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Using the superfield formalism and implementing the canonical noncommutativity, the Kählerian

effective superpotential is evaluated in the three-dimensional noncommutative supersymmetric Chern-

Simons–matter model at the two-loop order. The computation of the Kählerian effective superpotential is

enough to determine whether the model can exhibit spontaneous (super)symmetry breaking. It is shown

that the model possesses a spontaneous gauge symmetry broken phase, generating masses for the scalar

and gauge superfields at the two-loop order. Just as for the commutative version, in the noncommutative

case, the supersymmetry cannot be broken by radiative corrections via the Coleman-Weinberg

mechanism.
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I. INTRODUCTION

In the 40s of the last century, Heisenberg suggested that
an uncertainty principle in space-time coordinates should
improve the ultraviolet behavior of quantum field theories.
Inspired by this idea, the first paper on noncommutative
field theory (NCFT) was published in 1947 [1], but due to
the success of renormalization theory, this idea was for-
gotten until the 90s. We can say that there are two facts
responsible for the increasing interest in such theories. The
first is related to the discovery that the noncommutative
Yang-Mills theory arises as a low energy limit of a string
theory [2]. The second motivation is related to ‘‘space-time
foam,’’ i.e., the idea that at the Planck length order
(10�33 cm), space-time loses its continuum structure and
should involve quantum fluctuations of topology and ge-
ometry [3]. The formulation of an NCFTwould be a simple
way to implement these ideas.

There are several ways to implement the noncommutativ-
ity of space-time coordinates in a field theory, but apparently
all of them share one remarkable characteristic, the so-called
UV/IRmixing [4], that is, a transmutation of the original UV
divergence in the ordinary theory to an IR-divergent behavior
in its noncommutative extension. This dangerous UV/IR
mixing can invalidate the perturbative expansion. A way to
avoid this issue is to work with less UV-divergent theories,
suggesting supersymmetric models. It is well-known that
supersymmetry improves the ultraviolet behavior of the
models, and in many cases, makes the theories finite (see,
e.g., Refs. [5–8]). This improvement is due to cancellations
between bosonic and fermionic parts of higher-order diver-
gences present in a supergraph. The supersymmetric non-
commutative models are less susceptible to have UV/IR
mixing, being natural candidates for a consistent NCFT [9].

The noncommutativity of space-time coordinates can be
expressed by

½x�; x�� ¼ i���; (1)

where ��� is an antisymmetric constant (canonical non-
commutativity) matrix, which is suggested to be of the
order of l2P, with lP the Planck length. In contrast to a
constant matrix, one could consider��� as an independent
quantity having a canonical conjugate momentum (see, for
instance, Refs. [10,11]) or a dynamical noncommutativity
as discussed in Ref. [12].
We can implement the noncommutativity to a field

theory replacing the ordinary product by the Moyal one,
denoted by a �, where the Moyal product between two
fields is given by

�1ðxÞ ��2ðxÞ ¼ �1ðxÞ exp
�
� i

2
@Q��

�� ~@�

�
�2ðxÞ; (2)

which has the important property

Z
dDx�1ðxÞ ��2ðxÞ � . . . ��nðxÞ

¼
Z

dDx�1ðxÞ�2ðxÞ � . . . ��nðxÞ; (3)

from which we can see that, in particular, the kinetic part of
an action is unaffected. Therefore, in this approach, all
information about the noncommutativity of space-time
coordinates comes from the interaction terms.
Gauge theories are of great interest in physics, and

noncommutative extensions of ordinary gauge theories
were widely studied in several aspects, both in four
[13–17] and lower dimensions of space-time [18–23]. In
particular, one aspect which has not been contemplated in
earlier works is the generation of mass by radiative cor-
rections in three dimensions. Recently, three-dimensional
supersymmetric gauge models have attracted some
attention because they are candidates for describing M2
branes [24,25]; in particular, several aspects of supersym-
metric Chern-Simons–matter models have been studied
[26–29].*andrelehum@ect.ufrn.br
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In this work, we investigate some perturbative aspects of
the noncommutative N ¼ 1 supersymmetric Chern-
Simons–matter model (NCSCSM) in three-dimensional
space-time. We have used the superfield formalism be-
cause it is a more convenient way to perform Feynman
graphs in supersymmetric theories. It keeps the supersym-
metry manifest in all stages of the calculations, avoiding
potential problems in the renormalization procedure, e.g.,
the lacking of a supersymmetric renormalization presented
in Ref. [30] is not a problem when supergraph techniques
are used [21].

