �ðkÞÞg

(86)

is the contribution of the Coulomb Hamiltonian. These
loop integrals are ultraviolet (UV) divergent and require
regularization and eventually renormalization of the gap
equation. Fortunately the temperature dependence of these
loop integrals (which is due to the finite-temperature occu-
pation numbers nðkÞ) does not give rise to additional UV
singularities. Therefore the zero-temperature counterterms
are, in principle, sufficient to eliminate the UV singular-
ities. However, special care is required to separate the
temperature dependence from the UV-singular terms,
which will be done in the next section.

VII. RENORMALIZATION

At large momenta jkj � kBT the temperature should
become irrelevant. Consequently, the finite-temperature
solutions !ðkÞ, dðkÞ, �ðkÞ should possess the same UV
behavior as in the zero-temperature case. Indeed, the finite-
temperature contributions to the loop integrals (the terms
proportional to the occupation number nðkÞ) are all
ultraviolet finite. This is because for jkj ! 1 we have
�ðkÞ �!ðkÞ � k and thus the finite-temperature occupa-
tion numbers

nðq ! 1Þ � e���ðq!1Þ � e��q (87)

cut off the large momenta. Therefore, the renormalization
can be done independent of the temperature subtracting
only zero-temperature counterterms.

For the renormalization we follow Ref. [13] and separate
the various degrees of UV divergences of the loop integrals
of the gap equation by writing Eq. (86) as

I!½n�ðkÞ ¼ Ið2Þ! ðk; TÞ þ 2�ðkÞIð1Þ! ðk; TÞ þ �I!½n�ðkÞ;
(88)

where the integrals

IðlÞ! ðk; TÞ ¼ g2Nc

2ðd� 1Þ
Z

}q½d� 2þ ðk̂ � q̂Þ2�Fðk� qÞ
!ðqÞ

� ½ð!ðqÞ � �ðqÞÞl � ð!ðkÞ � �ðkÞÞl� (89)

are linearly (for l ¼ 1) and quadratically (for l ¼ 2) UV
divergent, while the finite-temperature contribution

�I!½n�ðkÞ ¼ g2Nc

d� 1

Z
}q½d� 2þ ðk̂ � q̂Þ2�Fðk� qÞ

!ðqÞ nðqÞ
� ½!2ðqÞ �!2ðkÞ þ ð�ðqÞ � �ðkÞÞ2� (90)

is UV convergent due to Eq. (87). Analogously we write
for the tadpole Eq. (85)

I0!½n� ¼ I0! þ �I0!½n�; I0! � I0!½n ¼ 0�: (91)

The loop integrals IðlÞ! ðk; TÞ and I0! are defined as in the
zero-temperature case, Ref. [13]. However, their entries
!ðkÞ, dðkÞ, and �ðkÞ are temperature dependent. These
integrals contain all UV divergences, while the finite-
temperature modifications �I!½n�ðkÞ and �I0!½n� are UV
finite. Therefore, the renormalization can be carried out,
in principle, in the same way as in the zero-temperature
case, Ref. [27]. However, due to the implicit temperature
dependence of !ðkÞ, dðkÞ, �ðkÞ we have to be careful not
to introduce finite-temperature effects by the renormaliza-
tion. Following the renormalization procedure given in
Ref. [27] for T ¼ 0 and subtracting only zero-temperature
terms one arrives at the renormalized gap equation

!2ðkÞ ¼ k2 þ ��2ðkÞ þ �Ið2Þ! ðkÞ þ �I0! þ �I0!½n� þ c0

þ 2 ��ðkÞ½�Ið1Þ! ðkÞ þ c1� þ �I!½n�ðkÞ (92)

where

��ðkÞ ¼ �ðkÞ � �ð��ÞjT¼0

�IðlÞ! ðkÞ ¼ IðlÞ! ðkÞ � IðlÞ! ð0Þ
�I0! ¼ I0! � I0!jT¼0

(93)

and c0, c1 are finite renormalization constants surviving
from energy counterterms [22]

�H ¼ 1
2C0Að1ÞAð1Þ þ iC1Að1Þ�ð1Þ: (94)

c0 and c1 are the finite parts of the divergent constants C0

and C1, respectively, i.e. Ci ¼ Cdiv
i þ ci. Furthermore, ��

is an arbitrary scale arising from the renormalization of the
Faddeev-Popov determinant [22]. The subscript T ¼ 0 in
Eq. (93) means that the corresponding quantities have to be
taken with the zero-temperature self-consistent solution.
The choice of these finite renormalization parameters will
be discussed in Sec. X.
The renormalized ghost DSE is obtained from Eq. (42)

with a subtraction at an arbitrary scale �d at T ¼ 0
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d�1ðkÞ ¼ d�1ð�dÞ ��IdðkÞ;
�IdðkÞ ¼ IdðkÞ � Idð�dÞjT¼0:

(95)

The Gribov-Zwanziger confinement scenario requires the
horizon condition

d�1ðk ¼ 0ÞjT¼0 ¼ 0; (96)

to be satisfied at T ¼ 0. This condition can be explicitly
built in the renormalized ghost DSE (95) by choosing the
renormalization constant dð�dÞ such that

d�1ð�dÞ ¼ �Idðk ¼ 0ÞjT¼0 ¼ Idð0ÞjT¼0 � Idð�dÞjT¼0;

(97)

which can be fulfilled for arbitrary renormalization scale
�d. Inserting this value into Eq. (95) we obtain

d�1ðkÞ ¼ �ðIdðkÞ � Idð0ÞjT¼0Þ; (98)

which is nothing but the renormalized ghost DSE (95) with
the renormalization scale fixed at �d ¼ 0 [and the horizon
condition Eq. (96) built in]. This shows that implementing
the horizon condition automatically puts the renormaliza-
tion scale in Eq. (95) to �d ¼ 0. Solutions of the coupled
DSEs and gap equation satisfying the horizon condition
(96) are called ‘‘critical’’ and those with d�1ð0Þ> 0 sub-
critical [22].

