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For a Gaussian spectrum of primordial density fluctuations, ultracompact minihalos (UCMHs) of dark

matter are expected to be produced in much greater abundance than, e.g., primordial black holes. Forming

shortly after matter-radiation equality, these objects would develop very dense and spiky dark matter

profiles. In the standard scenario where dark matter consists of thermally produced, weakly interacting

massive particles, UCMHs could thus appear as highly luminous gamma-ray sources or leave an imprint

in the cosmic microwave background by changing the reionization history of the Universe. We derive

corresponding limits on the cosmic abundance of UCMHs at different epochs and translate them into

constraints on the primordial power spectrum. We find the resulting constraints to be quite severe,

especially at length scales much smaller than what can be directly probed by the cosmic microwave

background or large-scale structure observations. We use our results to provide an updated compilation of

the best available constraints on the power of density fluctuations on all scales, ranging from the present-

day horizon to scales more than 20 orders of magnitude smaller.
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I. INTRODUCTION

Structure formation in the Universe is thought to have
proceeded in a bottom-up process, starting with the for-
mation of smaller bound objects from the gravitational
collapse of small-amplitude, random initial density pertur-
bations; in a second step, these smaller objects would then
merge to form larger ones. In the simplest scenario [1–6]
(see also Refs. [7,8] for an introduction to the standard
model of cosmology), a nearly scale-invariant (Harrison-
Zel’dovich) [9,10] Gaussian spectrum of perturbations is
produced during inflation, and the bulk of perturbations are
of sufficiently small amplitude at horizon entry (�� 10�5)
that they do not collapse until well after matter-radiation
equality.

None of these assumptions need be fulfilled, however.
Many inflationary models (and some alternatives) predict a
departure from scale invariance (see, e.g., Refs. [11–19]) or
from Gaussian statistics (see, e.g., Refs. [20–24] and refer-
ences therein). In theories with more complicated cosmo-
logical histories, events such as phase transitions and
late-time dynamics of scalar fields such as string moduli,

the inflation or curvaton, [25–30] might have lead to an
injection of additional power on specific scales. Regardless
of when the primordial spectrum was produced, the pres-
ence of additional power on some scale may have led
structures of a size corresponding to that scale to collapse
far earlier than in the canonical scenario. In severe cases,
this collapse may have even occurred before matter-
radiation equality [31].
The most extreme and best-studied example of such

rapid gravitational collapse is that of primordial black
holes (PBHs) [32–34]. A PBH is expected to form when
a perturbation enters the horizon with such a large ampli-
tude (� * 0:3–0:7) that a substantial fraction of the horizon
volume collapses directly to a black hole [35,36]. Even
very large density perturbations with � * 1 form PBHs, as
has only recently been clarified [37], rather than closing up
on themselves and forming separate universes, as origi-
nally argued by Hawking [33]. PBHs have been proposed
as possible dark matter (DM) candidates [38–41], but the
limits on their abundance are tight [42,43], and the for-
mation process lacks a natural mechanism for producing
the observed cosmological abundance of DM. Further-
more, due to the enormous amplitudes required for their
formation, a sizable PBH abundance can only be produced
in scenarios that deviate rather strongly from the simple
Harrison-Zel’dovich spectrum [40,44–46].
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Less severe departures, at the level of �� 10�3 during
early radiation domination, can instead lead to the forma-
tion of so-called ultracompact primordial minihalos
(UCMHs) [47–49]. Such a perturbation in the DM compo-
nent will continue to grow until it eventually undergoes
gravitational collapse before or very shortly after recom-
bination. The mass of these objects is proportional to the
horizon mass at the time such a density perturbation enters
the horizon; i.e., it is uniquely determined by the wave-
length of the perturbation mode. In general, smaller-scale
perturbations of a given amplitude will more easily pro-
duce UCMHs, as they enter the horizon earlier and thus
give the overdensity more time to grow. Unlike in the PBH
case, the lack of an event horizon means that the seed
cannot retain radiation (which, at this early time, includes
baryons), so baryonic matter and photons freestream
immediately back out of the overdensity. The seed thus
consists entirely of cold dark matter (CDM), but it will
later accrete both dark and (after recombination) baryonic
matter.

The amplitudes of temperature inhomogeneities in the
cosmic microwave background (CMB) [50,51] allow us to
infer the power of the primordial density fluctuations on
scales that range from Oð104 MpcÞ, almost the horizon
size today, down to Oð10 MpcÞ, roughly an order of mag-
nitude smaller than the size of the sound horizon at the time
of recombination. The observed large-scale distribution of
matter in the Universe also carries clues as to the amplitude
of linear cosmological density perturbations, on scales
from about 103 Mpc down to scales somewhat smaller
than what is currently accessible by CMB observations
[52]. Weak gravitational lensing gives access to scales
down to 1 Mpc, [53] while measurements of the interga-
lactic hydrogen clumping, traced by the Lyman-� forest,
constrain the density perturbations on scales as small as
Oð10�1Þ Mpc [53,54]. Observational evidence for the
presence of cosmological perturbations at smaller scales
is essentially absent; the best current limits come from the
nondetection of PBHs [43,45]. Given their sensitivity to the
amplitude of small-scale perturbations, UCMHs are poten-
tially much stronger probes of the primordial spectrum at
large k than PBHs [49,55].

The most popular and compelling model for DM is
that it consists of weakly interacting massive particles
(WIMPs), thermally produced in the early Universe
[56–59]. In this case, the compactness of UCMHs makes
them prime targets for indirect detection of self-
annihilating DM; the nonobservation of corresponding
gamma rays in particular places constraints on the
UCMH mass fraction. The most sensitive searches for
gamma rays from DM annihilation have been with Air
Čerenkov Telescopes [60–62] and the Large Area
Telescope (LAT) [63–71] aboard the Fermi satellite [72].
Another promising technique is to consider the contribu-
tion of DM annihilation within UCMHs to the reionization

of the intergalactic medium at redshifts z * 6 [73]. By
comparing the predicted Thomson-scattering optical depth
from the present day to the surface of last scattering, �e,
with the value observed in the CMB, UCMH fractions
leading to very early reionization (and therefore large �e)
can be excluded.
In this article, we provide detailed and updated limits on

the primordial spectrum at small scales. In particular, we
include the nonobservation of UCMHs to date by gamma-
ray searches for DM with the Fermi-LAT, as well as
potential impacts of UCMHs upon reionization. We ex-
pand on previous works in this direction, most notably
Ref. [55], by deriving from first principles the minimum
density contrast �min

� required to form a UCMH, discussing

in detail the transfer and window functions needed to
correctly normalize the primordial power spectrum to the
one observed today, and by using an improved treatment of
the statistics of Fermi nondetection of individual sources.
For comparison, we also compile and incorporate other
constraints on the primordial power spectrum into our final
limits, extending from the horizon size today down to
scales more than 20 orders of magnitude smaller.
We begin in Sec. II by describing the formation and

structure of UCMHs. In Sec. III, we then briefly recap the
calculation of their cosmological abundance and provide
limits on their present number density. We continue in
Sec. IV by translating our limits to new constraints on
the primordial power spectrum from UCMHs and discus-
sing existing ones, before concluding with Sec. V. We give
a detailed calculation of �min

� in Appendix A, and of the

mass variance of perturbations in Appendix B, taking into
account the correct window and transfer functions.

II. FORMATION AND STRUCTURE OF UCMHS

As noted in Ref. [48], density contrasts as small as
�� 10�3 during radiation domination already suffice to
create overdense regions that would later collapse into
UCMHs (see Appendix A for more details). The initial
mass in CDM particles contained in such a region, i.e., the
mass at the time the corresponding fluctuation of comoving
size R enters into the horizon, is given by

Mi ’
�
4�

3
��H

�3

�
aH¼1=R

¼ H2
0

2G
��R

3

¼ 1:30� 1011
�
��h

2

0:112

��
R

Mpc

�
3
M�; (1)

where �� refers to the actual DM density at the time of

horizon entry and �� is the fraction of the critical density

of the Universe in DM today. Note that we define R here as
the comoving radius of the collapsing region; the comov-
ing diameter of the region is 2R, which is half the comov-
ing wavelength of the corresponding physical density
fluctuation. No factors of geff , the effective number of
relativistic degrees of freedom at various times in the early
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history of the Universe, enter in the above expression
because only the CDM component collapses and contrib-
utes to the initial UCMH mass.

During radiation domination, the UCMH-forming
‘‘seed’’ consists only of CDM, and its mass stays essen-
tially constant. Around matter-radiation equality, it then
begins to grow by infall of both dark and (after decoupling)
baryonic matter as

MUCMHðzÞ ¼
zeq þ 1

zþ 1
Mi: (2)

We conservatively assume that this growth continues only
until standard structure formation has progressed suffi-
ciently far as to allow star formation, at z� 10. After
this time, dynamical friction between DM halos and hier-
archical structure formation presumably make further
accretion from the smooth cosmological background of
DM inefficient (note that the growth rate presented in
Eq. (2) assumes accretion in a homogeneous and unbound
DM background). Taking ��h

2 ¼ 0:112 [51], the mass of

a UCMH today is then related to the size of the original,
slightly overdense region by

M0
UCMH � MUCMHðz & 10Þ � 4� 1013

�
R

Mpc

�
3
M�: (3)

Similarly, the current-day UCMH mass is related to the
horizon mass MHðRÞ at the time when the fluctuation of
comoving size R enters the horizon, by1

M0
UCMH � 3� 10�7

�
��h

2

0:112

��
geff
geqeff

�
1=4
�
MH

M�

�
3=2

M�; (4)

where geff (g
eq
eff) is evaluated at the time of horizon entry

(equality).
After kinetic decoupling [74], the velocity of CDM

particles decreases as v / ð1þ zÞ; the DM within theover-
dense region therefore initially has an extremely low
velocity dispersion as long as the density fluctuations are
so small that they do not induce sizable gravitational
potentials. Even shortly after the onset of matter-
domination, when the fluctuations that we are interested
in here start to become nonlinear, the velocity dispersion
increases only mildly as [48,75]