This article is organized as follows. In Sec. II, we present
the model and compute the propagators in a convenient
approximation. In Sec. III, we evaluate the Kählerian
effective superpotential up to two-loop order, studying its
vacuum properties. In Sec. IV, we present our final
remarks.

II. NONCOMMUTATIVE SUPERSYMMETRIC
CHERN-SIMONS–MATTER MODEL

The NCSCSM is defined through the action

S ¼
Z

d5z

�
� 1

2
�� �W� � ig

12
f��;��g� �D���

� g2

24
f��;��g� � f��;��g� � 1

2
r� �� � r��

� �ð �� ��Þ2� þGFþ FP

�
; (4)

where �� is the gauge superpotential, r� ¼ ðD� � ig��Þ
is the gauge supercovariant derivative,D� ¼ @� þ i��@��

is the supersymmetric covariant derivative, and W� is the
covariant field strength given by

W� ¼ 1

2
D�D��� � ig

2
½��;D�����

� g2

6
½��; f��;��g���:

The signature is ð�;þ;þÞ, and we are using the notations
and conventions of Ref. [31].
This model exhibits spontaneous gauge symmetry

breaking in the presence of a mass term to the scalar

superfield [32]. Without a mass term
R
d5zm �� ��, the

model defined by Eq. (4) does not exhibit spontaneous
gauge symmetry (nor supersymmetry) breaking at the
classical level. To verify if quantum corrections can change
this feature, it is enough to evaluate the effective Kählerian
superpotential [27–29,33]. To do this, let us dislocate the

scalar superfields� and �� by the constant classical super-
field ’ ¼ �1 � �2�2 as follows

� ! 1ffiffiffi
2

p ð�1 þ ’þ i�2Þ;

� ! 1ffiffiffi
2

p ð�1 þ ’� i�2Þ;
(5)

where we assume h�i ¼ h ��i ¼ ’ffiffi
2

p and h�1i ¼ h�2i ¼ 0

in all orders in perturbation theory.
Rewriting the action (4) in terms of real quantum super-

fields �1 and �2 using the above statement, we obtain

S ¼
Z

d5z

�
� 1

2
�� �W� � ig

12
f��;��g� �D��� � g2

24
f��;��g� � f��;��g� þ 1

2
�1ðD2 � 3�’2Þ�1

þ 1

2
�2ðD2 � �’2Þ�2 þD2’�1 þ 1

2
’D2’þ i

g

4
ð½�1; D

��1�� � �� þ ½�2; D
��2�� � ��

þ if�2; D
��1g� � �� � if�1; D

��2g� � �� þ 2iD�’���2 � 2i’D��2��Þ � g2

4
’2�� � �� � g2

2
’�1 � �� � ��

� g2

4
ð�1 ��1 þ�2 ��2 þ i½�1;�2��Þ � �� � �� � �

4
ð�1 ��1Þ2� � �

4
ð�2 ��2Þ2� � ��1 ��1 ��2 ��2

þ �

2
ð�1 ��2Þ2� � �’�1 � ð�1 ��1 þ�2 ��2Þ � �’3�1 � �

4
’4 þ 1

2	

�
D��� þ 	

2
g’�2

�
2

þ �C

�
D2 þ 	

4
g2’2

�
Cþ 	

8
g2’ �C � f�1; Cg� � i

	

8
g2’ �C � ½�2; C��

�
; (6)

where the last line is the Fadeev-Popov term related to the R	 gauge fixing.
The quadratic part of the action for the quantum superfields can be written as

