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We discuss the dependence of observables on the chemical potential in ’t Hooft’s large-N QCD. To this

end, we use the worldline formalism to expand the fermionic determinant in powers of 1=N. We consider

the hadronic as well as the deconfining phase of the theory. We discuss the origin of the sign problem in

the worldline approach and elaborate on the planar equivalence between QCD with a baryon chemical

potential and QCD with an isospin chemical potential. We show that for C-even observables, the sign

problem occurs at a subleading order in the 1=N expansion of the fermionic determinant. Finally, we

comment on the finite N theory.
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INTRODUCTION

Understanding the QCD phase diagram is an important
and longstanding problem (see Ref. [1] for a review). Since
the theory at a generic point in the ðT;�Þ plane is strongly
coupled, one has to resort to lattice simulations. It is,
however, difficult to carry out Monte Carlo simulations
in a theory with a chemical potential due to the so called
‘‘sign problem.’’ When a theory admits a nonzero chemical
potential, the fermionic determinant becomes generally
complex, and large oscillations of the phase make the
Monte Carlo simulation practically impossible [2].

We could expect that the sign problem simplifies in the
’t Hooft large-N limit of QCD [3]. In this limit, fundamen-
tal matter is quenched, and the hope is that the problem
which arises from the determinant is a subleading 1=N
effect. The problemwas first discussed at the diagrammatic
level by Cohen in Ref. [4]. A related idea which was
proposed recently is the large-N equivalence between
QCD and other theories which admit a real fermionic
determinant [5–8].

In this paper, we use the worldline formalism [9] to
study the dependence of observables on the chemical
potential in large-N QCD. In this approach, the fermionic
determinant is written as a sum of Wilson (or Polyakov)
loops. Moreover, the expansion in loops corresponds to a
systematic expansion of the fermionic determinant in
powers of 1=N [10]. The main disadvantage of this ap-
proach is that it is perturbative in 1=N, and hence the
expansion is around the Yang-Mills vacuum (without
quarks). As a result, the discussion will be restricted to
the phases of the theory with small � where there is no
breaking of baryon (or isospin) number.

The main goal of the paper is to understand how
observables depend on the chemical potential in the
large-N theory. We will also discuss the ‘‘sign problem’’.
We will explicitly decompose the determinant into real and
imaginary parts and shed light on the origin of the problem.
The outcome of our analysis is that while the large-N
theory admits a sign problem, the problem is not as severe
as in the finite-N case. More precisely, we will show that to
leading fermionic contribution in N, C-even (real) opera-
tors do not couple to the phase of the fermionic determi-
nant. In other words, for C-even operators, the sign
problem is a subleading effect.
This understanding will be then used to clarify the

meaning of the recently proposed large-N equivalence
between QCD theory with a baryon chemical potential
and a QCD theory with an isospin chemical potential [6,8].
We conclude the paper with a discussion about the

implications of our analysis on the finite-N theory.

THE 1=N EXPANSION VIA THE
WORLDLINE FORMALISM

Let us review the worldline formalism [9,10]. Consider
SUðNÞ gauge theory with one flavor and without a chemi-
cal potential. We formulate the theory on R3 � S1, where
S1 is a temporal circle with a radius R ¼ 1=2�T. The basic
idea is to express the fermionic determinant in terms of
Wilson loops. The precise relation between the Euclidean
fermionic determinant and Wilson loops is as follows:

detð 6DþmÞ ¼ exp�½A�; (1)

and

Z ¼
Z

DA� expð�SYMÞ expð�½A�Þ; (2)

where
*a.armoni@swan.ac.uk
†agostino.patella@cern.ch

PHYSICAL REVIEW D 85, 125021 (2012)

1550-7998=2012=85(12)=125021(6) 125021-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.85.125021


�½A� ¼ � 1

2

Z 1

0

dt

t
expð�m2tÞ �

Z
DxDc ð�1Þ!

� exp

�
�
Z t

0
d�

�
1

2
_x� _x� þ 1

2
c � _c �

��
� TrP

� exp

�
i
Z t

0
d�

�
Aa
� _x� � 1

2
c �Fa

��c
�

�
ta
�
; (3)

with x�ð0Þ ¼ x�ðtÞ and! being the winding number of the
path x� around the compact direction. ftag is a set of

matrices which transform in the fundamental representation
of the SUðNÞ Lie algebra. The factor ð�1Þ! implements the
antiperiodic boundary conditions for fermions in theworld-
line formalism. Thus, � is a sum over (super-)Wilson loops.
The sum is over contours of all sizes and shapes.

