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We apply a U-duality based solution-generating technique to construct supergravity solutions which

describe nonextremal D5-branes and fluxbranes on various gravitational instantons. This includes an F7-

brane wrapped on a sphere, which remains weakly coupled in the asymptotic region. We construct various

superpositions of nonextremal D5-branes and fluxbranes that have angular momentum fixed by the

parameters associated with their mass and two magnetic charges.
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I. INTRODUCTION AND SUMMARY

Supergravity p-brane solutions have played a crucial
role in string theory, and a great number of them have
provided examples of gauge-gravity duality [1]. However,
if a solution contains a singularity, then this imposes a
severe restriction on its range of validity. Singularities may
be resolved by higher-order stringy effects or by geomet-
rical deformations at the level of supergravity. For ex-
ample, the Klebanov-Tseytlin solution describing regular
and fractional 3-branes at the apex of the conifold [2] can
be rendered completely regular by deforming the conifold
[3], thereby providing a supergravity description of chiral
symmetry breaking and confinement. There is an abun-
dance of work that has been done regarding the resolution
of various p-brane solutions; see, for instance, [4].

Another route for dealing with a singularity is to hide it
behind an event horizon. It was proposed that such a
nonextremal generalization of the Klebanov-Tseytlin solu-
tion could provide a supergravity description of the resto-
ration of chiral symmetry above a critical temperature [5].
Because of the complexity of the equations, perturbative as
well as numerical techniques have been applied for this
purpose [6–9].

5-brane solutions tend to be simpler since the transverse
space has only four dimensions. Resolutions of heterotic
5-branes on Eguchi-Hanson and Taub-NUT instantons
have been constructed in [4]. This resolution incorporates
multiple matter Yang-Mills fields, which are only available
for heterotic string theory. Nevertheless, resolutions of
5-branes in type II theories are possible if the 5-brane is
wrapped around an S2 [10] or S1 [11] and appropriately
twisted. The latter case ended up serving as a guide for the
construction of an S1-wrapped D3-brane on a resolved
conifold [12]. This illustrates the usefulness of 5-brane
solutions as a toy model for more complicated p-brane
solutions with transverse spaces of higher dimensionality.

In this paper, we will consider nonextremal D5-branes on
various gravitational instantons. We will apply a solution-
generating technique that involves using U-duality to obtain
nonextremal p-branes from neutral black holes [13]. Our
‘‘seed solutions’’ will be five-dimensional black holes on
various gravitational instantons [14–17].1 We embed these
solutions in 11 dimensions, perform a boost, dimensionally
reduce to type IIA theory along the boosted direction, and
perform a series of five T-dualities in order to obtain new
nonextremal D5-brane solutions. The boost parameter in this
prescription is associatedwith themagnetic charge of theD5-
brane. Over the years, this type of prescription for generating
new solutions has been used to obtain a multitude of super-
gravity solutions. A similar solution-generating technique
has been used to generate solutions which describe the
baryonic branch of the Klebanov-Strassler theory [20], as
well as its generalization to finite temperature [21].
For seed solutions which have a finite and constant S1 in

their asymptotic region, we can incorporate a rotation,
instead of a boost, in the above recipe. Reducing the 11-
dimensional solution to type IIA theory along the rotated
direction then results in an F7-brane wrapped on a sphere,
where the rotation parameter is associated with the mag-
netic charge of the fluxbrane. A fluxbrane can be thought of
as a higher-dimensional generalization of the Melvin uni-
verse [22], which is a flux tube in four dimensions [23].
Fluxbranes were introduced within the context of string
theory in [24–28]. Unlike the F7-brane found in [27], the
one discussed here remains weakly coupled in the asymp-
totic region. Applying a rotation and a boost together in the
solution-generating prescription results in a superposition
of a D5-brane and a smeared F2-brane (or a smeared
D0-brane and an F7-brane, if one does not perform the
five T-dualities), which have two independent magnetic
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1We do not consider black holes whose horizons are distorted
lens spaces Lðn;mÞ ¼ S3=�ðn;mÞ [18], since the resulting non-
extremal 5-brane solutions would be similar to the charged
generalizations already constructed in [19].
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charge parameters. These solutions have the additional
feature of having angular momentum, which might seem
odd given that the seed solutions do not have angular
momentum. However, this angular momentum is not an
independent quantity and is fixed in terms of the parame-
ters associated with the mass and two magnetic charges.