�vðzÞ � �v;0

�
1000

zþ 1

�
1=2
�
MUCMHðzÞ

M�

�
0:28

; (5)

with �v;0 ¼ 0:14 ms�1. UCMHs thus form by almost pure

radial infall [48], which leads to the growth rate presented
in Eq. (2), and a DM radial profile

��ðr; zÞ ¼
3f�MUCMHðzÞ

16�RUCMHðzÞ3=4r9=4
; (6)

where f� � ��=�m denotes the fraction of matter that is

CDM. This extremely steep profile, a direct consequence
of spherically symmetric collapse, was first derived ana-
lytically [76,77] and later confirmed by explicit N-body
simulations [78,79] (see, in particular, Fig. 6 of Ref. [78]).
The factor f� enters because, even though the initial

UCMH seed consists only of DM, the matter it accretes
following decoupling includes both dark and baryonic
matter and accounts for the majority of the mass of the
UCMH at the present time. RUCMHðzÞ refers to the effective
radius of the UCMH at redshift z, beyond which the density
contrast associated with the (fully collapsed) UCMH is
� < 2. For collisionless DM, this turns out to be [77]

RUCMHðzÞ � 0:339RtaðzÞ; (7)

where the turnaround radius RtaðzÞ is the radius within
which matter contained in a collapsing perturbation sepa-
rates from the Hubble flow. RtaðzÞ has been obtained by
Ricotti [80] from fits to numerical simulations of matter
accretion at early times, and then converted by Ricotti,
Ostriker, and Mack [75] to RUCMHðzÞ using Eq. (7), giving

RUCMHðzÞ
pc

¼ 0:019

�
1000

zþ 1

��
MUCMHðzÞ

M�

�
1=3

: (8)

With our assumed cutoff in accretion at the beginning of
star formation at z� 10, the current profiles and radii are
obtained by choosing z� 10 in Eqs. (6) and (8). Choosing,
e.g., z� 30 instead has a minimal impact on results [49].
The steep density profile presented in Eq. (6) is valid so

long as the infalling dark matter follows an approximately
radial path. This approximation breaks down in the inner-
most parts of the minihalo, where the average tangential
velocity vrot of infalling material exceeds the local
Keplerian velocity vKep. This occurs only in the inner

region because vrot rises more steeply with decreasing
radius than vKep. The radial infall approximation is hence

violated at steadily larger radii as time goes on; as the
velocity dispersion of infalling matter increases with time,
so matter accreted at later times begins its infall with larger
vrot. This tends to suppress the contribution of newly
accreted matter to the inner parts of the halo. Accretion
following UCMH formation therefore contributes prefer-
entially to the outer parts of the halo [48,77], but leaves the
steep inner profile (established by radial infall during the
earliest stages of formation) essentially intact.
Even for the earliest-accreted material, however, radial

infall cannot be valid all the way to r ¼ 0. This means that
the DM profile in Eq. (6) can only be expected to be valid
down to some cutoff radius rmin. To estimate rmin, we
calculate the Keplerian and average tangential velocities
of the earliest-accreted material in the UCMH as a function
of the radial distance r, and then simply solve for the value

1Eq. (4) is rigorously correct only when R � ðaeqHeqÞ�1 ’
1:0� 102 Mpc, i.e., MH � M

eq
H ’ 3:5� 1017M�; close to

MH ¼ M
eq
H , it receives a further correction of 2�3=4. We give

this expression here only for explanatory purposes, and use
Eq. (1), which is exact, for all the calculations that follow.
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of r at which these velocities are equal. WithMðrÞ the total
mass contained within radius r, from Eq. (6) we have

vKepðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMðrÞ

r

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMUCMHðzÞ
r1=4R3=4

UCMHðzÞ

vuut ; (9)

which we see, from Eqs. (2) and (8), is independent of
redshift. By angular momentum conservation, the mean
tangential velocity of the infalling gas is

vrotðr; zÞ ¼ �vðzÞRUCMHðzÞ
r

: (10)

Setting vKep and vrot equal and using Eqs. (5) and (8), we

find

rmin

pc
� 4:5� 10�5

�
1000

zþ 1

�
1:33

�
RUCMHðzÞ

pc

�
0:82

� 5:1� 10�7

�
1000

zþ 1

�
2:43

�
M0

UCMH

M�

�
0:27

: (11)

This gives

rmin

R0
UCMH

� 2:9� 10�7

�
1000

zc þ 1

�
2:43

�
M0

UCMH

M�

��0:06
; (12)

where R0
UCMH is the present-day UCMH radius. The ap-

propriate redshift to choose here is that at which the
UCMH in question collapses, z ¼ zc. This sets the initial
value of the tangential velocity of material collapsing from
a height RUCMHðzcÞ equal to the typical DM velocity�vðzcÞ
at the time of collapse. As RUCMHðzcÞ is the maximum
height from which matter falls into the UCMH during the
initial collapse, this formalism leads to a conservative
estimate of rmin. For a maximally conservative estimate
of rmin, one then invokes the largest possible value of
�vðzcÞ at collapse by choosing the smallest allowed red-
shift of collapse; in our case, this is zc ¼ 1000.

For r < rmin, clearly the central cusp must be flattened to

some extent, as the r�ð9=4Þ profile created by radial infall
must soften as that approximation breaks down. The most
conservative estimate, which we will follow here, is to
simply truncate the profile within rmin, resulting in a cored
profile with central density � ¼ ��ðrminÞ. Softening the

central density profile also has the impact of modifying
Eq. (9) and hence Eqs. (11) and (12). In themost pessimistic
case, where the density profile is simply truncated inwards
of rmin, the right side of Eqs. (11) and (12) should be

multiplied by 2ð8=7Þ ¼ 2:21. In the limit rmin � R0
UCMH,

this results in a reduction of the total gamma-ray flux by a
factor of 3.28, and a corresponding increase in the inferred
maximum allowed number of UCMHs (see Sec. IV) by
about a factor of 6. When translated to limits on the primor-
dial power spectrum, such a factor becomes negligible.

The expression in Eq. (5) for the mean DM velocity
dispersion is based on a power-law fit to numerical calcu-
lations of �v as a function of redshift, within spheres of

different comoving radii [75]. For each redshift and co-
moving radius r0, the velocity dispersion is obtained by
performing the integral

�vðz; r0Þ2 ¼ HðzÞ2
2�2

Z 1

0
½1�W2

THðkr0Þ�P ��
ðk; zÞdk

k3
; (13)

where P ��
ðk; zÞ is the power spectrum of DM density

perturbations. This was computed by the authors of
Ref. [75] assuming a Harrison-Zel’dovich spectrum and a
standard �CDM cosmology, using earlier code from
Ref. [77] to track the coupled evolution of the dark and
baryonic perturbations.2 WTH is the Fourier-transformed
tophat window function, described in more detail follow-
ing Eq. (B3). In order to obtain Eq. (5), the fit is evaluated
at a comoving radius equal to RUCMHðzÞ [c.f. Eq. (8)]. The
fits have a claimed accuracy of 5%, so the impact of the
uncertainty in Eq. (5) upon our final power spectrum upper
limits is negligible for power spectra similar to the
Harrison-Zel’dovich case. In principle however, the DM
velocity dispersion could deviate from the behavior of
Eq. (5) if the calculations of Ref. [75] were repeated with
an alternative input primordial spectrum. Investigating this
effect is beyond the scope of this paper, but it might make
for interesting future study.
Finally, one other consideration must be taken into

account when calculating DM densities in the inner region
of UCMHs: Over time, WIMP DM will annihilate away,
softening the central density cusp. Following Ref. [81] and
earlier UCMH work [49,55], we estimate ��;max, the maxi-

mum possible remaining density at time t in a halo born at
ti, as

��ðr 	 rcutÞ � ��;max ¼
m�

h�viðt� tiÞ : (14)

Here,m� is the mass of the WIMP and h�vi is its velocity-
weighted, thermally averaged annihilation cross-section,
taken in the zero-velocity limit. For UCMHs seen today,
t ¼ 13:76 Gyr [51]; ignoring gravitational contraction of
the DM due to baryonic collapse (seen to have minimal
impact upon overall gamma-ray fluxes from UCMHs [49]),
ti ¼ tðzeqÞ ¼ 59 Myr [82]. We find that rcut * 4rmin for all

the UCMHs we consider in this paper, so their central
densities do indeed violate the annihilation bound, even
taking into account departures from radial infall.3 To

2P ��
is defined in the analogous way to the total matter power

spectrum P � [see Eq. (B3)], but with the replacement of the total
matter perturbation � by the DM perturbation ��. Similarly, it can
beobtained in termsof the spectrumof curvature perturbationsPR
simply by replacing in Eq. (B22) the radiation transfer function Tr,
Eq. (A9), with the DM transfer function T�, Eq. (A10).

3The ratio rcut=rmin reduces as the UCMH mass decreases, so
in UCMHs lighter than the smallest we consider here
(�10�9M�), the two radii are comparable. The crossing point
rcut ¼ rmin occurs at M0

UCMH � 10�19M� for the parameters we
choose here; higher annihilation cross-sections or lower DM
masses will cause this point to shift to higher M0

UCMH.
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account for this, we simply truncate our density profiles
instead at r ¼ rcut, setting the density within this radius
equal to ��;max.

While both are important for total annihilation rates,
neither the annihilation cutoff nor the correction for viola-
tion of radial infall has any real bearing upon the integrated
mass of UCMHs. Correcting, e.g., Eq. (8) to retain exactly
the same integrated UCMHmass after complete truncation
of the density profile inwards of rmin or rcut would result in
changes at less than the percent level.