Let us introduce a chemical potential �:

detð 6DþmÞ ! detð 6Dþmþ��0Þ: (4)

In the worldline formalism, a chemical potential is easily
implemented by introducing a constant background Uð1Þ
gauge connection

hA�i ¼ �i�0
��; (5)

resulting in the introduction of a factor

exp

�
�
Z

dx0
�
¼ exp

�
�

T
!

�
(6)

since the integral along the x0 direction (the circle) mea-
sures the winding !. Let us decompose � accordingly to
the various topological sectors which correspond to the
winding number

�ð�Þ¼ X1
!¼�1

�ð!Þð�Þ¼ X1
!¼�1

�ð!Þð�¼0Þexp
�
�

T
!

�
: (7)

While we cannot prove that the above expansion (7) is
always convergent, it is expected to converge when m=�
is large enough, since the quark mass serves as an IR
regulator such that each closed loop carries a factor
� expð� m

T j!jÞ.
The free energy at generic N is defined as

F ¼ �T logZ ¼ FYM � T loghe�iYM: (8)

We wish to consider now the expansion of exp�. As was
noted in Ref. [11], the connected k-point function of � is
suppressed by powers of N:

h�� . . . �|fflfflfflffl{zfflfflfflffl}ic
k times

*
1

Nðk�2Þ : (9)

Therefore, the expansion of exp� in powers of � is an
expansion in 1=N. The approximation exp�� 1 corre-
sponds to quenching. In order to consider the effect of
fermionic matter, one has to go beyond the quenched
approximation, namely, to consider one Wilson loop
(which corresponds to one power of �)

exp�� 1þ �: (10)

In particular, the leading OðNÞ contribution of fermions to
the free energy is

Ff ¼ �T loghe�iYM ��Th�iYM

¼ �T
X1

!¼�1
exp

�
�

T
!

�
h�ð!Þð� ¼ 0ÞiYM: (11)

Note that the expectation value is calculated in the pure
Yang-Mills vacuum. Next, we consider a generic Wilson

loop Oð!0Þ with winding number !0. At OðNÞ, the expec-

tation values of Oð!0Þ are given by

hOð!0ÞiQCD¼hOð!0ÞiYMþ X1
!¼�1

exp

�
�

T
!

�

�hOð!0Þ�ð!Þð�¼0ÞiYM: (12)

In the next sections, we will elaborate on the implications
of the expression (12).

� dependence in the confining phase

Let us restrict our attention to the hadronic confining
phase. In the confining phase, the expectation value of any
loop wrapping ! times around the circle vanishes unless
!modN ¼ 0. At the leading fermionic contribution in N,
we can neglect OðNÞ windings. Therefore, the free energy
(11)will get a contribution only from the sectorwith! ¼ 0,

Ff ¼ �Th�ð!¼0Þð� ¼ 0ÞiYM: (13)

Thus, we conclude that in the hadronic phase, the leading
fermionic large-N contribution to the quantity F=T is
�- and temperature-independent,

1

T
FfðT;�Þ ¼ 1

T
FfðT;�Þ

��������T¼0;�¼0
: (14)

The same conclusion holds for anyWilson loop with a zero
winding number,

hOð!0¼0ÞiðT;�Þ ¼ hOð!0¼0ÞiðT ¼ 0; � ¼ 0Þ: (15)

Let us consider a Wilson loop Oð!0Þ with !0 � 0. In this
case, Eq. (12) is saturated by !0 þ! ¼ 0, namely,

hOð!0ÞiQCD¼hOð!0ÞiYM
þexp

�
��

T
!0

�
hOð!0Þ�ð�!0Þð�¼0ÞiYM: (16)

Even in the confining phase, expectation values of Wilson
loops with a nonzero winding admit a nontrivial depen-
dence on the chemical potential.

� dependence in the deconfining phase

In the deconfining phase, the Polyakov loop expectation
value is nonvanishing. Therefore, the free energy is
not saturated by a Wilson loop with ! ¼ 0, but it
rather acquires contributions from all the topological
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sectors. In particular, the free energy is�- and temperature-
dependent. Using Eq. (11) and charge-conjugation
invariance of the Yang-Mills vacuum, we arrive at

Ff ¼ �Th�ð0Þð� ¼ 0ÞiYM � 2T
X
!>0

h�ð!Þð� ¼ 0ÞiYM

� cosh

�
�

T
!