The renormalized DSE for the Coulomb form factor
fðkÞ [Eq. (45)] is analogously obtained by subtracting
Eq. (48) once at T ¼ 0 and an arbitrary renormalization
scale �f, yielding

fðkÞ ¼ fð�fÞ þ�IfðkÞ;
�IfðkÞ ¼ IfðkÞ � Ifð�fÞjT¼0:

(99)

In principle, the renormalization scale �f of the Coulomb

form factor can be independently chosen from that of the
ghost �d. However, since fðkÞ and dðkÞ are tightly related
by Eq. (47) for consistency one should choose �f ¼ �d.

Within our approach the finite-temperature Yang-Mills
theory is now determined by the following set of coupled
equations: The Eq. (82) for the quasigluon energy �ðkÞ,
the gap equation (92) for !ðkÞ, the DSE (95) for the ghost
form factor dðkÞ and the DSE (99) for the Coulomb form
factor fðkÞ.

A comment is here in order: In principle, we would get
only two equations from the finite-temperature variational
principle, one equation for �ðkÞ and one for !ðkÞ.
However, in the process of evaluating h ~Hi we have intro-
duced, for convenience, additional propagators (ghost and
Coulomb propagator), which we did not explicitly express
as functionals of !ðkÞ (and �ðkÞ). Instead of that we
derived DSEs for these quantities, which all contain loop
integrals. In taking the variation of the energy h ~Hi with
respect to !ðkÞ and�ðkÞ the implicit !ðkÞ—and �ðkÞ—

dependence of these propagators is ignored since it would
give rise to two-loop terms in the equations of motion, see
Ref. [28] for more details.

VIII. INFRARED ANALYSIS

Before presenting the numerical solutions of the coupled
Eqs. (82), (92), (98), and (99), we investigate their infrared
behavior. At zero temperature the infrared analysis was
carried out in Refs. [13,18]. At arbitrary finite temperature
the infrared analysis of the DSEs cannot be done in the
usual way. This is because the finite-temperature occupa-
tion numbers nðkÞ [Eq. (26)] depend exponentially on the
gluon quasienergy �ðkÞ. The infrared analysis can, how-
ever, be carried out in the high-temperature limit where the
occupation numbers become

nðkÞ �T!1 kBT

�ðkÞ : (100)

This limit is sufficient to exhibit the infrared behavior of
the propagators in the deconfined phase. With the repre-
sentation Eq. (100) the infrared analysis of the coupled
Dyson-Schwinger equations can essentially be carried out
as at T ¼ 0.
In general, the IR analysis can be carried out in two

ways: (i) using the angular approximation [13] replacing
kernels Kðk� qÞ depending on the difference between the
external momentum k and the loop momentum q by

Kðk� qÞ ! KðkÞ�ðk� qÞ þ KðqÞ�ðq� kÞ; (101)

with k ¼ jkj, q ¼ jqj. Although being approximative, this
method has the advantage that IR power law ansätze for the
propagators are indeed restricted to the IR regime.
(ii) Without using the angular approximation the IR power
law ansätze have to be used in the loop integrals for the
whole momentum range [18,29]. This method is, in prin-
ciple, exact in the IR (up to the omission of possible
logarithms) but has the disadvantage that the UV behavior
of these integrals is usually changed by the IR power
law ansätze and UV-finite loop integrals may turn into
UV-divergent ones. Fortunately both methods yield very
similar results as we will explicitly demonstrate in the
Appendix.
For the infrared analysis we assume the following power

law ansätze:

!ðk ! 0Þ � A

k�
; dðk ! 0Þ � B

k�
: (102)

For T ¼ 0 the infrared analysis with and without angular
approximation was carried out in Refs. [13,18], respec-
tively. Assuming the horizon condition [Eq. (96)] and a
bare ghost-gluon vertex one finds from the ghost DSE (42)
in d spatial dimensions in both cases the sum rule

� ¼ 2�þ 2� d: (103)
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Including also the gap equation the infrared exponents are
fixed and one finds, abandoning the angular approxima-
tion, in d ¼ 3 spatial dimensions two solutions [18]

� ’ 0:8; � ¼ 1: (104)

(In the angular approximation only the second solution is
obtained.) Both exponents are also found in the numerical
solutions, and were originally obtained in Ref. [13]
(� ’ 0:8) and in Ref. [19] (� ¼ 1). In d ¼ 2 spatial di-
mensions one finds a single solution with � ¼ 1=2 in the
angular approximation and � ¼ 0:4 when the angular
approximation is abandoned, while the numerical solution
[30] yields � ’ 0:44.

For high temperatures using the approximation
Eq. (100) the infrared analysis is carried out in the
Appendix. From the ghost DSE one finds the same sum
rule Eq. (103) as in the zero-temperature case. Including
also the gap equation one obtains in d ¼ 3 at high tem-
peratures a solution with the infrared exponent of the ghost
form factor

� ¼ 1=2 (105)

both with and without the angular approximation. With this
value for � one finds from the infrared analysis of the DSE
for the Coulomb form factor fðk ! 0Þ � 1=k� the infrared
exponent � 	 1which together with� ¼ 1=2 for the ghost
form factor leads to a linearly rising Coulomb potential
Fðk ! 0Þ � 1=k4, as is also found in the lattice calculation
[31]. The infrared exponents obtained in the infrared analy-
sis are confirmed by the numerical calculations, as we will
see in Sec. XI.