S2 ¼
Z

d5z

�
� 1

2
�� �W� � g2

4
’2�� � �� þ 1

2	
ðD���Þ2 þ 1

2
�1ðD2 � 3�’2Þ�1 þ 1

2
�2

�
D2 �

�
�� 	

4
g2
�
’2

�
�2

þ �C

�
D2 þ 	

4
g2’2

�
Cþ ðinteraction termsÞ

�
; (7)

from which the free propagators of the interacting fields of the model are derived as
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hT�1ðk; �Þ�1ð�k; �0Þi ¼ �i
D2 �M1

k2 þM2
1


ð2Þð�� �0Þ;

hT�2ðk; �Þ�2ð�k; �0Þi ¼ �i
D2 �M2

k2 þM2
2


ð2Þð�� �0Þ;

hT��ðk; �Þ��ð�k; �0Þi ¼ � i

2

�ðD2 �MAÞD2D�D�

k2ðk2 þM2
AÞ

� 	
ðD2 � 	MAÞD2D�D�

k2ðk2 þ 	2M2
AÞ

�

� 
ð2Þð�� �0Þ; (8)

where in the supersymmetric Landau gauge 	 ¼ 0, the
‘‘masses’’ are

M1 ¼ 3�’2; MA ¼ g2’2

2
; M2 ¼ �’2: (9)

It is well-known that the effective potential is a gauge-
dependent quantity, as discussed by Jackiw in Ref. [34].
We have chosen to work in the supersymmetric Landau
gauge for simplicity.

The physical masses are obtained from Eq. (9), evaluat-
ing them in the minimum of the effective potential which
will be calculated in the next section. Note that M2 is a
gauge-dependent quantity, Eq. (7), just as in the usual
Higgs model. Therefore,�2 becomes a nonphysical degree
of freedom. This degree of freedom was absorbed by the
gauge superfield, appearing as a massive pole in the gauge
superfield propagator, Eq. (8).

III. EVALUATION OF THE EFFECTIVE
SUPERPOTENTIAL

The effective potential is an important approach to
understand the quantum behavior of physical systems
through classical concepts, being a very natural way to
argue about spontaneous symmetry breaking. In particular,
for supersymmetric theories, it is enough to compute the
Kählerian effective superpotential to see whether a model
is passive in exhibiting spontaneous (super)symmetry
breaking [27,33].

In the Kählerian approximation [35], the classical effec-
tive action is

�ð0Þ ¼ �
Z

d5z
�

4
’4: (10)

The one-loop contribution to the noncommutative effec-
tive Kählerian superpotential is just the trace of the super-
determinant, which is given by

�ð1Þ ¼ i

2
Tr ln½D2 þM1� þ i

2
Tr ln½D2 þM2�

þ i

2
Tr ln

�
� i

2
@�� þ C�

�

2
D2 þ C�

�MA

�
: (11)

Proceeding as in Ref. [35], the one-loop contribution to the
effective action is

�ð1Þ ¼ 1

16�

Z
d5z

�
10�2’4 þ g4’4

4

�
: (12)

Up to the one-loop order, there is no change in the phase
structure of this model, moreover up to this order, the
noncommutativity of space-time has no influence over
the superpotential. The two-loop diagrams have logarith-
mic UV divergences, and it is known that, from commu-
tative cases [27–29,36–38], at this order, there is a
modification in the phase structure of the model.
Evaluating the two-loop diagrams depicted in Figs. 1

and 2 (see Appendix B for details) and considering the
small noncommutativity limit � � 1 (actually suggesting
�� l2P, with lP being the Plank length), after summing up
all contributions (i.e., tree, one-loop, and two-loop contri-
butions), the noncommutative Kählerian effective super-
potential, � ¼ �R

d5zKeff , can be written as

Keff ¼
�
�

4
þ fð�; g; �Þ

�
’4 þ e’4 ln

’2

�
þ hðg; �Þ

�2’4

þ C’4 þOð�Þ; (13)

where � is a mass scale introduced by the renormalization
by dimensional reduction [39], C is a counterterm,
fð�; g; 1=�Þ is a function of the coupling constants, and

  (b) (c)  (a)

(d) (e) (f)

FIG. 1. UV-finite two-loop diagrams which contribute to the
effective action. Continuous lines represent the �1 propagator,
dashed lines the �2 propagator, and wavy lines the gauge
superpotential propagator.