III. THE UCMH POPULATION TODAY

A. Present abundance

For perturbations following a Gaussian distribution, the
probability that a region of comoving size R (at the time
when this scale enters the horizon, i.e., 1=R ¼ aH) will
later collapse into a UCMH is given by

�ðRÞ ¼ 1ffiffiffiffiffiffiffi
2�

p
��;HðRÞ

Z �max
�

�min
�

exp

�
� �2

�

2�2
�;HðRÞ

�
d��: (15)

Here, �2
�;H is the CDM mass variance at horizon entry and

�� is the density contrast in the CDM component only; in

Appendix B, we provide a detailed recipe for computing
�2

�;H. The minimal �� required for the collapse eventually

to happen is given by �min
� (see Appendix A for a precise

determination of this value as a function of R), and an
initial density contrast higher than �max

� would lead to the

formation of a PBH rather than a UCMH. PBH formation
is expected above �max

� � 1=4 from semianalytical argu-

ments [35] or slightly higher values, �max
� � 0:5, from

numerical simulations [36] (recall that for superhorizon
adiabatic fluctuations, we have �� � ð3=4Þ� during radia-

tion domination). UCMH formation, on the other hand,
only requires much smaller density contrasts of the order of
�min
� � 10�3 [48]. With ��;H � 10�5, as observed on large

scales, we would thus always have ��;H � �min
� � �max

�

and thus

�ðRÞ ’ ��;HðRÞffiffiffiffiffiffiffi
2�

p
�min
�

exp

�
� �min2

�

2�2
�;HðRÞ

�
: (16)

This turns out to be a very good approximation to Eq. (15),
even in all cases that we will be interested in here, where
the power on small scales is significantly larger than on
large scales.

Note that �ðRÞ also counts those regions of size R that
are contained within a larger region R0 > R that satisfies
� > �min

� , too. On the other hand, it does not take into

account the possibility that we have � < �min
� for the

smaller region R, but still have � > �min
� for the larger

region R0—in which case the original region of course
would also collapse eventually and end up in a (bigger)
UCMH. In the following, we will conservatively neglect

these contributions to the total UCMH abundance; in pass-
ing, however, we note that in the Press-Schechter formal-
ism, [83] these effects would (somewhat arbitrarily) be
accounted for by multiplying the above expressions for �
by a factor of 2.
Taking into account the accretion of mass described by

Eq. (2), the present density of UCMHs with mass equal to
or greater than M0

UCMH is therefore given by

�UCMHðM0
UCMHÞ ¼ ��

M0
UCMH

Mi

�ðRÞ; (17)

where R ¼ RðM0
UCMHÞ follows from Eq. (3). Note that this

expression does not take into account the potential destruc-
tion of UCMHs due to tidal forces and mergers during
structure and galaxy formation. Similar to the case of
superdense clumps that already collapsed during radiation
domination [31], however, these effects turn out to be
completely negligible. This is because UCMHs form so
early that by the time of structure formation, they have
collapsed into quite extreme overdensities with respect to
the smooth background. A good indicator of survival
probability is the size of the core radius [84,85], given by
Eqs. (12) and (14). A smaller core radius indicates a higher
survival probability. In particular, a core-to-outer radius
ratio of less than �10�3 [85] indicates a survival proba-
bility very close to unity; for all the UCMHs we consider in
this paper, this ratio is less than 10�5. It is also worth
recalling that UCMHs evolve as completely isolated ob-
jects for some time after they have collapsed: The limits
that we will place correspond to rather rare fluctuations
with �=��;H � 3–6 (relative to a perturbation spectrum

where ��;H is already enhanced by roughly one order of

magnitude on the scale of interest, compared to what is
expected from observations at large scales).
We point out that the DM annihilation signal from

UCMHs is almost exclusively sensitive to the density in
the innermost region; even if UCMHs were to lose part of
their outer material due to tidal stripping, this would there-
fore not affect the corresponding limits that we derive in
Sec. IV. In fact, even for ordinary DM clumps—formed in
the presence of a standard Harrison-Zel’dovich spectrum
of density fluctuations and thus with much smaller den-
sities than UCMHs—a dense inner core should remain
more or less intact, and the impact of clump destruction
on indirect detection prospects could be much less severe
than one naively might expect [85,86]; the impact on
UCMHs should be even less. For the following discussion,
we thus assume that Eq. (3) indeed provides a very good
estimate for the present UCMH mass, and that Eq. (17)
accurately represents the present UCMH density.
As another important consequence of the extremely high

density of UCMHs discussed above, we note that the
spatial distribution of UCMHs is expected to track the
bulk DM. This is quite different from ordinary DM sub-
halos, which are subject to tidal disruption and therefore
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generally much less abundant in the centers than outer
parts of large halos relative to the smooth DM component
(see, e.g., Ref. [87] for a detailed discussion and referen-
ces). Similarly, we expect the effects of the stellar disk of
our Galaxy on the UCMH distribution to be negligible
(again in contrast to its effect on ordinary DM clumps,
which can be sizable [88]).

B. Limits from gamma rays: Individual galactic sources

If UCMHs consist of WIMP DM, they are generically
expected to be sources of high-energy gamma rays4

(Ref. [49]; see, e.g., Ref. [90] for an overview of gamma-
ray yields from WIMP annihilation). In this case, there
exists a unique distance dobs out to which UCMHs of any
given mass will be observable by gamma-ray telescopes,
given a certain instrumental sensitivity. Using the all-sky
gamma-ray survey performed by the Fermi-LAT, the
present abundance of UCMHs in our own Galaxy can be
constrained, based on the nonobservation of unassociated
point and extended sources with a spectral signature re-
sembling DM annihilation.

Indeed, no unassociated point or extended sources show-
ing evidence of DM annihilation have yet been discovered
by Fermi [91–94]; this is true both for sources in [91,92]
and outside [91] the one-year LAT catalogue [95].
Although Buckley and Hooper [92] place a rough upper
limit of 20–60 on the number of DM halos observed in the
one-year catalogue, many of these can in fact be associated
with astrophysical sources; Zechlin et al. [96] found twelve
possibilities and then identified the most promising as
probably a blazar. A recent search in the two-year cata-
logue [97] found just nine potential sources. Given that we
do not expect all these nine sources to have been detected
at better than 5� in one year of data, and that statistically,
we expect at least �80% of unidentified Fermi sources to
be relatively easily matched with known sources [98], the
implied maximum number of UCMHs in the one-year data
is of the order of one or two. While it has yet to provide a
statistical upper limit on the number of DM halos, the
Fermi-LAT Collaboration itself reports having seen exactly
zero [91,99,100]. We thus work under the assumption that
Fermi observed exactly zero UCMHs during its first year of
operation, to within its instrumental sensitivity. While a
more detailed treatment would actually include a full
spectral analysis of all unassociated sources in the Fermi
survey, such a procedure is well beyond the scope of this
paper (for a full multiwavelength approach, see Ref. [96]).

The LAT sensitivity to point sources after one year of
observations, based on a spectral integration above
100 MeV, is 4� 10�9 photons cm�2 s�1 [101] for a 5�
detection. Although this sensitivity is based on a power-
law spectral source with index �2, expected DM annihi-

lation spectra are often sufficiently similar to this that the
sensitivity should be broadly similar. Going beyond this
approximation would also require spectral analysis beyond
this paper’s scope. We note, however, that pronounced
spectral features at high energies, close to the DM parti-
cle’s mass (in particular from internal bremsstrahlung
[102]), can in principle enhance the effective sensitivity
by up to an order of magnitude [103,104].
In order to derive limits upon the fraction f of galactic

DM contained in UCMHs, let us for simplicity assume that
all UCMHs have the same mass M0

UCMH—an assumption

we will later comment on. We now pick one particular
UCMH in the Milky Way, residing some distance d from
Earth. Assuming that UCMHs track the bulk DM, the
probability that this UCMH can be found within a distance
dobs of Earth is

Pd<dobs;1 ¼
Md<dobs

MMW

; (18)

whereMMW is the total mass of DM in the Milky Way and
Md<dobs 	 MMW is the mass of DM within dobs of Earth.

This probability is simply the fraction of the (dark)
Milky Way mass available for the UCMH to turn up in
by chance.
The probability of there existing i such UCMHs within

dobs can then be constructed from the binomial probability
of there being a single one, as done in, e.g., Ref. [105] for
intermediate mass black holes. With the total number of
UCMHs of mass M0

UCMH in the MW denoted by NMW, we

then have

Pd<dobs;i ¼
NMW

i

 !
ðPd<dobs;1Þið1� Pd<dobs;1ÞNMW�i: (19)

Because we assume that all UCMHs have the same mass,
we can write

NMW ¼ f
MMW

f�M
0
UCMH

; (20)

where we use Eq. (17) to express the local UCMH mass
fraction f in the Milky Way as

f � �UCMH=�m ¼ �ðRÞf� M
0
UCMH

Mi

: (21)

In general, the probability that the number of UCMHs i
present within dobs is equal to or greater than some thresh-
old number j, i.e., the probability that j or more UCMHs
exist within dobs, is simply 1 minus the individual proba-
bilities of there being 0; 1; 2; . . . ; j� 2 or j� 1 of them,

Pd<dobs;i
j ¼ 1� Xj�1

k¼0

Pd<dobs;k: (22)

So, in particular, the probability of there being one or more
UCMHs within dobs is

4Note that this is true even in the somewhat contrived situation
where WIMPs annihilate, at tree level, only into neutrinos [89].
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Pd<dobs;i
1 ¼ 1� Pd<dobs;0

¼ 1�
�
1�Md<dobs

MMW

�
fMMW=f�M

0
UCMH

: (23)

This equation provides an estimate of the probability of
there being any UCMHs at all within an observable dis-
tance, as a function of the UCMH mass, their maximum
observable distance, and the UCMH mass fraction. If we
know the sensitivity for a source detection at confidence
level (CL) x, then there is a probability x that a UCMH
residing at exactly dobs, with a mean flux equal to the
sensitivity, would be seen by Fermi. The total probability
that we would observe one or more UCMHs with Fermi is
then Ptot ¼ xPd<dobs;i
1. To derive an upper limit on f from

a nonobservation of UCMHs by Fermi, such that f < fmax

at some CL y, we therefore require that Ptot > y for f >
fmax. That is, y ¼ xPd<dobs;i
1jf¼fmax, which gives

fmax ¼
f�M

0
UCMH

MMW

logð1� y=xÞ
logð1� Md<dobs

MMW
Þ
: (24)

For close objects, Md<dobs � MMW, and we have

fmax ’ � f�M
0
UCMH

Md<dobs

ln

�
1� y

x

�
; (25)

which is independent of MMW, as expected. This expres-
sion has a rather intuitive meaning: It gives the mass
fraction that a single UCMH would contribute to the total
DM mass within dobs, times a statistical weighting func-
tion, which accounts for the fact that a nonobservation of
UCMHs does not guarantee that there indeed are none in
the observable volume, nor does it guarantee that such a
volume would always contain zero such minihalos, even
were we certain that this particular volume does not.