IX. NEGLECT OF THE COULOMB TERM

We are mainly interested in the description of the de-
confinement phase transition. If the Gribov confinement
scenario is realized in Coulomb gauge, this transition
should manifest itself in a change of the infrared behavior
of the various propagators, in particular, in that of the ghost
form factor dðkÞ and the gluon energy !ðkÞ and �ðkÞ,
respectively. In the (renormalized) gap equation (92) the
contributions from the Coulomb term are infrared sublead-

ing (�IðlÞðk ¼ 0Þ ¼ 0) even for infrared finite !ðkÞ.
Furthermore, the ghost DSE (42) does not receive contri-
butions from the Coulomb term. Therefore, for a first
qualitative description of the deconfinement phase transi-
tion the Coulomb term should be negligible. With the
neglect of the Coulomb term, the gap equation (92), re-
duces to

!2ðkÞ ¼ k2 þ ��2ðkÞ þ �I0! þ �I0!½n� þ c0 þ 2c1 ��ðkÞ;
(106)

while the ghost DSE (98) remains unchanged. At T ¼ 0
both�I0! [Eq. (93)] and �I0!½n� [Eq. (91)] vanish and the gap
equation (106) reduces to

!2ðkÞ ¼ k2 þ ��2ðkÞ þ 2c1 ��ðkÞ þ c0: (107)

Figure 1 shows the result of the numerical solution of the
ghost DSE and the full gap equation2 (92) at T ¼ 0 and the
corresponding solutions of the gap equation (107) with
the Coulomb term neglected for c0 ¼ c1 ¼ 0. As is seen,
there are only small deviations in the mid-momentum
regime, while both solutions agree in the ultraviolet and,
in particular, in the infrared. Furthermore, in a quasipar-
ticle description of the gluon sector (underlying the present
approach) the neglect of the Coulomb term is conceptually
advantageous (and expected to give a better description)
as long as two particle correlations are neglected. The
reason is the following: The Coulomb term gives rise to
the UV-singular quasigluon self-energy, ��ðkÞ ¼
!ðkÞI�ðkÞ, see Eq. (82), which is diagrammatically illus-
trated in Fig. 2(a). In a two-(quasi-)gluon state these di-
vergent self-energy contributions are precisely canceled by
the divergent contribution from the Coulomb interaction to
the two-gluon energy, shown in Fig. 2(b). Therefore it does
not make sense to keep the Coulomb term in the quasi-
gluon energy as long as the two-body correlations are not
taken into account.3 Wewill therefore neglect the Coulomb
term in the following. Then the loop integral in Eq. (82) has
to be discarded so that

�ðkÞ ¼ !ðkÞ: (108)

Furthermore, �I0! [Eq. (93)] represents the change of the
tadpole due to the change of the self-consistent solution
!ðkÞ at finite temperature (relative to the zero-temperature
case) but does not contain the change of the tadpole due to
the explicit temperature dependence of the gluon propa-
gator via the finite-temperature occupation numbers.
Therefore, we expect �I0! to be small and we will neglect
it. Then the finite-temperature gap equation (106) reduces
to

!2ðkÞ ¼ k2 þ ��2ðkÞ þ �I0!½n� þ 2c1 ��ðkÞ þ c0: (109)

Here only �I0!½n� [the temperature-dependent part of the
tadpole, see Eq. (91)] is explicitly temperature dependent,
while the curvature �ðkÞ depends only implicitly on the
temperature via the ghost form factor. However, as we will
see in Sec. XI, it is this temperature dependence of the
ghost which triggers the deconfinement phase transition.

X. CHOICEOF RENORMALIZATION CONSTANTS

Let us now discuss the choice of the finite renormaliza-
tion parameters. Since the renormalization can be com-
pletely accomplished by renormalizing the theory at zero

2When the Coulomb term is included the DSE for the
Coulomb form factor has also to be solved. This was done as
described in Ref. [13] replacing dðkÞ by its bare value dðkÞ ¼ 1
in the loop integral IfðkÞ.

3Note also that in QED the Coulomb term vanishes identically
in the absence of external charges.
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temperature, the remaining finite-temperature renormal-
ization constants c0, c1 should be also fixed at T ¼ 0 and
then kept fixed independent of the temperature. To fix these
constants we notice that the T ¼ 0 solutions are IR diver-
gent with !ðkÞ � �ðkÞ � 1=k�, � ¼ 0:8, 1, see Sec. VIII.
For such solutions the gap equation (107) reduces in the IR
with Eq. (102) to

!ðkÞ � ��ðkÞ ¼ c1 þ c0
2A

k� þ . . . (110)

The constant c1 obviously determines the infrared limit of
!ðkÞ � ��ðkÞ, and c1 ¼ 0 is required in order that the
’t Hooft loop obeys an area law, Ref. [27]. This value is
also favored by the variational principle (of minimal en-
ergy), Ref. [27]. Furthermore, recent lattice investigations
of the Yang-Mills vacuum wave functional in d ¼ 2 spatial
dimensions show that for this value of c1 the wave func-
tional Eq. (22) yields statistical weights for Abelian plane-
wave configurations which are in very good agreement
with the ones of the exact vacuum wave functional [32].
We will therefore put c1 ¼ 0.

As is seen from Eq. (110) the renormalization constant
c0 is IR subleading compared to c1 and influences the mid-
momentum regime, which is however expected to affect

the deconfinement phase transition. Fortunately in the
present variational approach c0 needs not to be treated as
a free parameter but can be determined by minimizing the
energy density. First notice that with c1 ¼ 0 the IR behav-
ior of the T ¼ 0 gap equation (110) reduces to

!ðkÞ � ��ðkÞ ¼ c0
2A

k� þ . . . (111)

Furthermore, with Eq. (30), which is correct to the two-
loop order (in the energy) considered in the present paper,
our vacuum wave functional defined by Eqs. (12) and (22)
reads

hAj0i ¼ N expf�1
2Að1Þ½!ð1; 2Þ � ��ð1; 2Þ�Að2Þg: (112)

In order that this wave functional is regular jhAj0ij2 <1
for all A we must have

!ðkÞ � ��ðkÞ 
 0: (113)