(a) (c) (d)(b)

(f)(e) (g)

FIG. 2. UV logarithmically divergent graphs. These diagrams
are the ones responsible for introducing the mass scale which
spontaneously breaks the gauge invariance of the model.
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� ¼ ðD� 3Þ, hðg; �Þ is a function of the coupling constants,
e ¼ a1g

6 þ a2g
4�þ a2g

4�þ a3g
2�2 þ a4�

3, with the ai
numerical factors.

The UV divergences expressed in terms of 1=� appear-
ing in the above equation can be removed through the
following renormalization condition:

@Keff

@’

��������’¼v
¼ 0; (14)

where v is the renormalization mass scale. Such a condi-
tion is equivalent to imposing the vanishing of the tadpole
equation.

Solving Eq. (14) for C and substituting it back into
Eq. (13), we obtain the following renormalized noncom-
mutative Kählerian effective superpotential:

Keff ¼ e’4

�
1

2
� ln

’2

v2

�
þ hð�; gÞð’8 þ v8Þ

�2v8’4
þOð�Þ;

(15)

which obviously has a minimum at ’ ¼ �v due to
Eq. (14).

The existence of a minimum for the Kählerian super-
potential is enough to ensure that this model does not
exhibit spontaneous supersymmetry breaking by the
Coleman-Weinberg mechanism [27–29]. Once the mini-
mum of Keff is located at ’ ¼ �v, we observe a sponta-
neous generation of mass in the supersymmetric phase for

matter and gauge superfields, M1 ¼ 3�v2 and MA ¼ g2v2

2 ,

with the mass ratio M1

MA
¼ 6�

g2
. The masses M1 and MA are

obtained from Eq. (9), computing them in the minimum of
the Keff , i.e., j’j ¼ v. As usual, in the Higgs mechanism,
the Goldstone (super) boson becomes a fictitious field, and
its degree of freedom is absorbed by the gauge superfield,
due to generation of mass.

An interesting feature is the presence of a singularity in
the limit� ! 0, with which the commutative limit of such
a model breaks up. Such a singularity, caused by a UV/IR
mixing present in the vacuum diagrams, also appears for
the Wess-Zumino model discussed in Ref. [35].

IV. CONCLUDING REMARKS

In this work, using the superfield formalism, we inves-
tigated some perturbative aspects of the NCSCSM in three
space-time dimensions. We computed the noncommutative
Kälerian effective superpotential in the small noncommu-
tativity limit, i.e., � � 1, at the two-loop order, showing
that the gauge symmetry of the model is spontaneously
broken, generating masses for the matter and gauge super-
fields via the Coleman-Weinberg mechanism, while super-
symmetry remains manifest. This result is in agreement
with the commutative versions of the present model
[27,28].

An interesting issue is the presence of a term containing
a factor of 1=�, which has a singularity in the commutative

limit, � ! 0, revealing a type of UV/IR mixing. The
presence of a such term seems to be intrinsic to vacuum
diagrams used to evaluate the effective superpotential and
is also present in the three-dimensional Wess-Zumino
model [35,40].
Noncommutative non-Abelian extensions of present

work should share the same properties of the noncommu-
tative Abelian model studied here. One interesting question
is what about more supersymmetric (e.g., N ¼ 2) ver-
sions of this model? In fact, such work is currently in
progress. Another possible extension would be searching
for supersymmetry breaking, using techniques developed
by Helayel-Neto et al. [41], both in commutative and
noncommutative versions of the supersymmetric Chern-
Simons–matter model.
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APPENDIX A: NONCOMMUTATIVE VERTICES

The noncommutative vertices are characterized by the
presence of noncommutative phases. In this appendix, we
write the important vertices to evaluate the diagrams drawn
in the Figs. 1 and 2. We do not consider the Faddeev-Popov
vertices and diagrams involving Faddeev-Popov ghosts
because they decouple from the other fields in our choice
of gauge, 	 ¼ 0. The index of the vertex is related to the
label of the vertex picture drawn in Fig. 3. In momentum
space, the noncommutative vertices can be written as

