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We present a consistent Bogomol’nyi-Prasad-Sommerfield (BPS) framework for a generalized Maxwell-

Chern-Simons-Higgs model. The overall model, including its self-dual potential, depends on three different

functions, hðj�j; NÞ, wðj�jÞ, and Gðj�jÞ, which are functions of the scalar fields only. The BPS energy is

proportional to the magnetic flux whenwðj�jÞ andGðj�jÞ are related to each other by a differential constraint.
We present an explicit nonstandard model and its topologically nontrivial static configurations, which are

described by the usual radially symmetric profile. Finally, we note that the nonstandard results behave in a

similar way as their standard counterparts, as expected, reinforcing the consistence of the overall construction.
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I. INTRODUCTION

Topologically nontrivial structures have been inten-
sively studied in many areas of physics [1]. In particular,
in the context of classical field theories, these structures
are described as finite-energy solutions to some nonlinear
models. In this case, such models must be endowed by a
spontaneous symmetry breaking potential for the matter
self-interaction, since topological solutions are formed
during symmetry breaking phase transitions.

In this context, the most common topological defects are
kinks [2], vortices [3] and magnetic monopoles [4]: the first
ones are one-dimensional structures described by a single
real scalar field, while vortices and monopoles are two- and
three-dimensional configurations arising as static solutions
of some Abelian-and a non-Abelian-Higgs models.

In particular, vortices are stable configurations described
by a radially symmetric profile. The simplest version of
such structures arises as electrically noncharged solution of
a planar Maxwell-Higgs model endowed by a fourth-order
Higgs potential. However, under special circumstances,
vortices also arise as electrically charged configurations
of some Chern-Simons- and Maxwell-Chern-Simons-
Higgs (MCS-Higgs) models [5]. In all these cases, such
structures can be found as numerical solutions to a set of
first-order differential equations, named Bogomol’nyi-
Prasad-Sommerfield (BPS) ones [6]. In this case, as
finite-energy solutions, they have interesting applications,
mainly concerning the superconductivity phenomena [3].

Moreover, during the last years, beyond the standard
models cited above, nonusual ones have been intensively
studied. These theories, generically named k-field models,
are endowed by nonusual kinetic terms, which change the
dynamics of the overall model in a nonstandard way. Here,
it is important to point out that the motivation regarding
such generalization arises in a rather natural way, in the
context of string theories.

In fact, k-field theories have been used as effective
models mainly in Cosmology, as an attempt to explain the
actual accelerated inflationary phase of the universe [7] via
the so-called k-essence models [8]. Furthermore, they have
been applied in the study of strong gravitational waves [9],
dark-[10] and tachyon-matter [11], and others [12].
In such a nonstandard scenario, topologically nontrivial

configurations, named topological k-solutions, can exist
even in the absence of a symmetry breaking potential
[13], from which one notes that the existence of such
structures are quite sensible to the presence of nonstandard
kinetic terms. On the other hand, as an attempt to study
topological k-solutions via the comparison between them
and their canonical counterparts, some of us have already
considered the existence of such solutions in the context of
symmetry breaking k-field models [14]. Moreover, inter-
esting results concerning these models and the correspond-
ing solutions can be found in Ref. [15].
In general, given nontrivial kinetic terms, k-field models

can be highly nonlinear, and the corresponding k-solutions
can be quite hard to find. In this case, the development of a
consistent self-dual theoretical framework is quite useful
and desirable, since it helps to find topological k-structures
as solutions to some nonstandard BPS equations. Here, as
in the usual approach, such equations can be obtained via
the minimization of the energy functional related to the
nonstandard model, the resulting self-dual k-solutions
being the minimal energy configurations possible ever.
In this sense, in a recent work, some of us have presented

a BPS theoretical framework consistent with a generalized
self-dual Maxwell-Higgs model endowed by nonusual
kinetic terms to both gauge and scalar fields [16]. Now,
we introduce an extension of that work. Here, we develop a
general first-order approach consistent with a nonstandard
self-dual MCS-Higgs model. The overall model, including
its self-dual potential, depends on three different functions,
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hðj�j; NÞ, wðj�jÞ and Gðj�jÞ, which are functions of the
scalar sector of the model. In this context, we look for
topologically nontrivial configurations via the usual radi-
ally symmetric static Ansatz, and the finite-energy gener-
alized numerical solutions we found behave in the same
general way as their standard counterparts, as expected.