It would be quite interesting to find an interpolation
between these nonextremal 5-brane solutions and the
aforementioned resolutions which either involve a heter-
otic 5-brane with Yang-Mills fields [4] or a 5-brane
wrapped on an S2 [10] or S1 [11]. An interpolating solution
could provide an explicit example of the transition from a
completely regular solution to one in which there is a
singularity hidden behind a horizon. This could offer in-
sight into the nature of the transition point at which a
horizon develops for the more complicated case of the
nonextremal generalization of the Klebanov-Strassler so-
lution, which may not be readily apparent from perturba-
tive or numerical techniques.

This paper is organized as follows. In Sec. II, we provide a
couple of examples that illustrate the solution-generating
technique for cases in which either a boost or a rotation is
applied. The resulting solutions are a nonextremal D5-brane
and an F7-brane wrapped on a sphere. In Sec. III, we simul-
taneously apply a boost and a rotation as part of the solution-
generating procedure and obtain a superposition of a nonex-
tremal D5-brane and a smeared F2-brane on a Kaluza-Klein
(KK) bubble. In Sec. IV,we present various other examples of
superpositions of D5-branes and smeared F2-branes.

II. BASIC EXAMPLES OF THE
SOLUTION-GENERATING TECHNIQUE

A. Nonextremal D5-brane

The five-dimensional Schwarzschild-Tangherlini metric
[29] is given by

ds25 ¼ �fdt2 þ f�1dr2 þ r2d�2
3; (2.1)

where

f ¼ 1� r20
r2

: (2.2)

The event horizon is located at r ¼ r0 and the singularity is
at r ¼ 0. The direct product of the five-dimensional
Schwarzschild-Tangherlini solution with R6 is a vacuum
solution in 11 dimensions:

ds211 ¼ ds25 þ dz2 þ dx21 þ � � �dx25: (2.3)

Taking this as the seed solution, one can perform a boost in
the z direction,

t ! t cosh�� z sinh�; z ! z cosh�� t sinh�;

(2.4)

so that the metric (2.3) can be written as

ds211 ¼ H½dzþ ðH�1 � 1Þ coth�dt�2 �H�1fdt2

þ dx21 þ � � � þ dx25 þ f�1dr2 þ r2d�2
3; (2.5)

where

H ¼ 1þ r20sinh
2�

r2
: (2.6)

Then performing dimensional reduction along the z direc-
tion yields a type IIA nonextremal D0-brane smeared along
the x1; . . . ; x5 directions:

ds210 ¼ �H�7=8fdt2 þH1=8ðdx21 þ � � � þ dx25

þ f�1dr2 þ r2d�2
3Þ;

Fð2Þ ¼ coth�dH�1 ^ dt;

� ¼ �3
4 logH: (2.7)

If we then T-dualize along the x1; . . . ; x5 directions, we
obtain the nonextremal D5-brane in type IIB theory [30]:

ds210 ¼ H�1=4ð�fdt2 þ dx21 þ � � � þ dx25Þ
þH3=4ðf�1dr2 þ r2d�2

3Þ;
�Fð3Þ ¼ coth�dH�1 ^ dt ^ d5x;

� ¼ �1
2 logH: (2.8)

The mass per unit 5-volume is

m ¼ ð2sinh2�þ 3Þr20; (2.9)

and it has a magnetic charge

Q ¼ r20 sinh2�: (2.10)

Note that the event horizon of the black hole at r ¼ r0
maps into the event horizon of the D5-brane. Since the
harmonic function (2.6) stays finite and nonzero for r � r0,
the source for the magnetic field strength Fð3Þ in (2.8) lies

within the event horizon at r ¼ 0. The extremal limit of
this solution can be obtained by taking r0 ! 0 and � ! 1
while keeping r0 sinh� constant.