Va ¼ ��

4
e�i½k2^ðk3þk4Þþk3^k4��1ðk1Þ�1ðk2Þ�1ðk3Þ�1ðk4Þ;

(A1)

Vb ¼ ��

4
e�i½k2^ðk3þk4Þþk3^k4��2ðk1Þ�2ðk2Þ�2ðk3Þ�2ðk4Þ;

(A2)

Vc ¼ �

2
eik4^ðk2þk3Þ½2i sinðk2 ^ k3Þ

� e�ik2^k3��1ðk1Þ�1ðk2Þ�2ðk3Þ�2ðk4Þ; (A3)

Vd ¼ �g2

4
e�i½k2^ðk3þk4Þþk3^k4��1ðk1Þ�1ðk2Þ��ðk3Þ��ðk4Þ;

(A4)

Ve ¼ �g2

4
e�i½k2^ðk3þk4Þþk3^k4��2ðk1Þ�2ðk2Þ��ðk3Þ��ðk4Þ;

(A5)

Vf ¼ �g

2
sinðk3 ^ k2Þ�1ðk1ÞD��1ðk2Þ��ðk3Þ; (A6)
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Vg ¼ �g

2
sinðk3 ^ k2Þ�2ðk1ÞD��2ðk2Þ��ðk3Þ; (A7)

Vh ¼ �g

2
cosðk2 ^ k3Þ½�2ðk2ÞD��1ðk1Þ��ðk3Þ

��1ðk1ÞD��2ðk2Þ��ðk3Þ�; (A8)

Vi ¼ ��’e�ik2^k3�1ðk1Þ�1ðk2Þ�1ðk3Þ; (A9)

Vj ¼ ��’e�ik2^k3�2ðk1Þ�2ðk2Þ�1ðk3Þ; (A10)

Vk ¼ �g2

2
’e�ik2^k3�1ðk1Þ��ðk2Þ��ðk3Þ; (A11)

Vl ¼ �g

3
sinðk3 ^ k2Þ��ðk1Þ��ðk2ÞD���ðk3Þ; (A12)

Vm ¼ g2

6
sinðk4 ^ k3Þ sin½k2 ^ ðk3 þ k4Þ���ðk1Þ

� ��ðk2Þ��ðk3Þ��ðk4Þ: (A13)

APPENDIX B: EVALUATION OF THE
FEYNMAN GRAPHS

The UV-finite Feynman diagrams which contribute to
the two-loop order of the effective action are drawn in
Fig. 1. To evaluate the D-algebra of two-loop diagrams,
we have used SUSYMATH [42]. These contributions are
given by

�1a ¼ �

4

Z
d5z

Z d3k

ð2�Þ3
d3q

ð2�Þ3
2þ e�2ik^q

ðk2 þM2
1Þðq2 þM2

1Þ
;

(B1)

�1b ¼ �

2

Z
d5z

Z d3k

ð2�Þ3
d3q

ð2�Þ3
e2iq^k

ðk2 þM2
1Þðq2 þM2

1Þ
;

(B2)

�1c ¼ �

4

Z
d5z

Z d3k

ð2�Þ3
d3q

ð2�Þ3
2þ e�2ik^q

ðk2 þM2
2Þðq2 þM2

2Þ
;

(B3)

�1d ¼ g2

4

Z
d5z

Z d3k

ð2�Þ3
d3q

ð2�Þ3
1

ðk2 þM2
1Þðq2 þM2

AÞ
;

(B4)

�1e ¼ g2

4

Z
d5z

Z d3k

ð2�Þ3
d3q

ð2�Þ3
1

ðk2 þM2
2Þðq2 þM2

AÞ
;

(B5)

�1f ¼ g2

2

Z
d5z

Z d3k

ð2�Þ3
d3q

ð2�Þ3
sin2ðq ^ kÞ

ðk2 þM2
AÞðq2 þM2

AÞ
:

(B6)

The contribution to the effective action which comes
from the logarithmically divergent diagrams is

�2a ¼ 27�2
Z

d5z’4
Z d3k

ð2�Þ3
d3q

ð2�Þ3

� e�ik^q cosðk ^ qÞ
ðk2 þM2

1Þðq2 þM2
1Þ½ðkþ qÞ2 þM2

1�
; (B7)