According to Eq. (111) this requires for small k

c0 
 0: (114)

We will see that this condition is also required by the
positivity of the energy. Furthermore the numerical results
given in Sec. XI will show that the energy density takes its
minimal value for c0 ¼ 0.
Using the gap equation (107) the zero-temperature en-

ergy density Eq. (71) with the counterterm �C0 [Eq. (94)]
fully included4 can be cast into the form

e ¼ eK þ eB ¼ ð2�Þd
2

Z
}k½!ðkÞ � ��ðkÞ�: (115)

FIG. 2. Contributions of the Coulomb term to (a) the gluon
self-energy and (b) the two-gluon energy. Awavy line represents
the gluon propagator, the double line stands for the Coulomb
kernel.
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4The counterterm �C1 [Eq. (94)] is only needed for the
Coulomb energy.
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Note that the energy density does not explicitly but merely
implicitly depend on c0, since!ðkÞ and ��ðkÞ depend on c0
via the gap equation (107). From Eq. (115) it is seen that
stability of our nonperturbative vacuum requires again the
condition (113), i.e. c0 
 0.

Figure 3 shows the energy density e [Eq. (115)] as
function of c0 for the solution with IR exponent � ¼ 1.
The energy density Eq. (115) takes its minimal value at
c0 ¼ 0, which is therefore the physical value and thus
chosen in all variational calculations.

There is one hidden renormalization constant left, which
is the scale �� in the subtracted curvature ��ðkÞ Eq. (93).
This quantity can be chosen in a wide range without
significantly changing the resulting propagators, see
Ref. [13]. (Clearly, this parameter cannot be chosen
�� ¼ 0 since this would result in !ð0Þ ¼ 0, which is in

contradiction to the Gribov scenario and also with the
findings on the lattice [33].)

XI. NUMERICAL RESULTS

The coupled ghost DSE (98) and the gap equation (109)
can be solved numerically for the whole momentum range
by iteration in the way described in Ref. [19] for the zero-
temperature case. (For details see also Ref. [11].) In the
following we will restrict ourselves to d ¼ 3 spatial di-
mensions and toNc ¼ 2. For the numerical calculation it is
convenient to introduce dimensionless quantities, rescaling
all dimensionful quantities with appropriate powers of an
arbitrary momentum scale �. The rescaled dimensionless
quantities will be indicated by a bar:

�k :¼ k

�
; �!ð �kÞ :¼ !ð �k�Þ

�
; etc (116)

Because of the use of a logarithmic momentum grid an
infrared cutoff �IR is needed, which we choose, in dimen-
sionless units, in the range ��IR ¼ 10�8 . . . 10�5.

A. Zero-temperature solutions

Before presenting the finite-temperature solutions, it is
worthwhile and necessary to reconsider the zero-
temperature case, from which the physical scale is fixed.
We keep the remaining undetermined renormalization con-
stant fixed at ��� ¼ 4, but its precise value is irrelevant for

the qualitative behavior of the obtained solutions.5

The Gribov-Zwanziger confinement scenario requires
d�1ðk ¼ 0Þ ¼ 0. Solutions which satisfy this condition
are referred to as critical, while solutions with
d�1ðk ¼ 0Þ> 0 are called ‘‘subcritical’’. Figure 4 shows
the results of the numerical solutions of the ghost DSE (95)
and the gap equation (109) at T ¼ 0 and various choices of
the ghost renormalization constant d�1ð�d ¼ �IRÞ, start-
ing at d�1ð�IRÞ> 3 ��IR and successively decreasing
d�1ð�IRÞ. As long as d�1ð�IRÞ * 2 ��IR the solutions ob-
tained are subcritical, i.e. d�1ð0Þ> 0. At sufficiently small
d�1ð�IRÞ 	 2 ��IR the critical solution with � ’ 0:8 is ob-
tained. When d�1ð�IRÞ is further decreased critical solu-
tions with � ¼ 1 appears.
The critical solutions can be more easily found by

implementing the horizon condition d�1ðk ¼ 0Þ ¼ 0 ex-
plicitly into the ghost DSE (95) by choosing its renormal-
ization constant d�1ð�d ¼ 0Þ ¼ 0 [resulting in Eq. (98)]
and solving the coupled equations (98) and (109) itera-
tively. Choosing as starting point of the iteration
d�1ð�IRÞ * ��IR one obtains the critical solution with � ’
0:8, while the choice d�1ð�IRÞ & ��IR results in a continu-
ous set of critical solutions with � ¼ 1 differing in the
value of the IR coefficient B of dðkÞ, see Eq. (102). Let us
also mention that the convergence of the iteration is gen-
erally faster when the initial functions dðkÞ and !ðkÞ
satisfy the IR sum rule Eq. (103) and the relation (A37),
which represents the IR limit of the ghost DSE, see the
Appendix. For � ¼ 1 and d ¼ 3 Eq. (A37) reduces to

A

B2
¼ Nc

8�2
: (117)

In Fig. 5 the infrared coefficients B [Eq. (102)] of the
various � ¼ 1 solutions have been rescaled to make them
coincide in the IR, so they differ in the mid-momentum
regime.
As already mentioned before our equations can be en-

tirely expressed in terms of dimensionless quantities, re-
flecting the scale invariance of Yang-Mills theory. To
confront our numerical results with the experimental or
lattice data we have to fix the (so far arbitrary) scale �, see
Eq. (116). For this purpose we use the lattice data for the
gluon propagator, which were obtained by fixing the
scale by means of the Wilsonian string tension
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FIG. 3. Energy density [Eq. (115)] as function of the renor-
malization constant c0 for the solution with IR exponent � ¼ 1.