In terms of the gamma-ray flux F ðdÞ from a single
UCMH at some distance d, this becomes

fmax ’ �
�
F min

F ðdÞ
�
3=2 3f�M

0
UCMH

4���d
3

ln

�
1� y

x

�
; (26)

where �� is the local DM density and the point-source

sensitivity is defined as F min � F ðdobsÞ. Note that this
expression is in fact independent of d, as F ðdÞ / d�2.

For a spherically symmetric DM halo appearing as a
point source at distance d, the observed gamma-ray flux
integrated above some threshold energy Eth is

F ðdÞ ¼ X
k

Z m�

Eth

dNk

dE
dE

h�kvi
2d2m2

�

Z R0
UCMH

0
r2�2ðrÞdr: (27)

Here, h�kvi is the cross-section of the kth annihilation
channel and dNk=dE is its differential photon yield.
Inverting this expression gives dobs as a function of F min.

In order to calculateMd<dobs , we integrate the smooth DM

profile of the Milky Way over a sphere of radius dobs around
the Sun, using the Navarro-Frenk-White profile of Ref. [106]

(c ¼ 18, M200 ¼ 9:4� 1011M�, rs ¼ 17:0 kpc). In princi-
ple, local DM substructure in the solar vicinity could make
this a biased estimator of Md<dobs for small dobs. Current

understanding of the granularity of DM halos unfortunately
does not allow the magnitude of this effect to be accurately
assessed. RecentN-body simulations [107] indicate a�10%
variation in density over a sphere of 500 pc around the Sun,
andmore over somewhat smaller spheres. These scales are at
the limit of the simulation’s resolution, however, so going to
smaller spheres also requires higher resolution, which in turn
reduces the observed variation (see the discussion in Sec. 3.2
and the Appendices of Ref. [107]). It is not obvious which
effect would win out at the smallest scales we consider here,
which are another six orders of magnitude smaller.
We have constructed Eqs. (18)–(26) assuming that all

UCMHs in the Milky Way have the same mass. Because
we have observed exactly zero UCMHs of any mass,
however, the resulting limits on f in fact immediately
generalize to arbitrary UCMH mass spectra. This is be-
cause we know exactly how many UCMHs of each mass
have been observed (none), so the limits for different
masses can all be applied independently. If we were instead
using some j observed UCMH candidate sources to draw
an upper limit on f (i.e., rather than using them to claim a
UCMH detection), wewould have a form of Eq. (23) where
i 
 j for some j 
 2. In this case, we would have to
specify the form of the UCMH mass spectrum in order to
know what fraction of observed sources to attribute to each
mass band considered in the analysis. Even in this case,
though, the most conservative limits would be obtained by
assuming, for each band individually, that all the observed
sources were UCMHs with masses in that band.
Using Eq. (24) and the integrated LAT sensitivity dis-

cussed above, we have determined the one-year, 95% CL
Fermi-LAT upper limits on f, the fraction of galactic DM
contained in UCMHs of each mass. This limit is shown in
Fig. 1 as a solid red line. Here we have calculated inte-
grated gamma-ray fluxes above photon energies of
100 MeV, using a suitably extended version of DARKSUSY
[108],5 as described in Ref. [49].
We assume 100% annihilation ofWIMPs into b �b pairs, a

WIMP mass of m� ¼ 1 TeV, and an effective annihilation

cross-section of h�vi ¼ 3� 10�26 cm3 s�1. These are
fairly conservative choices as far as gamma-ray yields
go. Heavier WIMPs give lower fluxes, and WIMP masses
considerably higher than 1 TeV are extremely challenging
to obtain if one hopes for an associated natural solution to
the gauge hierarchy problem. Our annihilation cross-
section is the canonical, unboosted s-wave value implied
by the relic density of DM under the assumption of thermal
production. The b �b final state gives rise to a relatively soft
continuum spectrum dominated by pion decay; significant

5UCMH routines will be included in a future public release of
DARKSUSY.

IMPROVED CONSTRAINTS ON THE PRIMORDIAL POWER . . . PHYSICAL REVIEW D 85, 125027 (2012)

125027-7



yields into final states with lower gamma-ray yields, such
as	þ	�, typically only arise inWIMPmodels engineered
to explain cosmic ray excesses and are in those cases
accompanied by a corresponding boost factor in the anni-
hilation rate. Taking both these effects into account, inte-
grated UCMH gamma-ray fluxes from models annihilating
into	þ	� are not enormously different from those arising
from unboosted annihilation into b �b [49].

Reading from right to left in Fig. 1, the Galactic gamma-
ray source limit strengthens with increasing UCMH mass
as UCMHs become brighter and more of the Galaxy is
contained within dobs. At a mass of�7� 103M�, the limit
is strongest, and UCMHs must constitute less than about
4� 10�7 of all DM in the Milky Way.

At masses above �106M�, the value of fmax given by
Eq. (24) corresponds to less than three UCMHs in the
entire Milky Way. At this point, Eq. (24) breaks down
due to low-number statistics; the Milky Way may simply
contain zero UCMHs of a given mass in this case purely by
chance, even though they are cosmologically more abun-
dant than Eq. (24) would suggest. For larger masses, we
obtain constraints by assuming that on average there are at
most 3 UCMHs of the mass in question per Milky Way–
sized halo. For zero observed UCMHs of a given mass,
the CL with which we exclude a model that gives on
average n such UCMHs per Milky Way–sized halo is
x½1� expð�nÞ�, with x the confidence level of the

observation as in Eqs. (24)–(26); choosing n ¼ 3 makes
this is a 95% confidence exclusion. From the minimum at
intermediate UCMH mass, larger masses lead to less strin-
gent limits on f, as three UCMHs progressively occupy a
larger fraction of the mass of the Milky Way halo.
The limiting behavior in Fig. 1 at very large and very

small masses is simple to understand. For large UCMH
masses, M0

UCMH approaches the Milky Way mass, and

because the limit here is given by the assumption that no
more than three UCMHs of a given mass exist in each
Milky Way–sized halo, fmax approaches one at exactly
M0

UCMH ¼ MMW=3f�.

For small UCMH masses, Md<dobs eventually shrinks to

such an extent that Eqs. (24) and (26) become greater than
one. Common sense of course dictates that UCMHs cannot
make up more than 100% of the Milky Way mass, but in
our formalism, this knowledge does not place any limit on
the size of cosmological perturbations at such large k. This
is because the Fermi limit is ‘‘saturated’’ with respect to
perturbations of this size; the perturbations can be arbi-
trarily large and still (by definition) unable to cause more
than 100% of the mass of the Milky Way to reside in
UCMHs. For this reason, we do not give any limits for
wave numbers where fmax ¼ 1. For searches for individual
galactic gamma-ray sources, this corresponds to UCMH
masses below �10�7M�. In principle, one could obtain
some bounds for larger wave numbers by relaxing Eq. (2)
and deriving direct limits on � as a function ofMi, in cases
where large amplitude density fluctuations would result in
f ¼ 1 before z ¼ 10. This would be rather brave, however,
as it is not known to what extent the radial infall and
absolute survival approximations, which we rely on here,
should be violated close to f ¼ 1.
Such masses are already well into the regime in which

kinetic coupling of DM might be expected to wash out struc-
tures such as UCMHs anyway. Indeed, this is an important
general caveat at low masses: Depending upon the specific
particle DM candidate, the resultant mass cutoff for UCMHs
can be many orders of magnitude larger than the smallest
masseswe consider here.We urge the reader to remember that
the limits we present do not apply below the WIMP kinetic
decoupling threshold, and that this threshold should be calcu-
lated on a per-model basis [74]. For example, neutralino DM,
the corresponding size of the smallest DM halos at the time
of equality, may in principle be anything between Mi ¼
10�11M� and Mi ¼ 10�3M� [74], corresponding to k�max �
108 � 105 Mpc�1 (although it is often assumed to be
�10�6M�, as for a 100 GeV pure bino [109–111]).

C. Limits from gamma rays:
Individual extragalactic sources

It is straightforward to extend the galactic source
analysis to sources residing outside the Milky Way. The
approximate expression for fmax close to the Earth,
Eq. (25), in fact holds in this case, as the approximation

FIG. 1 (color online). The maximum allowed fraction of DM
in the Milky Way contained in UCMHs, as a function of k and
the UCMH mass M0

UCMH. Here we show limits derived in this

paper from Fermi-LAT searches for individual and diffuse DM
sources. The UCMH mass is related to the mass contained inside
the horizon when mode k enters by Eq. (4). All limits correspond
to a 95% CL. Limits from searches for individual minihalos are
based on nonobservation of point or extended DM sources
during one year of operation in all-sky survey mode.
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relies only on the probed volume being much smaller than
that in which the number of UCMHs was assumed to be
fixed.6 In this case, themass containedwithindobs is given by

Md<dobs ¼
4�

3
ðd3obs � d3max;MWÞ�0

c�� þMMW; (28)

where �0
c�� is the local cosmological background DM

density. We show the resulting values of fmax in Fig. 1 as a
dashed line. As expected, the extragalactic limits provide
increased sensitivity in the large-mass region, where the
galactic limits are set by the n ¼ 3 condition. Having con-
structed both the galactic and extragalactic limits as 95%CL
upper limits, we see that the extragalactic curve tracks the
galactic one where dobs is comparable to RMW. At smaller k,
the extragalactic limit turns over andbecomes stronger again,
as unlike the galactic DM profile, the cosmological back-
ground density is approximately constant with increasing d,
providing a volume boost to the sensitivity for increasing
UCMH mass.