This letter is outlined as follows: in the next Sec. II, we
introduce the generalized model and develop the BPS
framework which allows us to get to its nonstandard BPS
equations. Also, we verify the consistence of the overall
construction by using it to develop a generalization of the
usual MCS-Higgs case, the general model being controlled
by two real parameters, � and b. Then, in Section III, we
perform the numerical analysis concerning the nonstan-
dard BPS equations previously presented by means of the
relaxation technique. Also, we depict the corresponding
self-dual k-solutions for the electromagnetic sector and
comment on the main features they engender. Finally, in
Sec. IV, we present our ending comments and perspectives.

From now on, we use the natural units system and a plus-
minus signature for the planar Minkowski metric.

II. THE MODEL

The planar Lagrangian density describing the general-
ized Maxwell-Chern-Simons-Higgs model is given by

Ld¼�hðj�j;NÞ
4

F��F
���k

4
����A�F��

þwðj�jÞjD��j2þhðj�j;NÞ
2

@�N@�N�Uðj�j;NÞ;
(1)

where F�� ¼ @�A� � @�A� is the usual electromagnetic

field strength tensor, D�� ¼ @��þ ieA�� is the cova-

riant derivative of the Higgs field and ���� is the ð1þ 2Þ—
dimensional Levi-Civita’s tensor (with �012 ¼ þ1). The
additional real scalar field N provides the stabilization of
the self-dual solutions arising in the presence of both
Maxwell and Chern-Simons terms. Here, hðj�j; NÞ and
wðj�jÞ are positive-definite dimensionless functions of
the scalar fields of the model. The Higgs potential
Uðj�j; NÞ supporting spontaneous symmetry breaking is
supposed to have the following structure:

Uðj�j; NÞ ¼ k2ðN þGðj�jÞÞ2
2hðj�j; NÞ þ e2N2j�j2wðj�jÞ; (2)

from which one notes that Uðj�j; NÞ is defined in terms of
hðj�j; NÞ, wðj�jÞ, and Gðj�jÞ, with dimG ¼ 1=2. It is
worthwhile to point out that the specific form of the
potential in (2) assures the self-duality of the generalized
model (1), i.e., it is a consequence of the BPS construction
and can be derived from the energy density (10).

We introduce the mass scale M of the model, and use
it to perform the scale transformations: x� ! M�1x�,

� ! M1=2�, N ! M1=2N, A� ! M1=2A�, k ! Mk, e !

M1=2e, and � ! M1=2�, where � is the vacuum
expectation value of the Higgs field. Then, we get that

G ! M1=2G and Ld ! M3 L, and the modified model
(1) is now described by the dimensionless Lagrange den-
sity L, which has the same form as Ld. Also, for simplic-
ity, we choose e ¼ � ¼ k ¼ 1.
It is well known that Chern-Simons theories only exhibit

electrically charged static solutions. In fact, the static
Gauss law related to (1) is (j runs over spatial indices
only)

@jðh@jA0Þ þ 2j�j2A0w ¼ F12; (3)

from which one observes that, even in the presence of
nontrivial hðj�j; NÞ, wðj�jÞ, and Gðj�jÞ, the absence of
electrically uncharged static solutions still holds, since the
temporal gauge ðA0 ¼ 0Þ does not solve (3).
Now, since the gauge A0 ¼ 0 cannot be implemented

and supposing that hðj�j; NÞ, wðj�jÞ, and Gðj�jÞ are non-
trivial functions, the looking for static solutions for the
second-order Euler-Lagrange equations related to (1) can
be a quite difficult task, even in the presence of suitable
boundary conditions. In this context, the adequate imple-
mentation of the BPS formalism is quite useful, since it
helps one to find finite-energy configurations as solutions
of a given set of first-order differential equations.
So, from now on, we focus our attention on the develop-

ment of a BPS framework consistent with (1) and (2).
Specifically, we look for radially symmetric solutions
using the standard static Ansatz