�
: (17)

In general, observables in the deconfining phase are both
�- and temperature-dependent.

A comment on mesonic correlators

An important question is how the mesonic spectrum is
affected by the chemical potential. For simplicity, we will
consider the case of a theory with a single flavor. Our
discussion applies also to a multiflavor theory with a
baryon chemical potential.

The mesonic spectrum of a large-N theory is extracted
from a two-point function as follows:

h ���ðxÞ; ���ðyÞi ¼
Z d4k

ð2�Þ4 expðikðx� yÞÞGðk2Þ (18)

with

Gðk2Þ ¼ X
n

f2n
k2 þM2

n

; (19)

where fn are coupling constants and Mn are the meson
masses. In order to compute the two-point function (18) in
the worldline formalism, one has to add to the action a

source
R
d4xJðxÞ ���ðxÞ and to differentiate the partition

function twice with respect to the current J. The outcome
[12], to leading order in N, is that Eq. (18) is given by a
summation over all Wilson loops which pass via x and y,

h ���ðxÞ; ���ðyÞi ¼ h�x;yð�Þi: (20)

EachWilson loop in the sum carries a factor of expð�!=TÞ
where ! is its winding number.

However, in the confining phase, the correlator is satu-
rated by Wilson loops with a zero winding number; hence,
we conclude that the leading large-N meson spectrum is
not affected by the presence of the chemical potential.

THE ORIGIN OF THE SIGN PROBLEM

In this section, we elaborate on the origin of the sign
problem in the worldline approach.

Let us start by proving the following lemma, valid at
fixed gauge configuration:

�ð!Þð� ¼ 0Þ? ¼ �ð�!Þð� ¼ 0Þ: (21)

Proof: consider the theory with a pure imaginary chemi-
cal potential. In this case,

X1
!¼�1

�ð!Þði�Þ ¼ X1
!¼�1

�ð!Þð0Þ exp
�
i
�

T
!

�

¼ logdetð 6Dþmþ i��0Þ; (22)

hence,

�ð!Þð0Þ¼
Z 2�T

0

d�

2�T
exp

�
�i

�

T
!

�
logdetð 6Dþmþ i��0Þ:

(23)

Since the determinant is positive (hence, the logarithm is
real), taking the complex conjugate is equivalent to replac-
ing ! ! �!. Equation (23) can be written also in the
following form:

�ð!Þð0Þ þ �ð�!Þð0Þ ¼ 2
Z d�

2�T
cos

�
�

T
!

�

� logdetð 6Dþmþ i��0Þ (24)

�ð!Þð0Þ � �ð�!Þð0Þ ¼ �2i
Z d�

2�T
sin

�
�

T
!

�

� logdetð 6Dþmþ i��0Þ; (25)

which separates the real and imaginary parts. In particular,

note that �ð0Þð0Þ is real.
The above analysis has implications on the origin of the

sign problem. When � ¼ 0, the fermionic determinant is
real because we sum over all configuration with all winding

detð 6DþmÞ ¼ exp
X1

!¼�1
�ð!Þð� ¼ 0Þ; (26)

and in spite of �ð!Þð� ¼ 0Þ being complex, the imaginary

part cancels between �ð!Þ and �ð�!Þ. However, when we

introduce a real chemical potential, �ð!Þ is weighted by

expð�T !Þ, while �ð�!Þ is weighted by expð� �
T !Þ, and the

imaginary part no longer cancels:

X1
!¼�1

�ð!Þð�Þ ¼ �ð0Þð0Þ þ X
!>0

�
exp

�
�

T
!

�
�ð!Þð0Þ

þ exp

�
��

T
!

�
�ð�!Þð0Þ

�
: (27)

This is the reason for the sign problem. From Eq. (21), we
learn that

<ð�ð!ÞÞ ¼ <ð�ð�!ÞÞ (28)

=ð�ð!ÞÞ ¼ �=ð�ð�!ÞÞ; (29)

and the fermionic determinant becomes
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detð 6Dþmþ��0Þ
¼ exp

�
�ð0Þð0Þ þ 2

X
!>0

cosh

�
�

T
!