D. Limits from gamma rays: Galactic diffuse emission

For very small UCMH masses where dobs is small but
UCMHs are potentially very numerous, one might expect
the diffuse gamma-ray background to provide a stronger
limit on the UCMH fraction than searches for individual
sources. In this case, a simple and robust limit can be
obtained by considering the gamma-ray flux from a direc-
tion perpendicular to the Galactic disk, as this is least likely
to be contaminated by astrophysical sources like pulsars
and supernova remnants. The flux one would expect from
unresolved Galactic UCMHs in this direction, integrated in
energy but differential in solid angle �, is

dF diff

d�
¼ f

f�M
0
UCMH

Z dmax

0
��ðdÞF ðdÞd2dd; (29)

with dmax �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
MW þ r20

q
. Here, RMW is the virial radius of

the Milky Way and r0 the distance of the Sun from the
galactic center; we take RMW ¼ 305 kpc [106] and r0 ¼
8 kpc. Eq. (29) holds whether one refers to the raw flux
F ðdÞ or the energy flux F EðdÞ, which differs from the raw
flux only by an additional weighting factor of E inside the
energy integral of Eq. (27).

To obtain conservative upper limits on f, we compare
this prediction to the total diffuse gamma-ray energy flux
observed by Fermi at the galactic poles. Referring to, e.g.,
Fig. 1 in the two-year LAT bright source catalogue [112],
this is about 1� 10�5 GeV cm�2 s�1 sr�1. We derive
95% CL upper limits on f by demanding that the diffuse
energy flux from UCMHs in this direction does not exceed
the total measured value times 1.2, which corresponds to

an upwards variation of 2 times �eff ¼ 10%, the maximum
systematic error in the LAT effective area over its energy
range [112]. We implicitly assume in this procedure that
statistical variation of the polar flux over the two-year
observing period is below the level of the systematic error
coming from the LAT effective area, a reasonable approxi-
mation for our purposes.
From the upper limits on f presented in Fig. 1, we are

able to determine upper limits on the mass variance of
perturbations using Eqs. (15) and (21), assuming that the
fractional UCMH content of the Milky Way is indeed
indicative of DM in the rest of the Universe. We use
Brent’s Method7 to numerically determine the value
�2

�;H ¼ �2
max corresponding to fmax, and show the resultant

upper limits on �2
�;H in Fig. 2. For this figure, we have

combined the three different Fermi-LAT gamma-ray limits
into a single best limit.

E. Limits from reionization

We also plot in Fig. 2 the upper limit on �2
�;H	m based

on the limit on f at the time of matter-radiation equality,
calculated by Zhang [73]:

FIG. 2 (color online). Upper limits on the mass variance �2
�;H

at horizon entry (aH ¼ k), implied by the present-day UCMH
abundance limits presented in Fig. 1, as well as the limits on f at
the time of matter-radiation equality derived from the CMB; see
Eq. (30). This later limit refers to the impact of UCMHs upon
reionization [73]; larger values of �2

�;H correspond to a UCMH

fraction that speeds up reionization to the point where the
integrated optical depth of the CMB (�e) is not consistent with
the value measured by WMAP5 [114].

6Formally, one can replace MMW in Eq. (24) with, e.g., the
mass of the local group, cluster or supercluster, and make the
same Taylor expansion as required to obtain Eq. (25).

7Refer to standard numerical texts such as Ref. [113] for a
description of all algorithms mentioned in this paper.
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feq & 10�2ðm�=100 GeVÞ: (30)

This limit comes from the impact of DM annihilation in
UCMHs upon reionization and the integrated optical depth
of the CMB at z < 30 (as seen by WMAP5 [114]). For
larger feq, reionization takes place at higher z, introducing

free electrons to the intergalactic medium at earlier times
and increasing the Thomson-scattering optical depth to the
surface of last scattering (�e). We implemented this limit
with the same DM mass of 1 TeV discussed above.
According to Eqs. (6), (8), and (27), the number of ionising
photons N
 produced by a single UCMH scales linearly

with its mass, as

N
 / F ðdÞd2 /
Z R0

UCMH

0
r2�2ðrÞdr / M0

UCMH: (31)

For a fixed f, the number of UCMHs scales inversely with
their mass, so we see that the limit in Eq. (30) should be
independent of the UCMH mass. This limit is weaker than
those from gamma rays. We do not give this limit in Fig. 1,
as such a UCMH fraction at equality would grow to
become simply f ¼ 1 today (i.e., the bound saturates
before z ¼ 0).

F. Limits from gravitational lensing

Various gravitational microlensing experiments looking
towards the Large and Small Magellanic Clouds have been
carried out in recent times [115–121]. The strongest result-
ing limits to date on the Milky Way halo mass fraction
contained in massive compact halo objects (MACHOs)
[122] have been provided by EROS and OGLE (see,
e.g., [123,124]), on scales of k� 104 Mpc�1 to k�
107 Mpc�1.

UCMHs are in fact just a nonbaryonic variant of
MACHOs. Naively applying these limits, which are very
roughly of the order of fmax � 0:1, would provide con-
straints on the primordial spectrum of density fluctuations
(see Sec. IV) that are only slightly weaker than the con-
straints we derive from the gamma-ray limits. More
important, these limits would not rely on the WIMP
hypothesis and thus be completely independent of the
nature of DM.

As it turns out, however, UCMHs cannot be expected to
have shown up in the EROS or OGLE data analysis be-
cause they are not sufficiently pointlike. Indeed, their mass
is much larger than the mass contained inside their Einstein
radius, which significantly reduces the expected magnifi-
cation in lensing events. For this reason, we do not include
any limits from gravitational lensing in our analysis. We
note, however, that the light curve expected from UCMH
lensing could help to detect such events even against a
large background of non-MACHO events [48], an effect
which may produce interesting limits for future photomet-
ric lensing searches with, e.g., Kepler [125]. Another very
promising way to constrain the abundance of UCMHs is to

use astrometric microlensing, which involves searching for
small changes in the apparent position of background stars
with future planet-hunting facilities [126,127].

IV. CONSTRAINTS ON THE PRIMORDIAL
POWER SPECTRUM

A. Constraints from UCMHs

Using the limits on the mass variance of Gaussian
perturbations presented in Fig. 2, we can now begin to
constrain the primordial power spectrum. This requires an
explicit relationship between �2

�;H and the power spectrum

itself. We consider three broad models for the spectrum of
perturbations:
(1) A scale-free spectrum P ðkÞ / kn�1 parameterized

by a spectral index n.
(2) A scale-free spectrum with a step, resulting in in-

creased power on small scales. This spectrum is
parameterized by the spectral index n as well as
the height p and location ks of the step:

P ðkÞ / kn�1 �
(
1 for k < ks

p2 for k 
 ks
: (32)

(3) A nonparametric generalized spectrum, assumed to
be locally scale-free in k-space, i.e., P ðkÞ / kn�1,
but in general allowing for a different normalization
for very different values of k.

In the first two cases, we normalize our spectra to the
WMAP data in the same way as was done in Ref. [128]
(which is fully consistent with, and actually only margin-
ally improves, the normalization measured by COBE [50]).
For a more detailed description and a derivation of the
relationships between �2

�;H and the parameters (or running

amplitude, in the generalized case) of each spectrum, see
Appendix B.
Using these expressions, we translate the upper limits on

�2
�;H in Fig. 2 into upper limits on the parameters of each

spectrum. In Fig. 3, we give limits on the spectral index n
of the scale-free spectrum, derived from UCMHs of differ-
ent masses, corresponding to different values of k. Using
such a spectrum, the most relevant limit is essentially the
lowest one obtained at any scale. Using this criterion, our
limits on the UCMH abundance constrain the spectral
index to be n < 1:17.
In the case where the spectrum contains a step, we derive

upper limits on the step size p as a function of its location
ks (Fig. 4, left panel), assuming the spectral index n ¼
0:968 observed on large scales by WMAP7 [51]. We also
show how these limits change if n is allowed to vary within
the 1� range of the WMAP7 measurements, plotting the
resultant regions as shaded bands. Depending upon the true
value of n, the nonobservation of UCMHs limits the size
of a step in the power spectrum at any scale larger than
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k ¼ 3� 107 Mpc�1 to be less than a factor of 10–12, quite
a severe constraint.
For each value of ks, the limit on p is based on a

particular scale k (and therefore one specific M0
UCMH).

For each ks, we chose the optimal value of k by minimizing
the resultant pmax over all k using Brent’s Algorithm. As is
to be expected, optimal limits always come from length
scales smaller than the scale of the break, as this is the
region affected by the step. Because the limits on �2

�;H

from gamma rays and reionization are (albeit only approxi-
mately, in the case of gamma rays) monotonically decreas-
ing functions of k, the optimal k for placing limits on p is
always the smallest scale considered valid. In our case,
the dominating scale is k ¼ 3� 107 Mpc�1, which corre-
sponds to our minimal assumed free-streaming mass cut-
off, Mi ¼ 5� 10�12M� (M0

UCMH � 10�9M�). The limits

in the left panel of Fig. 4 are therefore entirely dominated
by the free-streaming scale, and should be treated with
caution, as they will weaken for DM models that lead to
larger minimal halo masses. In the right panel of Fig. 4, we
give an example of how the limits on p for a spectrum with
a step at ks ¼ 104 Mpc�1 weaken if the kinetic decoupling
scale is varied. Here we consider the range Mi ¼
3� 10�4 � 5� 10�12M�, corresponding to allowed val-
ues within an indicative set of minimal supersymmetric
standard model benchmark points [74]. As expected, larger
minihalo mass cutoffs weaken the corresponding limits on
the size of a step in the primordial spectrum; the exception

FIG. 3 (color online). Upper limit on the spectral index of the
primordial power spectrum from gamma-ray searches for
UCMHs, and the impact of UCMHs on reionization. These
limits assume �2

H / kn�1 and take into account only the con-

straints on ��;H given in Fig. 2, for wave numbers smaller than k.