B. F7-brane on an n sphere

The nþ 2-dimensional Euclidean Schwarzschild-
Tangherlini instanton can be embedded in 11 dimensions as

ds211 ¼ �dt2 þ dx21 þ � � � dx27�n þ dz2 þ fdc 2

þ f�1dr2 þ r2d�2
n; (2.11)

where

f ¼ 1�
�
r0
r

�
n�1

: (2.12)

The radial coordinate r � r0 and regularity at r ¼ r0 re-
quires that c has the period 4�r0=ðn� 1Þ. This is a staticSn
Kaluza-Klein (KK) ‘‘bubble of nothing’’ [31]. It is a direct
product ofMinkowski8�n and the Euclidean Schwarzschild
instanton and is asymptotically Minkowski10 � S1 with a
finite and constant radius for S1.
Upon performing a rotation in the z-c plane,

c ! c cos�� z sin�; z ! z cos�þ c sin�;

(2.13)

the metric (2.11) can be written as
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ds211 ¼H½dzþðH�1 � 1Þcot�dc �2 �dt2 þ dx21 þ�� �
þ dx27�nþH�1fdc 2 þ f�1dr2 þ r2d�2

n; (2.14)

where

H ¼ 1�
�
r0
r

�
n�1

sin2�> 0: (2.15)

Performing dimensional reduction along the z direction
yields an F7-brane wrapped on a n sphere:

ds210 ¼ H�7=8fdc 2 þH1=8ð�dt2 þ dx21 þ � � � þ dx27�n

þ f�1dr2 þ r2d�2
nÞ;

Fð2Þ ¼ cot�dH�1 ^ dc ;

� ¼ �3
4 logH; (2.16)

The total magnetic flux is

1

4�

Z
Fð2Þ ¼ r0 tan�

n� 1
: (2.17)

Unlike the F7-brane found in [27], here the IIA theory
remains weakly coupled for large r. Note that the solution
(2.16) can also be obtained by a double Wick rotation of a
D0-brane smeared along 8� n directions. Also, as op-
posed to the nonextremal D5-brane, this F7-brane solution
does not have a nontrivial extremal limit.

III. SUPERPOSITION OF D5-BRANE AND
SMEARED F2-BRANE ON KK BUBBLE

We will now consider a seed solution for which we can
simultaneously apply a boost and a rotation as part of the
solution-generating scheme. The resulting solution in-
volves two magnetic charges parametrized by � and �.

The seed solution describes a black hole on the Euclidean
Schwarzschild instanton, or equivalently a black hole sitting
in the throat of a KK bubble, and is given by the metric [14]

ds25 ¼ �fdt2 þ gdc 2 þ A

�
dx2

GðxÞ �
dy2

GðyÞ þ Bd�2

�
;

(3.1)

where

GðxÞ ¼ ð1þ cxÞð1� x2Þ;

A ¼ 2�4ð1þ cxÞ2ð1� cÞð1� yÞ2
ðx� yÞ3 ;

B ¼ � 2ð1þ xÞð1þ yÞ
ð1� cÞðx� yÞ ;

f ¼ 1þ cy

1þ cx
; g ¼ 1� x

1� y
: (3.2)

The parameters � and c take the ranges �> 0 and
0 � c < 1, and the x and y coordinates take the ranges�1 �
x � 1 and� 1

c � y � �1. The horizon is located at y ¼ � 1
c

and the asymptotic region is atx ¼ y ¼ �1. For vanishing c,
the black hole goes away andwe are leftwith the background
geometry, which is the direct product of time and the

Euclidean Schwarzschild instanton and is asymptotically
Minkowski4 � S1 with a finite and constant S1.
We can embed this as a vacuum solution in 11 dimen-

sions with the metric

ds211 ¼ ds25 þ dz2 þ dx21 þ � � � þ dx25; (3.3)

and perform the boost (2.4) and rotation (2.13). This yields
the metric

ds211 ¼ H½dzþH�1ðf� 1Þc�s�c�dt
þH�1ðc2� � g� fs2�Þc�s�dc �2
�H�1K½dtþ K�1ð1� fÞc�s�s�c2�dc �2 þ dx21

þ � � � þ dx25 þ Jdc 2 þ A

�
dx2

GðxÞ �
dy2

GðyÞ þ Bd�2

�
;

(3.4)

where

H ¼ c2�c
2
� þ gs2� � fs2�c

2
� > 0;

K ¼ fc2� þ gs2�ðfc2� � s2�Þ;
J ¼ H�1½gðc2� � fs2�Þ þ K�1ð1� fÞ2c2�s2�s2�c4��;