�
<ð�ð!Þð0ÞÞ

�

� exp

�
2i
X
!>0

sinh

�
�

T
!

�
=ð�ð!Þð0ÞÞ

�
: (30)

In particular, note that the notorious phase which causes
the sign problem is given by

2
X
!>0

sinh

�
�

T
!

�
=ð�ð!Þð0ÞÞ: (31)

In the large-N limit, in expectation values of observables
with a well-defined large-N limit, the fermionic determi-
nant can be replaced by

detð 6Dþmþ��0Þ ! 1þ �ð0Þð0Þ þ X
!>0

�
2 cosh

�
�

T
!

�
<ð�ð!Þð0Þ

�
þ 2i sinh

�
�

T
!

�
=ð�ð!Þð0ÞÞÞ: (32)

We want to investigate now for which observables the
imaginary part in the previous equation does not contribute
and can be dropped.

The free energy in the confining (hadronic) phase is

saturated by �ð0Þð�Þ, which is real, so obviously there is
no sign problem in this case: only configurations with zero
winding number contribute to the free energy. A more

interesting case is the deconfining phase. The imaginary
part in Eq. (32) drops once we insert it into Eq. (17),
because the Yang-Mills vacuum is invariant under

charge-conjugation (h�ð!Þð0ÞiYM is real).
Let us consider now observables which are Wilson loops

of arbitrary shape with generic winding number !0. At the
first leading fermionic contribution,

hOð!0Þi ¼ hOð!0ÞiYM þ 2
X1

!¼�1
exp

�
�

T
!

�
hOð!0Þ�ð!Þð� ¼ 0Þic;YM

¼ hOð!0ÞiYM þ 2
X1

!¼�1
cosh

�
�

T
!

�
h<Oð!0Þ<�ð!Þð� ¼ 0Þic;YM

� 2
X1

!¼�1
sinh

�
�

T
!

�
h=Oð!0Þ=�ð!Þð� ¼ 0Þic;YM: (33)

In the confining phase and for Wilson loops with no
winding !0 ¼ 0, only �ð0Þð�Þ, which is real, contributes
because of center symmetry. In the deconfined phase, the
imaginary part of the determinant generally contributes.

However it is clear that the imaginary part of the deter-
minant couples only to the imaginary (or C-odd) part of

Oð!0Þ. If one consider only the C-even part, then the imagi-
nary part of the determinant decouples from any generic
connected expectation value (in both phases), thanks to the
C invariance of the YM vacuum:

h<O
ð!0

1
Þ

1 � � �<Oð!0
nÞ

n ic
¼ h<O

ð!0
1
Þ

1 � � �<Oð!0
nÞ

n ic;YM þ 2
X1

!¼�1
cosh

�
�

T
!

�

� h<O
ð!0

1
Þ

1 . . .<Oð!0
nÞ

n <�ð!Þð� ¼ 0Þic;YM: (34)

The phase of the determinant decouples from<Oð!0Þ at the
leading fermionic contribution, which is the first sublead-
ing contribution in 1=N. The sign problem is therefore a

1=N2 effect for <Oð!0Þ.
In the confining phase only, the imaginary part of the

determinant decouples also from the loop Oð0Þ with zero

winding number, since only the sector with zero winding
contributes (because of center symmetry), and this is
�-independent:

hOð0Þ
1 � � �Oð0Þ

n ic ¼ hOð0Þ
1 � � �Oð0Þ

n ic;YM
þ 2hOð0Þ

1 � � �Oð0Þ
n �ð0Þð� ¼ 0Þic;YM: (35)

Summarizing, the sign problem does not exist at the
leading fermionic contribution in 1=N for a class of ob-
servables which include real parts of Wilson loops with any
winding in both phases, and Wilson loops with no winding
in the confining phase only.