5Note that, in principle, the value of this finite renormalization
constant could also be determined by minimizing the free energy
with respect to this parameter. This is, however, numerically
extremely expensive and beyond the scope of the present paper.
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	W ’ ð440 MeVÞ2. (This quantity has not yet been calcu-
lated in the present Hamiltonian approach.) The lattice
calculations carried out in Coulomb gauge in Ref. [33]
show that the gluon energy !ðkÞ can be nicely fitted by
Gribov’s formula [34]

!ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM4

k2

s
; (118)

withM ’ 880 MeV ’ 2
ffiffiffiffiffiffiffiffi
	W

p
. The Gribov formula implies

the IR exponent � ¼ 1 [cf. Eq. (102)] and hence by the IR
sum rule (103) � ¼ 1. Therefore, to fix our scale from the
lattice result forM, we have to use the � ¼ 1 solutions. As
discussed above, there is a whole set of � ¼ 1 critical
solutions differing in the IR coefficient of the ghost form
factor �B ¼ B=�. From these we chose the one which fits
Gribov’s formula Eq. (118) best. For the above adopted
values ��� ¼ 4 and c0 ¼ 0 one finds for this solution the

value

�B ¼ B

�
¼ 6:01� 0:05: (119)

From the Gribov formula Eq. (118) one reads off the IR
coefficient (102) of the gluon energy

A ¼ M2: (120)

With this result we find from Eq. (117) for our scale

� ¼ M
�B

ffiffiffiffiffiffiffiffiffi
8�2

Nc

s
: (121)

This fixes our physical scale in terms of the Gribov
mass M.

B. Finite-temperature solutions

In this section we use the same procedure described
above to solve the coupled equations (98) and (109) for
finite temperatures. The renormalization described in
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Sec. VII requires subtractions with the zero-temperature
solutions in order to have temperature independent renor-
malization constants. However, such subtractions are nu-
merically unstable. Because of this, in the numerical
results presented in this section the subtraction of the ghost
loop has been done with the finite-temperature solutions.
Consequently, the horizon condition d�1ðk ¼ 0Þ ¼ 0 is
built in explicitly at any temperature.

Starting with the critical solutions at T ¼ 0 and increas-
ing the temperature the self-consistent solutions remain
more or less unchanged up to a critical temperature Tc,
where the IR exponent of the ghost form factor suddenly
changes to � 	 0:5 and the gluon energy becomes infrared
finite (� 	 0) in accord with the sum rule Eq. (103). This is
nicely seen in Fig. 6 where we show the infrared exponent
for the critical solutions as function of the temperature. The
two critical solutions with � ’ 0:8 and � ¼ 1 existing
below Tc merge to a single solution which approaches � ¼
0:5 for T � Tc. The IR exponent � ¼ 0:5 is precisely the
value of the ghost form factor in d ¼ 2. Thus, the change of
the IR exponent at Tc is in accord with dimensional
reduction.

Figures 7 and 8 show the self-consistent finite-
temperature solutions for the ghost form factor and the
gluon energy as function of the momentum for various
temperatures. As the temperature is increased above Tc

the plateau value of the gluon energy starts increasing
linearly with the temperature as is seen in Fig. 9, where
we show the infrared value !ð�IRÞ as function of the
temperature. The linear increase with the temperature of
!ð�IRÞ is easily understood by noticing that above Tc the
temperature is the only energy scale and for dimensional
reason !ð�IRÞ has therefore to scale with the temperature.

The infrared value of the gluon energy !ð�IRÞ can
be interpreted as an effective gluon mass. Zooming into
the behavior of !ð�IRÞ near Tc, which is done in Fig. 10,

we can extract the critical exponent 
 of this quantity
defined by

!ð�IRÞ
�

¼
�
T

Tc

� 1

��

: (122)

From our numerical solution we extract a value of 
 	
0:37, which is similar to the value of 
 	 0:41 obtained in
Ref. [35], where a quasigluon picture has been used to fit
the lattice results for the energy density and the pressure,
and furthermore using critical exponents from the d ¼ 3
Ising model, which is in the same universality class as
SU(2) gauge theory.
The sudden change of the ghost infrared exponent, see

Fig. 6 (or alternatively the drop in the IR value of the gluon
energy !ð�IRÞ, see Fig. 9) can be used to determine the
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FIG. 6. Infrared exponent of the ghost form factor as function
of the temperature for the critical solutions at T ¼ 0 with � ’
0:8 (full line) and � ¼ 1 (crosses). Above Tc both solutions
merge to a single solution.
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critical temperature �Tc. From our numerical solutions we
extract with Tc ¼ � �Tc and Eq. (121) for SU(2) the value of

Tc � 275 � � � 290 MeV; (123)

which is somewhat smaller than the lattice result of Tc ’
295 MeV [SU(2)].

The value of the critical temperature is seen to be
insensitive of the actual value of 0< d�1ð�d ¼ �IRÞ 	
��IR. Yet there is one parameter which can effect the form
of the phase transition: the coupling constant g entering the
tadpole term �I0!½n�. This term acts as an effective mass in
the gap equation (109). As long as the temperature is small,
we expect the IR behavior of the gluon energy to be
insensitive of the precise value of this effective mass.
However, when the temperature is raised the effect of the
mass scale cannot be neglected. When we increase the
value of g (Fig. 11) the phase transition is weakened. For
the self-consistent solutions we have chosen g ¼ 0:5.

Removing the tadpole, the free QED solution (!ðkÞ ¼
k, � ¼ �1 and � ¼ 0) exists at high temperatures.
In Fig. 12 we show the running coupling constant �ðkÞ

calculated from the ghost-gluon vertex, as described in
Ref. [18], for both T ¼ 0 and T > Tc and normalized to
the infrared value �c (at T ¼ 0). In both cases �ðkÞ is IR
finite but the IR plateau value decreases by an order of
magnitude above the deconfinement phase transition.
Below and above Tc this plateau value remains more or
less unchanged as the temperature varies. The IR finiteness
of the running coupling is guaranteed by the sum rule
Eq. (103) of the IR exponents of ghost and gluon propa-
gators, which holds both at T ¼ 0 and T ! 1. As is well
known, in the high-temperature limit d ¼ 4 Yang-Mills
theory reduces to d ¼ 3 Yang-Mills theory coupled to a
Higgs field, which is the temporal component of the gauge
field in d ¼ 4. Since the Higgs field certainly contributes to
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the running coupling constant there is no obvious reason
why at high temperatures the running coupling should
approach that of the (confining) d ¼ 3 Yang-Mills theory,
although it is IR finite in both d ¼ 4 Yang-Mills theory at
T ! 1 and d ¼ 3 Yang-Mills theory at T ¼ 0.