(3.5)

and we have used the shorthand notation

c� ¼ cos�; s� ¼ sin�; c� ¼ cosh�;

s� ¼ sinh�:
(3.6)

Performing dimensional reduction along the z direction to
type IIA theory yields

ds210 ¼ �H�7=8K½dtþ K�1ð1� fÞc�s�s�c2�dc �2

þH1=8

�
dx21 þ � � � þ dx25 þ Jdc 2

þ A

�
dx2

GðxÞ �
dy2

GðyÞ þ Bd�2

��
;

Fð2Þ ¼ c�s�c�d½H�1ðf� 1Þ� ^ dt

þ c�s�d½H�1ðc2� � g� fs2�Þ� ^ dc ;

� ¼ � 3

4
logH: (3.7)

This describes the superposition of a nonextremal D0-
brane smeared along five directions, an F7-brane wrapped
on a 3-sphere, and a KK bubble. This solution has angular
momentum associated with the gravitational field that goes
as cc�s�s�c

2
�. The surface at y ¼ � 1

c is the event horizon,

just as it was in the seed solution. However, this solution
contains an outer horizon as well, which is located at K ¼
0. In analogy with the Kerr metric, the space between these
two horizons is the ergoregion.
It is rather surprising that this solution has angular mo-

mentum, given the fact that the seed solution has none.
However, being the outcome of the solution generation, the
angular momentum is not an independent quantity, since it
can be expressed in terms of the parameters c, �, and �
which are related to the mass and charges. The angular
momentum associated with the gravitational field, along
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with that associated with the electromagnetic field, keep the
system in a stable configuration without the need of an
applied external field. There may exist more general solu-
tions for which the angular momentum is an independent
quantity. However, such solutions are likely to be unstable,
and would either slow down to the above configuration or
else not have enough rotation to prevent their collapse.

Note that the angular momentum cannot be related to a
brane charge via T-duality, since dualizing along the c
direction would lead to an ill-behaved solution with a
singularity along x ¼ 1. However, we can T-dualize along
the x1; . . . ; x5 directions to get the type IIB solution:

ds210 ¼ H�1=4½�K½dtþ K�1ð1� fÞc�s�s�c2�dc �2
þ dx21 þ � � � þ dx25�

þH3=4

�
Jdc 2 þ A

�
dx2

GðxÞ �
dy2

GðyÞ þ Bd�2

��
;

�Fð3Þ ¼ ðc�s�c�d½H�1ðf� 1Þ� ^ dt

þ c�s�d½H�1ðc2� � g� fs2�Þ� ^ dc Þ ^ d5x;

� ¼ � 1

2
logH: (3.8)

This describes a nonextremal D5-brane superimposed with
a smeared F2-brane and a KK bubble, which has the same
angular momentum as we had prior to performing the chain
of T-dualities.

In the limit � ¼ 0, the F2-brane is removed and we are
left with a nonextremal D5-brane and a KK bubble:

ds210¼H�1=4ð�fdt2þdx21þ���þdx25Þ

þH3=4

�
gdc 2þA

�
dx2

GðxÞ�
dy2

GðyÞþBd�2

��
; (3.9)

for which Fð3Þ and � are the same as in (2.8) and

H ¼ c2� � fs2�: (3.10)

On the other hand, taking the limit � ¼ 0 and T-dualizing
back along the x1; . . . ; x5 directions yields

ds210 ¼ H�7=8gdc 2 þH1=8

�
�fdt2 þ dx21 þ � � � þ dx25

þ A

�
dx2

GðxÞ �
dy2

GðyÞ þ Bd�2

��
; (3.11)

for which Fð3Þ and � are the same as in (2.16) and

H ¼ c2� þ gs2�: (3.12)

This describes a neutral 5-brane superimposed with an
F7-brane wrapped on a 2-sphere.