For comparison, we also show the resulting gamma-ray con-
straint if we were to assume �min

� ¼ 10�3 (improved upon in

Appendix A) and use the oversimplified calculation of ��;H [45]

(corrected in Appendix B).

FIG. 4 (color online). Left: Constraint on the allowed height p of a step in the primordial power spectrum from gamma-ray searches
for UCMHs and impacts on reionization, as a function of the location ks of such a step. Here, p refers to the dimensionless ratio of the
power at the wave numbers immediately above and below ks. Our central curves assume the spectral index n ¼ 0:968 obtained from
WMAP7 observations of large scales [51], and shaded regions correspond to the 68% CL for this measurement (�n ¼ 0:012). Right:
Variation of the gamma-ray and reionization constraints on p with the kinetic decoupling scale of DM. These two limits, in particular,
are sensitive to the cutoff in the DM halo mass function, as the strongest limits (as shown on the left) come from the smallest viable
UCMHs, for all ks.
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to this behavior occurs for gamma-ray limits below �3�
105 Mpc�1, where the limits on �2

�;H in Fig. 2 are not

monotonically decreasing with k.
In the left panel of Fig. 5 we give limits upon the

amplitude of curvature perturbations PR at small scales,
using a nonparametric description of the spectrum. The
corresponding limits on the amplitude of physical density
perturbations P � can be obtained simply by multiplying
the curvature perturbation limit by a factor of 0.191
[Eq. (B23)]. For comparison, we also show the rather
different limits on curvature perturbations presented in
Ref. [55], derived from Fermi searches for DM annihila-
tion. We attribute the differences in the two limits to the
scale-dependent calculation of �min we perform here, our
improved statistical treatment of the limits coming from
Fermi, the inclusion of diffuse gamma-ray limits, and our
corrected calculation of the mass variance of perturbations
relative to Ref. [55].

We also show in the right panel of Fig. 5 the dependence
of our limits upon the WIMP mass and the latest allowed
redshift of UCMH collapse. As argued earlier, our choices
clearly are indeed very conservative. Smaller WIMP
masses and, to a much greater extent, later redshifts of
collapse result in significantly strengthened limits—simply
because in the latter case, much smaller initial density
perturbations would have time to collapse (see
Appendix A and, in particular, Fig. 7). The minimum

redshift of collapse could actually quite defensively be
made somewhat smaller without invalidating our earlier
arguments about the UCMH survival probability and vio-
lation of the radial infall approximation. In the interests of
producing as robust limits as possible, we use zc ¼ 1000 as
our canonical value, but it is worth noting that the sub-
stantial improvement in limits with smaller zc bodes well
for the potential for future detection of UCMHs.

B. Comparison with existing constraints

On large scales, the primordial power spectrum of den-
sity fluctuations has been measured with high precision
mainly by CMB experiments (as the most powerful single
source of information about the primordial fluctuations),
large-scale galaxy surveys (large-scale structure; LSS)
and weak gravitational lensing observations. However,
the scales probed by such cosmological measurements
constitute only a relatively small part of the entire
spectrum, namely, scales between k� 10�4 Mpc�1 and
k� 1 Mpc�1. This range has been extended to smaller
scales (k� 3 Mpc�1) by other astrophysical measure-
ments that probe later epochs in the evolution of the
Universe, such as the Lyman-� forest. For the rest of the
spectrum, i.e., on scales smaller than k� 3 Mpc�1, con-
straints have been provided mainly from nonobservation of
PBHs. Although PBHs constrain the power spectrum over
a very wide range of small scales (from k� 10�2 Mpc�1

FIG. 5 (color online). Left: 95% CL upper limits on the amplitude of primordial curvature perturbations PR (for a nonparametric,
generalized spectrum) allowed by gamma-ray searches for UCMHs and impacts on reionization. For comparison, we show the
previous limits from Fermi nonobservation of UCMHs derived in Ref. [55], based on a simplified treatment of the statistics of
nondetection, mass variance, and minimum density contrast required to form a UCMH. Corresponding constraints on the generalized
amplitude of primordial density perturbations can be obtained by multiplying these limits by a factor of 0.191; see Eq. (B23). Right:
The variation of the gamma-ray limit on PR with WIMP mass and the redshift of UCMH collapse, showing the impact of less
conservative (but entirely plausible) choices for these parameters than our canonical m� ¼ 1 TeV, zc ¼ 1000.
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to k� 1023 Mpc�1), the constraints are different from
those provided by the aforementioned cosmological probes
in that 1) they are upper limits rather than positive mea-
surements, and 2) they are much weaker (the upper limits
are many orders of magnitude larger than the cosmological
constraints on large scales).

A number of different techniques have been used to
constrain the primordial power spectrum and its properties
with cosmological observations. These include top-down
approaches, where specific theoretical models of the pri-
mordial fluctuations or the inflaton potential are fit to the
data, and bottom-up attempts to reconstruct the shape of
the spectrum from data with no such assumptions. Such
reconstruction techniques consist of simple binning tech-
niques, [129–138] principal component analysis, [139]
methods of direct inversion, [140–154] and minimally
parametric reconstructions based on cross-validation tech-
nique [155,156]. Results of these reconstruction proce-
dures, although consistent with one another, are in
general not identical even in cases where the same obser-
vational data sets are employed.

One of our objectives in this paper is to present a com-
prehensive compilation of the best constraints on the power
spectrum at all scales, including those from UCMHs
(as discussed in Sec. IVA). We therefore select the
strongest available constraints provided by the latest analy-
ses of different cosmological data; these come from
Refs. [152,153,156] and draw primarily upon CMB, LSS,
andLyman-� data, though some small additional constrain-
ing power is derived from measurements of primordial
nucleosynthesis, supernovae, and the Hubble constant

(refer to Ref. [153] for details). We combine these
constraints into a single 1� band (comprised of the best
available upper and lower limits at each k). We plot the
resultant constraint band in Fig. 6, along with our own
results on small scales from reionization and gamma-ray
searches for individual UCMHs and galactic diffuse DM
sources.
We also show the current strongest upper limits on the

power spectrum derived from PBHs [43], based on their
present-day gravitational influence (for k & 1016 Mpc�1)
and the products of their conjectured [157] evaporation
(for k * 1016 Mpc�1). We do not show limits above k *
1019 Mpc�1, as such constraints rely on model-dependent
assumptions about new (quasi-)stable elementary particles
that often appear in extensions of the standard model. At
even smaller scales, l�1

Pl * k * 1021 Mpc�1, the situation

is even more uncertain: One must assume that the evapo-
ration leaves a hypothetical Planck-sized relic in order to
place any further limits.
We do not make any attempt to harmonize the CLs with

which we state limits from different sources, as we do not
have access to the full likelihood functions for any of the
reported results. Let us also repeat a general word of
caution for these kinds of limits: Even though we present
them here in a model-independent way, such limits always
depend to a certain extent on the assumed spectrum of the
density perturbations. This should be kept in mind when
comparing predictions from, e.g., inflationary models to
what is shown in Fig. 6 (see Appendix B for how to treat
spectra that deviate from the locally scale-free spectrum
that we assumed here).

FIG. 6 (color online). Constraints on the allowed amplitude of primordial density (curvature) perturbations P � (PR) at all scales.
Here, we give the combined best measurements of the power spectrum on large scales from the CMB, large-scale structure, Lyman-�
observations, and other cosmological probes [152,153,156]. We also plot upper limits from gamma-ray and reionization/CMB
searches for UCMHs and primordial black holes [43]. For ease of reference, we also show the range of possible DM kinetic decoupling
scales for some indicative WIMPs [74]; for a particle model with a kinetic decoupling scale kKD, limits do not apply at k > kKD. Note
that for modes entering the horizon during matter domination, P � (but not PR) should be multiplied by a further factor of 0.81.
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V. CONCLUSIONS

In �CDM cosmology, the first gravitationally bound
objects typically form at redshifts considerably smaller
than z� 100. Very rare fluctuations, on the other hand,
would collapse as early as the first stages of matter domi-
nation, forming UCMHs. By the time standard structure
formation starts, these objects would have already devel-
oped a dense and highly concentrated core, which would
be essentially unaffected by tidal interactions during sub-
sequent cosmological evolution.

Arguably, the most compelling class of candidates for
the nature of DM are WIMPs. Because UCMHs have
survival probabilities close to unity, the nonobservation
of individual gamma-ray sources by Fermi, as well as
measurements of the diffuse gamma-ray background, can
then be used to place rather strong limits on the power
spectrum of primordial density perturbations. Potential
changes in the reionization history of the Universe, which
would leave a visible imprint in the cosmic microwave
background, can also provide some constraints.

We have provided and discussed in detail all necessary
formulae to calculate these constraints for any functional
form of the primordial spectrum of density fluctuations. As
a possible application, we have constrained the spectral
index of an assumed featureless power-law spectrum to
be n & 1:17. Since large-scale observations actually put
much stronger limits on the spectral index, we have also
considered the case of n ¼ 0:968� 0:012, as obtained by
WMAP observations, and constrained the allowed addi-
tional power below some small scale ks to be at most a
factor of �10–12 (assuming a steplike enhancement in the
spectrum). As a third example, we have obtained quasi-
model–independent limits, of the order of PR & 10�6, on
perturbation spectra that can at least locally be well de-
scribed by a power law. We would like to stress, however,
that it is intrinsically impossible to constrain primordial
density fluctuations in a completely model-independent
way; one thus has to rederive such limits for any particular
model of, e.g., inflation, which produces a spectrum that
does not fall into one of these classes. Here, we have
provided all the necessary tools to do so.