�2b ¼ � 3g2

16

Z
d5z’4

Z d3k

ð2�Þ3
d3q

ð2�Þ3

� sin2ðq ^ kÞð12�2 þ �g2Þ
ðk2 þM2

1Þðq2 þM2
AÞ½ðkþ qÞ2 þM2

1�
; (B8)

�2c ¼ 3�2
Z

d5z’4
Z d3k

ð2�Þ3
d3q

ð2�Þ3

� e�ik^q cosðk ^ qÞ
ðk2 þM2

2Þðq2 þM2
2Þ½ðkþ qÞ2 þM2

1�
; (B9)

1

2

3

4

(a)

1

2

3

4

(b)

1

2

3

4

(c)

1

2

3

4

(d)

1

2

3

(f)

1

2

3

(g)

1

2

3

(i)

1

2

3

(j)

1
2

3

(k)

1
2

3

(l)

1

2

3

4

(m)

1

2

3

(h)

1

2

3

4

(e)

FIG. 3. Noncommutative vertices.

NONCOMMUTATIVE SUPERSYMMETRIC CHERN–SIMONS- . . . PHYSICAL REVIEW D 85, 125020 (2012)

125020-5



�2d ¼ � g2

8

Z
d5z’4

Z d3k

ð2�Þ3
d3q

ð2�Þ3

� sin2ðq ^ kÞð2�2 þ �g2Þ
ðk2 þM2

2Þðq2 þM2
AÞ½ðkþ qÞ2 þM2

2�
; (B10)

�2e ¼�g2

8

Z
d5z’2

Z d3k

ð2�Þ3
d3q

ð2�Þ3

� e�ik^q cosðk^qÞ
ðk2þM2

AÞðq2þM2
AÞ½ðkþqÞ2þM2

1�
�
�
2MAþM1þM1M

2
A

k �q
k2q2

þMAðk �qÞ
�
1

k2
þ 1

q2

��
;

(B11)

�2f ¼ � g2

72

Z
d5z

Z d3k

ð2�Þ3
d3q

ð2�Þ3

� sin2ðk ^ qÞ
ðk2 þM2

AÞðq2 þM2
AÞ½ðkþ qÞ2 þM2

A�

�
�
4M2

Aq
2

ðkþ qÞ2 þ
3M2

Aq
2ðk � qÞ

k2ðkþ qÞ2 þ 7M2
Aðk � qÞ
k2

� M2
A

ðkþ qÞ2 ½ðk � qÞ þ k2� � 2ðk � qÞ

� 2ðq2 þM2
AÞ �M2

A

�
; (B12)

�2g ¼ �g2

8

Z
d5z

Z d3k

ð2�Þ3
d3q

ð2�Þ3

� cos2ðk ^ qÞ
ðk2 þM2

1Þðq2 þM2
2Þ½ðkþ qÞ2 þM2

A�
�

�
MA

ðkþ qÞ2 ½ð3M1 � 2M2Þq2 þ ðM1 � 3M2Þk2�

þ 4MA

k � q
ðkþ qÞ2 ðM2 �M1Þ þ 4M1M2

þMAðM1 þM2Þ þ 2ðk2 þ q2Þ
�
: (B13)

Considering the noncommutativity matrix ��� ¼
�0���, in the limit of small noncommutativity, all dia-

grams result in similar integrals to those evaluated in
Ref. [35]. Summing up all contributions, i.e., tree, one-
loop, and two-loop contributions, the Kälerian effective
superpotential can be written as

Keff ¼
�
�

4
þ fð�; g; �Þ

�
’4 þ e’4 ln

’2

�
þ hðg; �Þ

�2’4

þ C’4 þOð�Þ; (B14)

where � is a mass scale introduced by the renormalization
by dimensional reduction [39], C is a counterterm,
fð�; g; 1=�Þ is a function of the coupling constants, and
� ¼ ðD� 3Þ,hðg; �Þ is a function of the coupling constants,
e ¼ a1g

6 þ a2g
4�þ a2g

4�þ a3g
2�2 þ a4�

3, with the ai
numerical factors.
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