IV. OTHER EXAMPLES

A. Superposition of two D5-branes and smeared
F2-brane on KK bubble

Two black holes on a KK bubble are described by the
metric [15]

ds25¼�fdt2þgdc 2þðR1��1ÞðR4þ�4Þd�2

þ Y14Y23

4R1R2R3R4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y12Y34

Y13Y24

s �
R1��1
R4��4

�
ðdr2þdy2Þ; (4.1)

where

�i ¼ y� ci; Ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ �2i

q
;

Yij ¼ RiRj þ �i�j þ r2; (4.2)

and

f ¼ ðR2 � �2ÞðR4 � �4Þ
ðR1 � �1ÞðR3 � �3Þ ; g ¼ R3 � �3

R2 � �2
: (4.3)

As opposed to a four-dimensional static solution describ-
ing two black holes held apart by a strut (conical singu-
larity) [32,33], in this solution it is the KK bubble that
serves to hold the black holes apart in static equilibrium. In
fact, for c2 < c1, c3 a periodicity in � of 2� and a peri-
odicity in c of

�c ¼ 8�c2ðc1 þ c3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðc1 þ c2Þðc2 þ c3Þ
p ; (4.4)

the solution is regular and free of conical deficits. The two
black hole horizons are located at r ¼ 0, c2 < y< c1 and
r ¼ 0, �c3 < y<�c2. The geometry is asymptotically
Minkowski4 � S1.
Embedding (4.1) in 11 dimensions with (3.3), perform-

ing the boost (2.4) and the rotation (2.13), dimensionally
reducing along the boosted and rotated z direction, and
then T-dualizing along the x1; . . . ; x5 directions yields the
superposition of two nonextremal D5-branes and a
smeared F2-brane on a KK bubble:

ds210 ¼ H�1=4½�K½dtþ K�1ð1� fÞc�s�s�c2�dc �2

þ dx21 þ � � � þ dx25� þH3=4

�
Jdc 2 þ ðR1 � �1Þ

� ðR4 þ �4Þd�2 þ Y14Y23

4R1R2R3R4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y12Y34

Y13Y24

s

�
�
R1 � �1
R4 � �4

�
ðdr2 þ dy2Þ

�
; (4.5)

where Fð3Þ and � are given by (3.8) and H, K and J are

given by (3.5). This solution has angular momentum that is
fixed in terms of the mass and magnetic charges.

B. Superposition of D5-brane and smeared F2-brane
on Euclidean Kerr instanton

A static black hole on the Euclidean Kerr instanton was
constructed in [16], and can be expressed in C-metric-like
coordinates [17] as

ds25 ¼�fdt2 þ gðdc þ�Þ2 þA

�
dx2

GðxÞ �
dy2

GðyÞ þBd�2

�
;

(4.6)

where GðxÞ and f are given by (3.2), g ¼ C=D, and
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� ¼ 2�c2�2½1þ c� ð1� cÞ�2�½1� c� ð1þ cÞ�2�
ð1þ �2Þ

ð1þ yÞ½ð1� yÞð2� cþ cxÞ þ ð1� xÞð2� cþ cyÞ�2�GðxÞ
ð1� xÞðx� yÞFðx; yÞ d�;

A ¼ 2�4ð1þ cxÞKðx; yÞ
c2ð1� cÞð1� �2Þð1þ �2Þ2ðx� yÞ3 ;

B ¼ � 2c2ð1� cÞð1� �2Þð1þ �2Þ2GðxÞGðyÞ
ðx� yÞð1þ cyÞFðx; yÞ ;

C ¼ c2ð1� �2Þð1þ cxÞ
1þ c

½ð1� cÞð1� xÞð1� yÞð1� c� ð1þ cÞ�2Þð1þ c� ð1� cÞ�2Þ � 8�2ðcþ xþ yþ cxyÞ�;
D ¼ ð1þ cxÞ½ð1� cÞð1þ c� ð1� cÞ�2Þ � ð1þ cyÞð1� c� ð1þ cÞ�2Þ�2

� �2ð1þ cyÞ½ð1� cÞð1� c� ð1þ cÞ�2Þ � ð1þ cxÞð1þ c� ð1� cÞ�2Þ�2: (4.7)

The parameters �, c, and � take the ranges �> 0, 0 �
c < 1, and �2 < 1�c

1þc , and the x and y coordinates take the
ranges �1 � x � 1 and � 1

c � y � �1. The horizon is at
y ¼ � 1

c and the asymptotic region is at x ¼ y ¼ �1.
There are no singularities or closed timelike curves outside
of the horizon. The horizon topology is S3 and the asymp-
totic geometry is Minkowski4 � S1. While the S1 generally
blows up at infinity, it remains finite if the following
combination of parameters,ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� c2
p

ð1þ �2Þ
�

; (4.8)

is rational [34]. The black hole on the Euclidean
Schwarzschild instanton [14] is recovered for vanishing �.