LARGE-N EQUIVALENCE BETWEEN BARYON
AND ISOSPIN CHEMICAL POTENTIALS

Let us consider an SUðNÞ gauge theory with two
identical massive flavors. Let us assign the same
chemical potential � to both flavors (‘‘baryon chemical
potential’’). After an integration of the Fermi fields, we
obtain a square of the single-flavor fermionic determinant,

ðdetð 6Dþmþ��0ÞÞ2: (36)
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In the worldline formalism, implementing two identical
flavors is achieved, with respect to the single flavor, by the
assignment

expð�ð�ÞÞ ! expð2�ð�ÞÞ: (37)

Alternatively, one can assign a chemical potential� to one
flavor and a chemical potential �� to the other flavor
(‘‘isospin chemical potential’’). In this case, we obtain a
product of fermionic determinants,

ðdetð 6Dþmþ��0ÞÞðdetð 6Dþm���0ÞÞ; (38)

resulting in

expð�ð�ÞÞ ! expð�ð�Þ þ �ð��ÞÞ: (39)

It has recently been argued [6,8] that the above two theo-
ries are planar-equivalent in the hadronic and deconfining
phases. This means that a common sector of observables
exits in the two theories, such that all the connected ex-
pectation values of such observables are identical in the
large-N limit in the two theories. An earlier perturbative
argument in favor of the equivalence was given in Ref. [4].
The equivalence and its breaking at smaller N are also
supported by a recent numerical lattice simulation [13].
Considering an isospin chemical potential instead

of a baryon chemical potential amounts to dropping the
imaginary part of the determinant (32) at the leading non-
trivial order in 1=N. Indeed, the fermionic determinant
of a two-flavor theory with a baryon chemical potential is
given by

ðdetð 6Dþmþ��0ÞÞ2 ! 1þ 2�ð0Þð0Þ þ 2
X
!>0

�
2 cosh

�
�

T
!

�
<ð�ð!Þð0ÞÞ þ 2i sinhð�

T
!Þ=ð�ð!Þð0ÞÞ

�
; (40)

while the fermionic determinant of a two-flavor theory with an isospin chemical potential is given by

detð 6Dþmþ��0Þ detð 6Dþm���0Þ ! 1þ 2�ð0Þð0Þ þ 2
X
!>0

�
2 cosh

�
�

T
!

�
<ð�ð!Þð0ÞÞ

�
: (41)

Therefore, all the observables analyzed in the previous

section which decouple from the imaginary part of the

determinant with baryonic chemical potential belong to

the common sector. Put differently, the common sector of

the two theories includes gluonic C-even operators. For

these operators, the sign problem is a subleading effect—

they do not couple to the phase of the fermionic determi-

nant (which exists only for the theory with a baryon

chemical potential) at the leading fermionic contribution.

In addition to these C-even operators, there exist other

quantities which belong to the common sector; for ex-

ample, the charge density which is obtained by differenti-

ating the free energy with respect to the chemical potential.

Obviously, derivatives with respect to � of quantities

which belong to the common sector also belong to the

common sector.
The outcome of the above analysis is that in the large-N

limit of QCD, in a limited part of the phase diagram and for
certain operators, it is justified to replace the theory with a
baryon chemical potential by a theory with an isospin
chemical potential.

DISCUSSION

In this paper, we focused on the large-N limit of a QCD
theory with a chemical potential.

Let us discuss what happens when we introduce higher
1=N corrections. The simplest case is the free energy in the
hadronic phase,

F=T ¼ FYM=T � log

�X1
k¼0

1

k!

X1
l¼�1

exp

�
�

T
lN

�

�h�ð!1Þ�ð!2Þ:::�ð!kÞi
�

(42)

with !1 þ!2 þ :::þ!k ¼ lN, where l is an integer.
Namely, for a given k, one has to consider all the partitions
of N, 2N, 3N and so on. These configurations contribute to
the free energy and lead to a nontrivial � dependence
[14,15]. For this reason, our conclusions about the
large-N theory cannot apply for the finite-N theory.
Another important issue is the sign problem at finite

N. At infinite N, for C-even observables, only the real
part of � contributes; hence, exp� is positive, and the
measure is positive-definite. This is not the case at finite
N, and the sign problem is severe.
The main result of our paper is a field-theory under-

standing of the planar equivalence between the theory with
a baryon chemical potential and the theory with an isospin
chemical potential. It is now clear why it is useful to carry
out lattice simulations using an isospin chemical potential:
there is a limit of QCD (the large-N limit) where this
procedure is justified. At finite N, and, in particular, for
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SUð3Þ, we expect an error of 1=N in general, and an error
of 1=N2 for purely gluonic C-even observables.

Among future directions of investigation, we would like
to mention planar equivalence with SOðNÞ theories and
theories with adjoint matter. It is straightforward to gen-
eralize our discussion to these cases.
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