We have mentioned that present gravitational lensing
data cannot be used to constrain the abundance of
UCMHs—essentially because they are simply not point-
like enough, even in view of their highly dense and
concentrated cores. Future missions making use of the
light-curve shape in lensing events, however, are likely to
probe or constrain their existence. This would be quite
remarkable, as it would allow us to put limits on the power
spectrum without relying on theWIMP hypothesis for DM.
Most of our formalism is readily extended, or can in fact be
directly applied to, such constraints arising from gravita-
tional microlensing.

Finally, we have compiled an extensive list of the most
stringent limits on PRðkÞ that currently exist in the
literature for the whole range of accessible scales, from

the horizon size today down to scales some 23 orders of
magnitude smaller. Direct and indirect observations of the
matter distribution on large scales—in particular galaxy
surveys and CMB observations—constrain the power spec-
trum to be PRðkÞ � 10�8 on scales larger than about
1 Mpc. On sub-Mpc scales, on the other hand, only upper
limits exist. From the nonobservation of PBH-related ef-
fects, one can infer PR & 10�2–10�1 on all scales that we
consider here. UCMHs are much more abundant and thus
result in considerably stronger constraints, PR & 10�6,
down to the smallest scale at which DM is expected to
cluster (this depends on the nature of the DM; for typical
WIMPs like neutralino DM, e.g., it falls into the range
k�max � 8� 104 � 3� 107 Mpc�1).
It is worth recalling that the observational evidence for a

simple, nearly Harrison-Zel’dovich spectrum of density
fluctuations is obtained by probing a relatively small range
of rather large scales. The limits we have provided here
will thus be very useful in constraining any model of, e.g.,
inflation, or phase transitions in the early Universe, that
predicts deviations from the most simple case and which
would result in more power on small scales.
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APPENDIX A: MINIMAL DENSITY CONTRAST
FOR UCMH FORMATION

In their original paper, Ricotti and Gould [48] used an
order-of-magnitude estimate to argue that a region of
comoving size R should have an average overdensity of
� * �min ¼ 10�3, at the time of horizon crossing,8 in order

8In Fourier space, the time tk of horizon crossing is conven-
tionally defined as aHjtk ¼ k, where k is the wave number of the
perturbation. In real space, we define it as aR ¼ H�1; this
amounts to saying that we associate a wavenumber kR � R�1

to a perturbation of comoving size R.
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to gravitationally collapse to a UCMH before a redshift of
z� 1000. This is also the value that has been used in
subsequent work (see, e.g., Refs. [49,55,73]). However,
since �min enters exponentially in the expression for the
abundance of UCMHs, it is important to have a more
accurate estimate of this quantity. Note in particular that
one should expect it to be scale-dependent rather than just a
constant, since DM perturbations continue to grow after
they enter into the horizon (even though this growth is
only logarithmic for times long before matter-radiation
equality [158]).

To derive the minimal density contrast required for
UCMH formation, we will in the following rely on a
simplified description for the collapse of overdense regions
that was originally introduced in Ref. [159] and is now
being used widely. The basic approximation is to restrict
oneself to the case of spherical regions of uniform density
�ðtÞ ¼ ��ðtÞ þ ��ðtÞ that are embedded in a background
with density ��ðtÞ. During matter domination, the full (non-
linear) evolution of the overdensity can in that case be
solved exactly; �ðtÞ starts off by decreasing more slowly
than the background density ��ðtÞ, reaches a minimum after
a finite time tc=2, and then increases until it becomes
infinitely large at t ¼ tc. In this approach, the time tc is
thus identified as the time where the region has fully
collapsed—and which at the same time indicates the break-
down of this simplified description (in a more realistic
description, dynamic relaxation and angular momentum
conservation would of course prevent the collapse to a
pointlike, singular object). In the linear theory, on the other
hand, the overdensity would by that time have grown to

�c � ��ðtcÞlin
��ðtcÞ ¼ 3

5

�
3�

2

�
2=3 � 1:686: (A1)

This relation thus allows us to use the linear theory of
perturbations to calculate the time of collapse (at least
during matter domination)—which is quite remarkable
since the perturbations of course enter the nonlinear regime
already quite some time before the actual collapse.

Unfortunately, even in linear theory, the system of equa-
tions governing the evolution of density contrasts around
the time of matter-radiation equality is rather complicated
and cannot be solved analytically. However, a very accu-
rate fit to a numerical solution for the density contrast
in DM fluctuations for t > teq can be found, e.g., in

Ref. [7]:

��ðk; tÞ ¼ 9k2t2

10a2
T ð�ÞR0ðkÞ; (A2)

where k is the comoving wave number of the perturbation
and � its rescaled, dimensionless version:

� �
ffiffiffi
2

p
k

aeqHeq

¼ k
ffiffiffiffiffiffiffi
�r

p
H0�m

: (A3)

The fitting function T ð�Þ is given by

T ð�Þ’ ln½1þð0:124�Þ2�
ð0:124�Þ2

�
�
1þð1:257�Þ2þð0:4452�Þ4þð0:2197�Þ6
1þð1:606�Þ2þð0:8568�Þ4þð0:3927�Þ6

�
1=2

:

(A4)

The above expression for �� is given in synchronous

gauge, but since we are interested in scales that are much
smaller than the horizon at the time of collapse, the choice
of gauge does not actually matter. The normalization is
chosen such that, for adiabatic fluctuations, R0 gives the
value of the initial curvature perturbation (which is time-
independent on scales much larger than the horizon).
By equating Eqs. (A1) and (A2), we can thus derive the

minimal value of R0 that is required so that the perturba-
tion in the DM component collapses before a given redshift
zc < zeq:

R 0
minðkÞ ¼

a2

t2

��������z¼zc

2

3

�
3�

2

�
2=3 1

T ð�Þk2 : (A5)

While R0 is the actual fundamental physical quantity
describing the strength of adiabatic fluctuations—pre-
dicted, e.g., in theories of inflation—one may instead
also consider the somewhat more intuitive value of the
DM density contrast at the time a fluctuation enters into
the horizon—which in our case would be during the
radiation-dominated era. In contrast to R0, however, the
density contrast is a gauge-dependent quantity (which
becomes numerically quite relevant for scales k & aH).
In the following, we will choose the comoving (or ‘‘total
matter’’) gauge, where the rest frame is that of the total
energy density fluctuations; this is the gauge that corre-
sponds to the initial conditions adopted in the treatment of
the collapse outlined above (and also is typically used, e.g.,
for the calculation of PBH formation).
During radiation domination, the evolution of all per-

turbed quantities like �� can be solved analytically. To

convert the results in synchronous gauge given in Ref. [7]
to the total matter frame, one has to perform a gauge
transformation under which

��ðSÞ ! ��ðTÞ ¼ ��ðSÞ þ _���uðSÞ; (A6)

where _�� is the time derivative of the mean density and

�uðSÞ is the scalar part of the velocity components in the
stress-energy tensor in synchronous gauge.9 The result can
be written as

9This transformation behavior follows from the fact that both
synchronous and total matter gauge have vanishing metric com-
ponents g0i and that in comoving gauge we have �u ¼ 0. Note
that the latter condition follows from �u being defined as part of
the stress-energy tensor (as in Ref. [7])—which is a somewhat
different definition compared to other examples from the litera-
ture; [160]; as a result, the change of velocity perturbations
under gauge transformations does not take the same form as in
these references either. Of course, the final results are unaffected.
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�iðk; tÞ ¼ Ni�
2Tið�ÞR0ðkÞ; (A7)

where

� ¼ 2ktffiffiffi
3

p
a
¼ 1ffiffiffi

3
p k

aH
(A8)

and i ¼ �, r for the DM and radiation component, respec-
tively. For adiabatic fluctuations, we have Nr ¼ 4=3 and
N� ¼ 1. The transfer functions introduced here satisfy

Tið0Þ ¼ 1 and are given by

Trð�Þ ¼ 3

�
j1ð�Þ; (A9)

T�ð�Þ ¼ 6

�2

�
lnð�Þ þ 
E � 1

2
� Cið�Þ þ 1

2
j0ð�Þ

�
; (A10)

where 
E is the Euler-Mascheroni constant, Ci the cosine
integral function, and j0;1 are spherical Bessel functions of
the first kind. Eq. (A10) is somewhat painful to implement
numerically in certain cases; a good solution is to modify
an existing code for computing CiðxÞ (as found in, e.g.,
Ref. [113]) to instead return x�2½CiðxÞ � lnx� 
E�.

We have now collected all the pieces needed to express
the minimal density contrast in the DM component, at the
time of horizon entry tk of a scale k, for a perturbation
to collapse and form a UCMH before a redshift zc.
Combining Eqs. (A5) and (A7), we have

�min
� ðk; tkÞ ¼ a2

t2

��������z¼zc

2

9

�
3�

2

�
2=3 T�ð� ¼ 1=

ffiffiffi
3

p Þ
k2T ð�Þ : (A11)

This function is plotted in Fig. 7 for a few selected values
of zc. Note that after decoupling at zdec � 1000, baryons

would also start to gravitationally collapse and thus sig-
nificantly contribute to the overdensity—which has not
been taken into account here. In that sense, our estimate
for �min

� is rather conservative for redshifts z � zdec.