Embedding (4.6) in 11 dimensions with (3.3), perform-
ing the boost (2.4) and the rotation (2.13), dimensionally
reducing along the boosted and rotated z direction, and
then T-dualizing along the x1; . . . ; x5 directions yields a
nonextremal D5-brane on a Euclidean Kerr instanton
superimposed with a smeared F2-brane:

ds210 ¼ H�1=4½�K½dtþ K�1ð1� fÞc�s�s�c�
� ðc�dc þ g�Þ�2 þ dx21 þ � � � þ dx25�
þH3=4

�
Jðdc þ L�Þ2 þM�2

þ A

�
dx2

GðxÞ �
dy2

GðyÞ þ Bd�2

��
;

�Fð3Þ ¼ ðc�s�c�d½H�1ðf� 1Þ� ^ dt

þ c�s�d½H�1ðc2� � g� fs2�Þ� ^ dc^

� s�d½H�1g��Þ ^ d5x; � ¼ � 1

2
logH:(4.9)

where H, K, and J are given by (3.5) and

L ¼ ½g� ðc2� � g� fs2�Þs�
þH�1K�1ð1� fÞ2gc2�s2�c2�s2��J�1c�;

M ¼ K�1fgc2� � JL2: (4.10)

This solution has angular momentum that is fixed in terms
of the mass and magnetic charges.

C. Superposition of D5-brane and smeared F2-brane
on Taub-bolt instanton

A static black hole on the non-self-dual Taub-NUT
instanton was obtained in [16] and can be expressed in
C-metric-like coordinates [17] by the metric (4.6) where
GðxÞ and f are given by (3.2), g ¼ C=D, and

� ¼ 2��2½2þ xþ yþ cð1þ xÞð1þ yÞ�
ð1� �2Þðx� yÞ d�;

A ¼ 2�4ð1� cÞð1þ cxÞKðx; yÞ
ð1� �2Þðx� yÞ3 ;

B ¼ � 2ð1þ xÞð1þ yÞ
ð1� cÞðx� yÞ ;

C ¼ ð1� �2Þð1� xÞð1� yÞð1þ cxÞ;
D ¼ ð1þ cxÞð1� yÞ2 � �2ð1þ cyÞð1� xÞ2:

(4.11)

The parameters �, c, and � take the ranges �> 0, 0 �
c < 1, and �2 � 1, and the x and y coordinates take the
ranges �1 � x � 1 and � 1

c � y � �1. The horizon is

located at y ¼ � 1
c with a topology of S3. The asymptotic

region is at x ¼ y ¼ �1 and is a nontrivial finite S1 fiber
bundle over Minkowski4. The solution has no singular-
ities or closed timelike curves outside of the horizon for
either �2 ¼ ð1� c2Þ=4 or � ¼ 1, the latter being the case
of a black hole on the self-dual Taub-NUT instanton
[35]. On the other hand, for vanishing � the black hole
on the Euclidean Schwarzschild instanton [14] is
recovered.
Embedding (4.6) in 11 dimensions with (3.3), perform-

ing the boost (2.4) and the rotation (2.13), dimensionally
reducing along the boosted and rotated z direction, and
then T-dualizing along the x1; . . . ; x5 directions yields a
nonextremal D5-brane on a Taub-bolt instanton superim-
posed with a smeared F2-brane. The solution has the form
(4.9) whereH, K, and J are given by (3.5) and L andM are
given by (4.10). This solution has angular momentum that
is fixed in terms of the mass and magnetic charges.

BLACK FIVE-BRANES AND FLUXBRANES ON . . . PHYSICAL REVIEW D 85, 125024 (2012)