Finally, in Fig. 13 we show the gluon propagator
Eq. (27) at zero and at finite temperatures above the
deconfinement phase transition. Below the deconfinement
transition temperature the gluon propagator is in accord
with Gribov’s formula (118) vanishing in the IR, while
above the deconfinement phase transition the gluon is
massive. Furthermore the effective IR gluon masses in-
crease with the temperature as is explicitly seen in Fig. 11.
Note also that in the UV the gluon propagator is indepen-
dent of the temperature.

XII. SUMMARYAND CONCLUSIONS

In this paper we have studied the grand canonical en-
semble of Yang-Mills theory in the Hamiltonian approach
in Coulomb gauge and investigated the finite-temperature
deconfinement phase transition. For the density operator a
quasiparticle picture was assumed and the quasiparticle
energies were determined by minimizing the free energy.
A complete basis of the gluonic Fock space was con-
structed by creating an arbitrary number of quasigluons
on top of a Gaussian-type vacuum wave functional whose
width was considered as variational kernel and determined
by minimizing the free energy. This results in the finite-
temperature gap equation, which has to be solved together
with the Dyson-Schwinger equations for the ghost and
Coulomb propagators. We have shown that the effect of
the Coulomb term of the Yang-Mills Hamiltonian (which
represents the longitudinal part of the kinetic energy) is
negligible. Neglecting this term the gap equation and DSE
for the ghost propagator decouple from the DSE for the

Coulomb propagator. We have solved these equations an-
alytically in the high-temperature limit in the infrared
regime. We have found that the infrared exponents of the
gluon energy (�) and of the ghost form factor (�) satisfy in
the high-temperature limit the same sum rule � ¼ 2�� 1
as at zero temperature. While at zero temperature two
solutions with � ¼ 1 and � ’ 0:8 exist, in the high-
temperature limit there is only a single solution � ¼ 1=2.
Our numerical solution of the coupled ghost DSE and gap
equation shows that at a critical temperature Tc there is a
sudden change of the infrared exponents from their zero-
temperature values to their high-temperature limits. At this
deconfinement phase transition both T ¼ 0 critical solu-
tions with � ’ 0:8 and � ¼ 1 merge to a single solution
with � ¼ 1=2. In accord with the sum rule at the critical
temperature the gluon energy changes from being infrared
divergent (� ’ 0:6 and � ¼ 1) to being infrared finite
(� ¼ 0). This shows that while the gluons are absent
from the infrared spectrum in the confined phase they
become massive particles in the deconfined phase. For
the effective gluon mass we have found a critical exponent
of 0.37. From the sudden change of the infrared exponents
and of the infrared value of the gluon mass we have
extracted a critical temperature of the deconfinement phase
transition of Tc ¼ 275 . . . 290 MeV using the lattice results
for the Gribov mass.
An alternative way to describe the deconfinement phase

transition is to study the behavior of the Polyakov loop, as
was done in the FRG approach in Landau gauge [15]. This
can be also done in the present approach and will be subject
to future work.
Towards the extension of the present approach to full

QCD one has first to study the gauge group SU(3), which
has a first order phase transition. From the lattice studies
carried out in Ref. [36] in Landau gauge one may expect
that the order of the phase transition manifests itself in the
critical behavior of the effective gluon mass close to the
phase transition, but this is an open issue and requires
further studies.
The results obtained in the present paper are rather

encouraging for an extension of the present approach to
full QCD at finite temperature and baryon density. A first
step in this direction was recently undertaken by studying
chiral symmetry breaking in a variational approach to QCD
in Coulomb gauge at zero temperature and density [20].
The extension of this approach to finite temperature and
nonvanishing chemical potential is, in principle, straight-
forward but technically involved. Since this approach is
formulated in the continuum it will not face the problems
one encounters in the lattice formulation at finite chemical
potential.
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APPENDIX: INFRARED ANALYSIS

Below we carry out the IR analysis of the coupled DSEs
in the high-temperature limit. As usual we assume power
law ansätze in the infrared (k ¼ jkj)

!ðkÞ ¼ A

k�
; dðkÞ ¼ B

k�
; �ðkÞ ¼ C

k�
;

�ðkÞ ¼ E

k"
; fðkÞ ¼ L

k�

(A1)

and, in addition, for the ghost form factor dðkÞ the horizon
condition

d�1ðk ¼ 0Þ ¼ 0; (A2)

so that �> 0. The coefficients A; B . . . as well as the IR
exponents �;� . . . are expected to depend on the tempera-
ture. The modifications at finite temperature arise exclu-
sively from the extra piece of the gluon propagator Eq. (27)
containing the finite-temperature occupation numbers nðkÞ
Eq. (26), defined in terms of the kernel �ðkÞ occurring in
the ansatz for the density matrix, Eq. (24). Obviously, for
" > 0 the finite-temperature part of the gluon propagator is
IR subleading since in this case

nðk ! 0Þ ¼ 0 (A3)

and we expect the zero-temperature result for the sum rules
of the IR exponent to remain true at finite T. Note also that
the property (A3) is maintained in the high-temperature
approximation Eq. (100).