APPENDIX B: CORRECT NORMALIZATION OF
POWER SPECTRUM AND MASS VARIANCE

In this Appendix, we review in detail how to express the
mass variance, i.e., the rms overdensity in a given region of
space, in terms of the superhorizon spectrum of density or
curvature fluctuations provided by inflation.
Assuming Gaussian statistics for the primordial density

fluctuations, the probability (density) to find an average
density contrast � in a spherical region of size R is given by

pRð�Þ ¼ 1ffiffiffiffiffiffiffi
2�

p
�ðRÞ exp

�
� �2

2�2ðRÞ
�
; (B1)

where the mass variance �ðRÞ is computed by convolving
the power spectrum with a top-hat window function:

�2ðRÞ ¼
Z 1

0
W2

THðkRÞP �ðkÞdkk : (B2)

In the above expression, P �ðkÞ is defined by

h�k�
�
k0 i � 2�2

k3
P �ðkÞ�ðk� k0Þ (B3)

and WTHðxÞ ¼ 3j1ðxÞ=x ¼ 3x�3ðsinx� x cosxÞ denotes
the Fourier transform of the 3D top-hat window function,
with x � kR.
The above description is somewhat complicated by the

fact that density perturbations evolve with the expansion of
the Universe, which means that the power spectrum is also
time-dependent. In total matter (as well as in synchronous)
gauge, the quantity10

�2
Hðk; tÞ �

ðaHÞ4
k4

P �ðkÞ; (B4)

however, is time-independent on superhorizon scales (k �
aH), with a numerical value that is very close to the value
at the time tk when mode k crosses the horizon. It is thus
illustrative to separate the power spectrum into a part that
describes the primordial fluctuation spectrum on super-
horizon scales, as provided by inflation, and a part that
encodes the evolution of the perturbations (mostly after
they enter the horizon). This is usually done by introducing
a transfer function

T2ðk; tÞ � �2
Hðk; tÞ=�2

Hðk; tiÞ; (B5)

which satisfies Tðk ! 0; tÞ ! 1. In the above definition, ti
denotes a time before the entrance of any scale k into the
horizon, ti < tk 8 k, so it should be taken to correspond to

FIG. 7 (color online). Minimal density contrast in the DM
component, at the time of horizon entry (k ¼ aH), required to
form a UCMH before redshift zc ¼ 1000, 500, or 200.

10The quantity �H is directly related to what is also known as
the peculiar gravitational potential, �2 ¼ ð9�2=2k3Þ�2

H.
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the time at the end of inflation. Note that the time-
dependence of the transfer function only enters as the ratio
of aH=k, so T can also be written as a function of one
variable only. For example, for radiation domination, ex-
plicit expressions are given in Eqs. (A8)–(A10). The rela-
tion between �H and the initial spectrum of (adiabatic)
curvature perturbations during radiation domination is

P RðkÞ ¼
�
3

2

�
4
�2
Hðk; tiÞ; (B6)

as can be explicitly verified with the help of Eqs. (A8) and
(A9). During matter domination, the right side of this
expression has to be multiplied by ð10=9Þ2 [161].

As explained in Appendix A, the condition for UCMH
formation can be stated in terms of the DM density contrast
at horizon crossing of a given scale. We should therefore
evaluate the mass variance in Eq. (B2) at the time when
kR � 1=R ¼ aH. With the shorthand notation

�HðtkÞ � �Hðk; tkÞ; (B7)

this can be conveniently expressed as [40,46]

�2
HðRÞ � �2ðRÞjt¼tkR

¼ �2ðkRÞ�2
HðtkRÞ; (B8)

where

�2ðkÞ ¼ ��2
H ðtkÞ

Z 1

0
x3�2

Hðxk; tiÞT2ðxk; tkÞW2
THðxÞdx:

(B9)

The important point to note here [40,46] is that the relation
between mass variance �H and size of the perturbation at
horizon crossing �H depends on the scale and, in principle,
on the full cosmological evolution between the end of
inflation and tk.

Unlike for the case of PBHs, only the density contrast in
the DM component will grow and eventually collapse to a
UCMH; in the above expressions, we should thus place an
index � where appropriate. Since � and �� differ only by a

constant factor on superhorizon scales (at least for curva-
ture perturbations), the main difference between �ðkÞ and
��ðkÞ is the transfer function that is used. This difference,

however, is important because perturbations in the DM
component behave completely differently from those in
other components once they enter the horizon [cf.
Eqs. (A9) and (A10)]. The mass variance we are really
interested in is therefore given by

�2
�;HðRÞ ¼ �2

�ðkRÞ�2
HðtkRÞ; (B10)

where �2
HðtkRÞ refers to the total energy fluctuations be-

cause we later want to normalize it to the present-day

density contrast observed in the CMB. For k 
 keq ¼ffiffiffi
2

p
H0�m=

ffiffiffiffiffiffiffi
�r

p
, we have

�2
�ðkÞ ¼ 9

16

Z 1

0
dx x3W2

THðxÞ
PRðxkÞ
PRðkÞ

T2
�ð� ¼ x=

ffiffiffi
3

p Þ
T2
r ð� ¼ 1=

ffiffiffi
3

p Þ :
(B11)

1. Scale-free spectrum

It is often assumed that the spectrum on superhorizon
scales is of a scale-free form, implying also that

�2
HðtkÞ / kn�1 (B12)

during any epoch where the equation of state does not
change. In this case, Eq. (B11) simplifies to

�2
�ðnÞ ¼ 9

16

Z 1

0
dx xnþ2W2

THðxÞ
T2
�ðx=

ffiffiffi
3

p Þ
T2
r ð1=

ffiffiffi
3

p Þ : (B13)

For a spectrum such as that in Eq. (B12) and a flat
cosmology, the WMAP normalization at the scale
kWMAP ¼ 0:05 Mpc�1 is given by [128]

�H¼1:927�10�5 exp½ð1�nÞð�1:24þ1:04rÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ0:53r

p ; (B14)

where r is the tensor-to-scalar ratio. Assuming no gravita-
tional waves (i.e., r ¼ 0) and taking into account that the
normalization ofR leads to an effective suppression of �H

by a factor of 9=10 during the transition to the matter-
dominated phase [161], we thus have for tk � teq:

�2
HðtkÞ ¼

�
10

9

�
2
�2
HðtkWMAP

Þ
�

k

kWMAP

�
n�1

’ 4:58� 10�10e2:48ðn�1Þ
�

k

kWMAP

�
n�1

: (B15)

For nonzero values of r, in principle, this normalization
changes slightly. From inflation in the slow-roll approxi-
mation, e.g., we expect r 
 ð8=3Þð1� nÞ ’ 0:085 (assum-
ing the spectral index observed on large scales),
corresponding to a very modest decrease of �H by about
2%. Even the largest currently allowed value of r� 0:3
[51] would decrease �H only by about 6%, leading to a
corresponding weakening of our limits on the height p of a
step in the spectrum (see below) and barely affecting our
limits on n.
We now have all the ingredients to calculate ��;H as in

Eq. (B10). Approximating the transition between radiation
and matter domination to take place almost instantane-
ously, the last factor in the above expression can, further-
more, be expressed in terms of the total mass contained
within the horizon as�

k

k0

�
n�1 �

�
MHðt0Þ
MHðteqÞ

�ðn�1Þ=3�MHðteqÞ
MHðtkÞ

�ðn�1Þ=2
; (B16)

where the first term on the right side can also be written
as ð1þ zeqÞn�1.

IMPROVED CONSTRAINTS ON THE PRIMORDIAL POWER . . . PHYSICAL REVIEW D 85, 125027 (2012)

125027-17



2. Spectrum with a superimposed step

The simplest phenomenological way to allow for more
power below some small scale (k 
 keq) is to generalize

the scale-free case by introducing two parameters ðks; pÞ
that describe the location and height of a step in the
primordial spectrum (see, e.g., [40,46]):

�2
;HstepðtkÞ ¼ �2

HðtkÞ �
8<
: 1 for k < ks

p2 for k 
 ks
; (B17)

where �2
HðtkÞ is given by Eq. (B15). We can then again use

Eq. (B10) to calculate ��;H by using

�2
�;stepðk; ks; p; nÞ ¼ �2

�ðnÞ þ 9ðp2 � 1Þ
16

�
Z 1

ks=k
dx xnþ2W2

THðxÞ
T2
�ðx=

ffiffiffi
3

p Þ
T2
r ð1=

ffiffiffi
3

p Þ ;
(B18)

with ��ðnÞ given by Eq. (B13). Note that a rather similar

spectrum can arise if the inflaton potential has a jump in its
first derivative [12].

C. Generalized spectrum and curvature perturbations

Instead of relating it to �H, we can of course also express
the mass variance directly in terms of the curvature pertur-
bation and write Eq. (B10) as

�2
�;HðRÞ ¼

1

9

Z 1

0
x3W2

THðxÞPRðx=RÞT2
�ðx=

ffiffiffi
3

p Þdx:
(B19)

This integral is strongly dominated by contributions
around x� 1 (i.e., by wave numbers kR ¼ 1=R). A general
form for the spectrum of primordial curvature perturba-
tions can be obtained by discarding the assumption of a
globally scale-free spectrum and instead adopting the

weaker assumption of local invariance only around the
scale of interest kR probed by (non-)observation of
UCMHs of a certain mass (see, e.g., Ref. [55]). Given
the dominance of kR in the integral above, this can be
achieved by taking a power-law form for PRðkÞ, with
the pivot point placed at kR,

P RðkÞ ¼ PRðkRÞ
�
k

kR

�
nRðkRÞ�1

: (B20)

Here, nRðkRÞ is the local slope of the power-law at kR. For
example, slow-roll inflationary models, 0:9 & nR & 1:1, is
typical at scales measured by the CMB [162]; for the
considerably smaller scales we are mainly interested in
here, however, it is much more difficult to make general
statements about the expected value of nR. For our con-
straints, we use nR ¼ 1, for which evaluation of Eq. (B19)
gives

�2
�;HðRÞ=PRðkRÞ ¼ 0:907: (B21)

For comparison, changing nR to 0 (2) would result in 0.388
(2.91)—which should serve as a warning that it is in
general not possible to translate bounds on �2

H into bounds
on PR in a completely model-independent way, i.e., with-
out assuming anything about the form of the spectrum.
Similarly, using Eqs. (B4)–(B6), we can express the

equivalent total density power spectrum in terms of the
initial curvature spectrum as

P �ðkÞ ¼
�
2k

3aH

�
4
T2
r ðk; tÞPRðkÞ; (B22)

which at the time of horizon entry gives

P �ðkÞjt¼tk ¼
�
2

3

�
4
T2
r ð� ¼ 1=

ffiffiffi
3

p ÞPRðkÞ ¼ 0:191PRðkÞ:
(B23)
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