125024-5



D. D5-brane on Eguchi-Hanson instanton

The metric for a rotating black hole on the Eguchi-Hanson instanton is contained in the rotating black lens solution
found in [36]. In C-metric-like coordinates, the metric for the case in which the black hole has a single angular momentum
can be written as

ds25 ¼ �Hðy; xÞ
Hðx; yÞ ðdt�!c dc �!�d�Þ2 � Fðx; yÞ

Hðy; xÞdc
2 þ 2Jðx; yÞ

Hðy; xÞ dc d�þ Fðy; xÞ
Hðy; xÞd�

2

þ �2Hðx; yÞ
2ð1� a2Þð1� bÞ3ðx� yÞ2

�
dx2

GðxÞ �
dy2

GðyÞ
�
; (4.12)

where

!c ¼ 2�

Hðy; xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bð1þ bÞðb� cÞ
ð1� a2Þð1� bÞ

s
ð1� cÞð1þ yÞf2½1� b� a2ð1þ bxÞ�2ð1� cÞ � a2ð1� a2Þbð1� bÞð1� xÞ

� ð1þ cxÞð1þ yÞg;

!� ¼ 2�

Hðy; xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bð1þ bÞðb� cÞ
ð1� a2Þð1� bÞ

s
að1� cÞð1þ xÞ2ð1þ yÞ½a4ð1þ bÞðb� cÞ þ a2ð1� bÞðbðc� 1Þ þ 2cÞ � ð1� bÞ2c�;

GðxÞ ¼ ð1þ cxÞð1� x2Þ;
Hðx; yÞ ¼ 4ð1� bÞð1� cÞð1þ bxÞfð1� bÞð1� cÞ � a2½ð1þ bxÞð1þ cyÞ þ ðb� cÞð1þ yÞ�g þ a2ðb� cÞð1þ xÞ

� ð1þ yÞfð1þ bÞð1þ yÞ½ð1� a2Þð1� bÞcð1þ xÞ þ 2a2bð1� cÞ� � 2bð1� bÞð1� cÞð1� xÞg;

Fðx; yÞ ¼ 2�2

ð1� a2Þðx� yÞ2 ½4ð1� cÞ2ð1þ bxÞ½1� b� a2ð1þ bxÞ�2GðyÞ � a2GðxÞð1þ yÞ2ð½1� b� a2ð1þ bÞ�2

� ð1� cÞ2ð1þ byÞ � ð1� a2Þð1� b2Þ � ð1þ cyÞfð1� a2Þðb� cÞð1þ yÞ þ ½1� 3b� a2ð1þ bÞ�ð1� cÞgÞ�;

Jðx; yÞ ¼ 4�2að1� cÞð1þ xÞð1þ yÞ
ð1� a2Þðx� yÞ ½1� b� a2ð1þ bÞ�½ð1� bÞcþ a2ðb� cÞ�½ð1þ bxÞð1þ cyÞ

þ ð1þ cxÞð1þ byÞ þ ðb� cÞð1� xyÞ�: (4.13)

The parameters � and c take the ranges �> 0 and 0 �
c < 1 and the parameters a and b are fixed as

a ¼ 3ð1� cÞ
3þ 5c

; b ¼ 4cð3� cÞ
5c2 � 6cþ 9

: (4.14)

The x and y coordinates take the ranges �1 � x � 1 and
� 1

c � y � �1. The horizon is at y ¼ � 1
c and has topology

S3. The region outside the horizon does not contain any
singularities and no closed timelike curves have been
found [17]. The asymptotic region at x ¼ y ¼ �1 is
Minkowski5=Z2. For vanishing c, the direct product of
the Eguchi-Hanson instanton with time is recovered.

Since there is no S1 that remains finite in the asymptotic
region, we cannot construct a well-behaved solution in-
volving the� parameter associated with the rotation (2.13),
though we can still consider one with the � parameter
associated with the boost (2.4). Embedding (4.12) in
11 dimensions with (2.3), performing the boost (2.4),
dimensionally reducing along the boosted z direction,
and T-dualizing along the x1; . . . ; x5 directions yields a
nonextremal D5-brane on the Eguchi-Hanson instanton:

ds210 ¼ H�1=4

�
�Kðy; xÞ

Kðx; yÞ ðdt�!cdc �!�d�Þ2

þ dx21 þ � � � þ dx25

�
þH3=4ds24;

�Fð3Þ ¼ coth�dH�1 ^ dt ^ d5xþ sinh�

�
d

�
Kðy; xÞ!�

HKðx; yÞ
�

^ d�þ d

�
Kðy; xÞ!c

HKðx; yÞ
�
^ dc

�
^ d5x;

� ¼ � 1

2
logH; (4.15)

where

H ¼ 1þ
�
1� Kðy; xÞ

Kðx; yÞ
�
sinh2�: (4.16)
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