1. Infrared analysis in angular approximation

We begin with the analysis of the Dyson-Schwinger
equation for the ghost form factor. It differs from the
zero-temperature equation only by the replacement of the
zero-temperature gluon propagator 1=½2!ðkÞ� by its finite-
temperature counterpart ½1þ 2nðkÞ�=½2!ðkÞ�. As in the
T ¼ 0 case it is convenient to consider the derivative of
the ghost DSE (42)

d

dk
d�1ðkÞ ¼ I0dðkÞ: (A4)

In the angular approximation, Eq. (101), after the angular
integration over the d� 1 sphere

1

ð2�Þd
Z
Sd�1

dd�1�½1� ðk̂ � q̂Þ2� ¼ d� 1

ð4�Þd=2
1

�ð1þ d
2Þ
(A5)

we obtain for the loop integral (43)

I0dðkÞ ¼
Nc

2

d� 1

ð4�Þd=2
1

�ð1þ d
2Þ
�
dðkÞ
k2

�0
RðkÞ; (A6)

where

RðkÞ ¼
Z k

0
dqqd�1DðqÞ ¼

Z k

0
dqqd�1

1þ 2 kBT
�ðqÞ

!ðqÞ (A7)

and we have used here the high-temperature limit
Eq. (100). For small k we can safely use the infrared
asymptotic forms (A1) for !ðkÞ and�ðkÞ in the integrand,
which yields

RðkÞ ¼ k�þd

Að�þ dÞ
�
1þ kBT

E
k"

�þ d

�þ "þ d

�
: (A8)

Inserting this result into (A6) we find from (A4) the rela-
tion

A

B2
¼ Nc

2

d� 1

ð4�Þd=2
1

�ð1þ d
2Þ

�þ 2

�ð�þ dÞ k
��2�þd�2

�
�
1þ kBT

E
k"

�þ d

�þ "þ d

�
; (A9)

where the left-hand side is a constant for fixed T. For " 
 0
the second term in the bracket is not IR leading compared
to the first one and we obtain the relation

� ¼ 2�� dþ 2; (A10)

which is just the zero-temperature infrared sum rule [18].
In the opposite case, " < 0 the second term is IR leading
and the sum rule

�þ " ¼ 2�� dþ 2 (A11)

follows. Note the two sum rules merge continuously at
" ¼ 0.
Consider now Eq. (82) for the gluon quasienergy �ðkÞ.

Obviously, if the Coulomb term is neglected, we have
�ðkÞ ¼ !ðkÞ and consequently " ¼ �. For the infrared
analysis of the full equation it is again convenient to take
the derivative

d

dk

�
�ðkÞ
!ðkÞ

�
¼ I0�ðkÞ: (A12)

With the ansätze (A1) the left-hand side yields

d

dk

�
�ðkÞ
!ðkÞ

�
¼ D

A
ð�� "Þk��"�1: (A13)

Using the angular approximation (101) for the Coulomb
kernel Fðk� qÞ we find for the derivative of the loop
integral

I0�ðkÞ ¼
g2Nc

2ð4�Þd=2
d� 1

�ð1þ d
2Þ
F0ðkÞRðkÞ; (A14)

where RðkÞ has been defined by Eq. (A7). Using the
explicit form of the Coulomb kernel Eq. (45)
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g2FðkÞ ¼ dðkÞ2fðkÞ
k2

(A15)

we obtain with the ansätze (A1) the infrared behavior

FðkÞ ¼ B2L

k2�þ2þ�
: (A16)

With this expression and (A8) we find from Eq. (A14)

I0�ðkÞ ¼ � g2Nc

2ð4�Þd=2
d� 1

�ð1þ d
2Þ

B2L

A
k��2�þd�3��

� 2�þ 2þ �

�þ d

�
1þ kBT

E

�þ d

�þ "þ d
k"
�
: (A17)

Inserting Eqs. (A13) and (A17) into (A12) we find for
" 
 0 the relation

" ¼ 2�� dþ 2þ �; (A18)

while for " < 0

2" ¼ 2�� dþ 2þ � (A19)

holds. Using the results (A10) and (A11) from the ghost
equation we find in both cases the sum rule

" ¼ �þ �: (A20)

In the case of an IR finite Coulomb form factor (� ¼ 0)
the latter equations implies

" ¼ �; (A21)

so that �ðkÞ and !ðkÞ have the same IR behavior, up to
possible logs. Indeed with � ¼ 0 and " ¼ �> 0 satisfying
the sum rule (A10) we find from Eq. (A17)

I0�ðkÞ � k�1; (A22)

implying that �ðkÞ has an extra infrared logarithm in
addition to the infrared power law inherited from !ðkÞ6

�ðkÞ ¼ !ðkÞð1þ� lnkÞ; k ! 0: (A23)

The expression (41) for the curvature �ðkÞ is formally the
same as in the zero-temperature case and consequently its
infrared analysis can be carried out as in the zero-
temperature case, Ref. [13]. In d spatial dimensions one
obtains from the derivative of Eq. (41) for the curvature
with the ansätze (A1)

C

B2
¼ Nc

2ð4�Þd=2
1

�ð1þ d=2Þ
�þ 2

�ðd� �Þ k
d�2��2þ�;

(A24)

from which we find

� ¼ 2�� dþ 2; (A25)

which is the zero-temperature result. Inserting this relation
into Eqs. (A10) and (A11) we obtain

� ¼ �; " 
 0 �þ " ¼ �; " < 0: (A26)

Consider now the finite-temperature gap equation (92).
Proceeding as in the zero-temperature case [13] one easily
shows that for IR divergent �ðkÞ, i.e. � > 0, the gap
equation (A1) reduces in the IR limit to

!2ðk ! 0Þ ¼ �2ðk ! 0Þ (A27)

implying that in the ansätze (A1) we have

A ¼ C: (A28)