�ðr; �Þ ¼ gðrÞein� and Nðr; �Þ ¼ �A0ðrÞ; (4)

A ðr; �Þ ¼ � �̂

r
ðaðrÞ � nÞ; (5)

where ðr; �Þ are polar coordinates and n ¼ �1;�2;�3 . . .
is the winding number (vorticity) of the configuration. The
fields gðrÞ, aðrÞ, and A0ðrÞ must obey the usual boundary
conditions

gð0Þ ¼ 0; að0Þ ¼ n; A0
0ð0Þ ¼ 0; (6)

gð1Þ ¼ 1; að1Þ ¼ 0; A0ð1Þ ¼ 0; (7)

where prime denotes the derivative with respect to r.
Now, we implement the Bogomol’nyi approach on the

energy functional related to (1). Given the generalized
potential (2), the radially symmetric nonstandard energy
density can be written as

" ¼ h

2

�
1

r

da

dr

�
2 þ h

�
dA0

dr

�
2 þ ðG� A0Þ2

2h

þ w

��
dg

dr

�
2 þ g2a2

r2

�
þ 2g2A2

0w; (8)

where h ¼ hðg; A0Þ, w ¼ wðgÞ, and G ¼ GðgÞ. It is clear
that, in order to guarantee a positive-definite energy, both h
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and w must be positive-definite and finite. Now, by using
the static Gauss law (3) together with the constraint

dG

dg
¼ 2wg; (9)

the energy density (8) can be rewritten in the form

" ¼ h

2

�
1

r

da

dr
� 1

h
ðG� A0Þ

�
2 þ w

�
dg

dr
� ag

r

�
2

� 1

r

d

dr
ðaGÞ þ 1

r

d

dr

�
rhA0 dA

0

dr

�
: (10)

At this point, we see that the resulting total energy is
minimized by the nonstandard first-order equations

dg

dr
¼ �ag

r
; (11)

1

r

da

dr
¼ � 1

h
ðG� A0Þ: (12)

Equations (11) and (12) are the BPS equations related to
the generalized MCS-Higgs model (1). In the present case,
the BPS total energy Ebps related to the solutions of (11)

and (12) can be explicitly evaluated

Ebps ¼ 2	
Z

r"bpsdr ¼ �2	n; (13)

where the minimal energy density "bps is defined as

"bps ¼ � 1

r

d

dr
ðaGÞ þ 1

r

d

dr

�
rhA0 dA

0

dr

�
: (14)

Also, to compute the BPS energy (13), we have used the
boundary conditions (6) and (7) together with

Gðr ¼ 0Þ ¼ �1; Gðr ¼ 1Þ ¼ 0: (15)

Finally, we assume that hðj�j; NÞ and wðj�jÞ behave as
hðr ¼ 0Þ ¼ H0; hðr ¼ 1Þ ¼ H1; (16)

wðr ¼ 0Þ ¼ W0; wðr ¼ 1Þ ¼ W1; (17)

whereH0,W0, andH1 are real non-negative constants, and
W1 is a real positive constant.

From (13), one notes that the total energy Ebps is quan-

tized according to the winding number n. Furthermore, it
can be related to the magnetic flux�B in the standard way.
Also, we point out that the first-order framework developed
here is implemented for any function hðj�j; NÞ finite and
positive-definite, i.e., given some function hðj�j; NÞ, the
set formed by (11) and (12) gives the BPS configurations of
the generalized MCS-Higgs model (1). On the other hand,
in the absence of (2) or (9), the energy functional (8) cannot
be written as (10), and the development of a consistent
nonstandard first-order formalism cannot be performed.

The prescription for the development of generalized
self-dual Maxwell-Chern-Simons-Higgs models is as

follows: given any function wðj�jÞ, positive and finite,
the corresponding Gðj�jÞ is obtained by means of
Eq. (9). Then, given any function hðj�j; NÞ, also positive
and finite, the resulting self-dual potential Uðj�j; NÞ is
determined via (2). In this scenario, the BPS states of the
generalized model (1) are the solutions of the Eqs. (3), (11),
and (12). The total energy is given by (13), and the energy
density by (14).
In the standard MCS-Higgs case, BPS solutions with

nontrivial topology only exist in the asymmetric vacuum of
the potential

Usðj�j; NÞ ¼ 1
2ðj�j2 þ N � 1Þ2 þ N2j�j2; (18)

which is defined by N ¼ 0 and j�j ¼ 1. So, for simplicity,
we assume that also the generalized potential (2) achieves
its asymmetric vacuum when N ¼ 0 and j�j ¼ 1. As a
consequence, topologically nontrivial self-dual solutions
of (1) exist in the same asymmetric phase as their standard
counterparts.
The standard MCS-Higgs model is trivially recovered

starting from our generalized framework by setting
wðj�jÞ ¼ hðj�j; NÞ ¼ 1. So, instead of recovering the
usual model, we introduce a generalization of such theory.
The generalized model is defined by

wðj�jÞ ¼ bðj�j2 � 1Þb�1; (19)

where b is a positive odd number. The corresponding
Gðj�jÞ is

Gðj�jÞ ¼ ðj�j2 � 1Þb: (20)

For simplicity, we choose hðj�j; NÞ as follows:
hðNÞ ¼ �N2 þ 1; (21)

where � is a real non-negative number. Note that � ¼ 0
and b ¼ 1 leads us back to the standard case. The resulting
generalized self-dual potential Uðj�j; NÞ (2) is

Uðj�j; NÞ ¼ ðN þ ðj�j2 � 1ÞbÞ2
2ð�N2 þ 1Þ þ bN2j�j2ðj�j2 � 1Þb�1:

(22)

In the present case, (3), (11), and (12) can be written,
respectively, as

ð�A2
0 þ 1Þ

�
d2A0

dr2
þ 1

r

dA0

dr

�
þ 2�A0

�
dA0

dr

�
2

¼ 2bg2ðg2 � 1Þb�1A0 � 1

r

da

dr
; (23)

dg

dr
¼ �ag

r
; (24)

1

r

da

dr
¼ �ðg2 � 1Þb � A0

�A2
0 þ 1

; (25)
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which must be solved according to the finite-energy bound-
ary conditions (6) and (7).

In the next section, we solve (23)–(25) via (6) and (7) for
different values of � and b. Then, we use the numerical
solutions we found for gðrÞ, aðrÞ, and A0ðrÞ to depict the
corresponding profiles for the electric field

EðrÞ ¼ �dA0

dr
; (26)

the magnetic field

BðrÞ ¼ � 1

r

da

dr
; (27)

and the minimal energy density (14). Also, we comment on
the main features that the nonstandard numerical solutions
engender.

III. NUMERICAL SOLUTIONS

In this section, we focus our attention on the nonstandard
numerical solutions themselves. The equations to be studied
are (23)–(25), and the fields gðrÞ, aðrÞ, and A0ðrÞ must
behave according to the finite-energy boundary conditions
(6) and (7).

Here, for simplicity, we choose n ¼ 1. Then, we solve
the first-order system numerically by means of the relaxa-
tion technique, for different values of the real parameters �
and b. The profiles of the physical fields and energy
density are depicted in the figures below. The system was
solved for � ¼ 0 and b ¼ 1 (usual case, dashed-dotted
black line), � ¼ 0 and b ¼ 3 (dotted blue line), � ¼ 5
and b ¼ 1 (dashed red line), and � ¼ 5 and b ¼ 3 (solid
green line).

In Fig. 1, we depict the numerical solutions for the
electric field (26), and we see that the nonstandard ones
behave, in general, as their usual counterpart: starting from
0 (zero), the solutions reach their maximum values at some
finite distance R from the origin, and vanish as r goes to
infinity. However, we point out that different solutions
exhibit not only different amplitudes, but also slightly
different characteristic lengths: in general, increments on
� and/or b lead to decrements on amplitudes and/or char-
acteristic length. Even in this case, such variations are
expected to occur in the context of a nonstandard theory as
(1); see, for instance, [14].

In Fig. 2, we present the profile of the magnetic field
(27). The same manner as for the electric field, the gener-
alized solutions behave as the standard one: the magnetic
fields are lumps centered at the origin, and they decrease
monotonically as r goes to infinity. In this case, for a fixed
� and an increasing b, the amplitudes experience a small
increase and the characteristic length decreases. On the
other hand, for a fixed b and an increasing �, the amplitude
will decrease significantly, but the characteristic lengths
remain approximately fixed by a compensatory effect re-
lating � and b.