With this equality the left-hand sides of Eq. (A9) (ghost
DSE) and of Eq. (A24) [curvature] become equal. Equating
the right-hand side of these equations and using the sum
rules (A10) and (A25) to cancel the IR power-laws we
obtain the relation

1

d� 1

�þ 2

�ðd� �Þ ¼
�þ 2

�ð�þ 2Þ : (A29)

Using the sum rule (A10) again to eliminate� in favor of�
we finally obtain

1 ¼ 2

d� 1

�ð�þ 1Þ
ð2�þ 2� dÞðd� �Þ : (A30)

The solutions of this equation are

� ¼ 1
2ðd ¼ 2Þ; � ¼ 1ðd ¼ 3Þ; (A31)

which were quoted in Sec. VIII. If the curvature �ðkÞ is IR
finite, i.e. � � 0, the IR dominant terms on the right-hand
side of the gap equation (92) is nonzero due to the
temperature-dependent part of the tadpole, �I0½n�.
Therefore in this case !ðkÞ is IR finite and nonvanishing,
implying � ¼ 0. With this value the sum rule (A10) yields

� ¼ d� 2

2
; (A32)

i.e.

� ¼ 1

2
ðd ¼ 3Þ: (A33)

This is the solution found in the numerical calculations in
the deconfined regime, while the solutions (A31) are real-
ized in the confined phase.

2. Infrared power law ansätze in loop integrals

Using the power law ansätze (A1) for the whole mo-
mentum regime the loop integrals (43), (89), and (106) can
be calculated analytically. For the zero-temperature case
this has been done in Refs. [18,22]. With the high-
temperature limit of the occupation numbers Eq. (100)
these results can be extended to finite temperatures. In

6Note that the Coulomb integral I�ðkÞ [Eq. (83)] is positive
definite since its integrand is positive, so that �ðkÞ, like !ðkÞ, is
positive definite.
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this subsection, for simplicity, wewill neglect the Coulomb
term entirely, so that �ðkÞ ¼ !ðkÞ.

Using the infrared ansätze (A1) one finds from the ghost
DSE (42)

A

B2
¼ �Ncðd� 1Þ

4

1

ð4�Þd=2 k
d�2þ��2�

�
�
Id!ð�;�; dÞ þ k�

2kBT

A
Id!ð2�;�; dÞ

�
; (A34)

where [18]

Id!ð�;�; dÞ ¼
�ðd2 þ �

2Þ�ðd2 � �
2Þ�ð12 ð2� d� �þ �ÞÞ

�ð1� �
2Þ�ðdþ �

2 � �
2Þ�ð1þ �

2Þ
:

(A35)

The new (finite-temperature) element is the second term in
the bracket of Eq. (A34). At T ¼ 0 or for �> 0 (and
arbitrary T) this term is IR subleading and one finds the
sum rule

� ¼ 2�� dþ 2 (A36)

already previously obtained in angular approximation, see
Eq. (A10). With this sum rule (and �> 0) Eq. (A34)
reduces in the IR to

A

B2
¼ �Ncðd� 1Þ

4

1

ð4�Þd=2 Id!ð�;�; dÞ: (A37)

Putting here � ¼ 1 and d ¼ 3 we obtain

A

B2
¼ Nc

8�2
; (A38)

which is the relation (117) quoted in Sec. XIA.
For T > 0 and �< 0 the second term in Eq. (A31)

becomes IR dominant and we find the sum rule

2� ¼ 2�� dþ 2; (A39)

which was also obtained in the previous subsection in the
angular approximation.

We now turn to the gap equation (106). The neglect of
the Coulomb terms is irrelevant for its IR analysis since
these terms are IR subleading as discussed in the previous
subsection.

Using the power law ansatz (A1) for the ghost form
factor in the whole momentum regime one finds for the
ghost loop Eq. (41)

�ðkÞ ¼ kd�2�2�B2 Nc

4

1

ð4�Þd=2 Iddð�; dÞ; (A40)

where

Iddð�; dÞ ¼
�ðd2 � �

2Þ2�ð�þ 1� d
2Þ

�ð1þ �
2Þ2�ðd� �Þ : (A41)

From (A40) we read off the IR exponent Eq. (A1) of �ðkÞ
to be given by

� ¼ 2�� dþ 2; (A42)

which is again the same result as obtained in the angular
approximation (A25). We can distinguish now two cases:
(i) If the ghost loop �ðkÞ is IR divergent, i.e. � > 0, the

gap equation (106) reduces in the IR to

!2ðkÞ ¼ �2ðkÞ (A43)

and we find � ¼ �, which also follows by combin-
ing (A36) and (A42) and agrees again with the
results obtained in the angular approximation.
Since !ðkÞ, �ðkÞ> 0, Eq. (43) reduces then to

!ðkÞ ¼ �ðkÞ: (A44)

Inserting here for �ðkÞ the expression (A40) and
using the sum rule (A36) one finds the relation

A

B2
¼ Ncðd� 2Þ

8

1

ð4�Þd=2 Iddð�; dÞ: (A45)

Combining this equation with Eq. (A37) and using in
the latter the sum rule (A36) we obtain the condition

Iddð�; dÞ ¼ �1
2Id!ð�;�; dÞj�¼2��dþ2: (A46)

In d ¼ 3 spatial dimensions this equation has the two
solutions [18]

� ¼ 1; � ’ 0:795: (A47)

Only the first solution is found in angular approxi-
mation, see Eq. (A31). Both solutions are found
numerically in the confined phase, see
Refs. [13,19], respectively.

(ii) If �ðkÞ is IR finite or vanishing the finite-
temperature part of the tadpole �I0!½n� in the gap
equation (106) guarantees that !ðkÞ is IR finite but
not vanishing, i.e. � ¼ 0. In this case we find from
the sum rule (A36)

� ¼ d� 2

2
: (A48)

For d ¼ 3 this yields � ¼ 1
2 , which is the solution

realized in the deconfined phase, as our numerical
solutions show.
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