Numerical solutions for the minimal energy density "bps
(14) are depicted in Fig. 3, and we see that also such
solutions are lumps centered at r ¼ 0 that decrease mono-
tonically to r ! 0. The lumps’ profiles are similar to those
in the magnetic field. However, in this case, for a fixed �
and an increasing b, the amplitudes experienced a large
increase and the characteristic lengths decreased slightly.
On the other hand, for a fixed b and an increasing �, the
amplitude will decrease significantly but the characteristic

FIG. 1 (color online). Solutions to EðrÞ for � ¼ 0 and b ¼ 1
(dashed-dotted black line), � ¼ 0 and b ¼ 3 (dotted blue line),
� ¼ 5 and b ¼ 1 (dashed red line), and � ¼ 5 and b ¼ 3 (solid
green line).

FIG. 2 (color online). Solutions to BðrÞ. Conventions as in
Fig. 1.
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lengths will remain almost fixed by a compensatory effect
relating � and b.

To end this section, we have depicted the numerical
profiles for BðrÞ and "bps for n ¼ 5 (see Figs. 4 and 5,

respectively). It is well known that in the standard model,
for a large winding number, the profiles of both the mag-
netic field and the energy density go from a lump (n ¼ 1)
to a ring (n � 1). From Figs. 4 and 5, one notes that also in
this limit (increasing vorticity), the generalized solutions
mimic the usual ones, as expected. For large nwith fixed �

and a increasing b, the profiles experience a slight change.
However, for b fixed and an increment in �, the profiles’
amplitudes experience a considerable decrease.

IV. ENDING COMMENTS

In the present paper, we have performed the develop-
ment of a first-order theoretical framework in the context
of a generalized MCS-Higgs model given by (1). In the
present case, the nonstandard model, including its self-dual
potential (2), is given in terms of three different functions,
hðj�j; NÞ, wðj�jÞ, and Gðj�jÞ, which are functions of the
scalar fields only. Here, in order to avoid problems with
the energy of the model, hðj�j; NÞ and wðj�jÞ must be
positive-definite. Then, given the general structure for the
self-dual potential (2), the consistence of the nonstandard
first-order approach only holds when wðj�jÞ and Gðj�jÞ
are related by the differential constraint (9). On the other
hand, one notes that there is no additional constraint to be
imposed on hðj�j; NÞ.
After performing the construction of the generalized

MCS-Higss model, we illustrate such a realization provid-
ing an explicit nonstandard model specified by (19)–(21).
In this case, the nonstandard model is controlled by two
real parameters, � and b. Immediately, we have investi-
gated radially symmetric self-dual configurations given by
the usual static Ansatz (4) and (5), and considering that the
fields behave according to the usual finite-energy boundary
conditions (6) and (7).
We have integrated the generalized BPS equations by

means of the relaxation technique, for different values of �
and b. The numerical profiles we found are depicted in
Figs. 1–5. In general, we have seen that the nonstandard

FIG. 3 (color online). Solutions to "bps. Conventions as in
Fig. 1.

FIG. 5 (color online). Solutions to "bps for n ¼ 5. Conventions
as in Fig. 1.

FIG. 4 (color online). Solutions to BðrÞ for n ¼ 5. Conventions
as in Fig. 1.
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solutions mimic their usual counterparts. Also, as ex-
pected, we have noted variations on the amplitudes and
on the characteristic lengths of the modified solutions.
Furthermore, we have identified the rules controlling
such variations.

This work is an extension of a recent investigation
performed by some of us [16]. In this sense, a very inter-
esting issue to be considered concerns the development of
a nonstandard self-dual MCS-Higgs model which exhibits
the very same numerical solutions engendered by the
standard theory. In this case, such an investigation would
be a generalization of the one presented in [17], regarding a
nonstandard Maxwell-Higgs model. Another issue con-

cerns the supersymmetric extension of the self-dual model
(1) and (2). These issues are in advance, and we hope report
interesting results in the near future.
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