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The renormalization group procedure for effective particles in the front form of Hamiltonian dynamics

is applied to an elementary quantum field theory for two species of particles mixed through a masslike

interaction term. The model interaction generates only finite terms and the procedure yields a whole

family of equivalent effective theories. The exact solution for the family is found without involvement of

the vacuum state in the dynamics. A physical spectrum is obtained at the end of the procedure in the form

of free particles with definite masses. Since the procedure is designed in general terms, it could be used for

the purpose of constructing effective dynamics also in other theories than the elementary model.
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I. INTRODUCTION

The renormalization group procedure for effective par-
ticles (RGPEP) [1] in the front form (FF) of Hamiltonian
dynamics [2] is designed for application in solving relativ-
istic quantum field theories. In realistic theories, where
nonperturbative solutions of the RGPEP equations are
hard to find, the equations can be initially solved only
order by order in a perturbative expansion [3] or after
making other drastic simplifications of unknown accuracy.
This article describes instead an application of the RGPEP
to an elementary but instructive model of a quantum field
theory in four dimensions which is soluble exactly. The
model exhibits a nonperturbative scale evolution of a mass
matrix for effective particles and shows how the RGPEP
can deal with the quantum vacuum problem [4]. The final
result of the RGPEP in the model is a free theory of the
particles whose masses appear in the exact eigenvalues of
the initial Hamiltonian.

The article begins with a brief summary of the RGPEP.
The procedure defines a whole family of equivalent
Hamiltonians that are labeled by a renormalization group
parameter s. This means that a Hamiltonian is written in
terms of different creation and annihilation operators for
every value of s, but the coefficients of products of these
operators also evolve with s so that the Hamiltonian as an
operator is not changed. A need for such design can be seen
in the context of QCD, where a canonical formulation
starts with the bare quanta of quark and gluon fields whose
local interactions are capable of producing violent energy
changes among virtual, intermediate states during the time
development of quantum systems. On the other hand, the
same theory is expected to provide a precise relativistic
description of the hadrons whose spectrum is classified
using the constituent quarks, i.e., effective particles
meant to be soft in their interactions. The design of
RGPEP is tuned for application to solving quantum field
theories so that different degrees of freedom, such as the
high-energy partonlike quanta for very small s and

low-energy constituentlike quanta for s approaching had-
ronic size in QCD, can be continuously transformed into
each other as alternatives for conveniently describing vari-
ous physical phenomena in one theory. In addition to
quoting earlier literature, several details of how the
RGPEP can serve the general purpose are illustrated in
the article using an exact solution of an elementary model.
The model is defined starting from a classical

Lagrangian density for two real scalar fields � and �
with masses � and �, respectively. The only interaction
term added is of the form m2��. Canonical FF quantiza-
tion leads to the Hamiltonian P� that properly counts the
FF free energy, p� ¼ p0 � p3, for particles with masses�
and � and changes them into each other at the rate implied
by the parameter m in the mass-mixing term. The bare
vacuum state j0i is an eigenstate of P� with an eigen-
value 0. The RGPEP transforms creation and annihilation
operators for bare particles of masses � and � into opera-
tors for effective particles of masses that depend on the
parameter s. The dependence is found in a simple analytic
form. In the limit s ! 1, the masses of effective particles
become equal to the eigenvalues of the mass matrix in the
model. These eigenvalues appear in the spectrum of the
Hamiltonian. The vacuum state j0i is not involved in
the RGPEP evolution of operators as functions of s.
The elementary example thus demonstrates that the

RGPEP approach considerably differs from the standard
canonical approach. In particular, the RGPEP does not
encounter the vacuum problem that was pointed out by
Dirac as a general drawback of standard formulations of
quantum field theory [4]. In the elementary model, the
standard formulation could be defined by first quantizing
the free fields� and � and then adding the interaction term
due to the mass mixing. Such approach would suffer from
vacuum divergences because the quantum mass-mixing
interaction term creates pairs of bare particles from a
bare vacuum. Particles in the pairs may have arbitrary large
relative momentum. Therefore, the states resulting from
action of the Hamiltonian could not belong to the Hilbert
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space; they have infinite norms. One would have to
introduce a cutoff on the momenta to make the norm finite.
Any such cutoff would violate the Lorentz symmetry.
Similar features lead to questions concerning existence of
the Schrödinger picture in all physically important relativ-
istic quantum field theories [4]. One would have to adjust
the standard quantization procedure to the size of the mass-
mixing interaction term in order to avoid the vacuum
problem. Unfortunately, when interactions get more com-
plicated, it is not known exactly what to do with interac-
tions that produce a complex vacuum. In contrast, the
RGPEP is capable of solving the elementary model
entirely in the Schrödinger picture. This result is obtained
in a quantum theory in which the strength of the mass-
mixing term is a free parameter, i.e., there is no need for
adjusting the quantization procedure to the interaction
term. The elementary example thus supports the idea that
the RGPEP is a tool worth trying also in application to
more complex theories, where the vacuum problem is so
difficult that it has so far not been resolved by available
methods.

Since the RGPEP involves basic elements of the canonical
field quantization [5,6] and renormalization of Hamiltonians
by techniques other than integrating out high-energy degrees
of freedom [7,8], the elementary model application is de-
scribed including all details needed to make the presentation
self-contained. Besides the FF of Hamiltonian dynamics, the
description often refers to the commonly used form of
dynamics, designated the instant form (IF) by Dirac [2].

Section II briefly introduces the RGPEP. The elementary
example is defined in Sec. III. Section IV describes solu-
tion of the RGPEP equations. The vacuum problem is
discussed in Sec. V. Section VI concludes the article. The
Appendix describes derivation of the same physical solu-
tion but obtained using an alternative RGPEP generator to
the one used in the main text.

II. SUMMARY OF RGPEP

The concept of effective particles as degrees of freedom
in a relativistic quantum field theory is introduced through
a transformation [3]

c s ¼ Usc 0U
y
s : (1)

c s is a quantum field operator built from creation and
annihilation operators for effective particles of size s.
These creation and annihilation operators are commonly
denoted by qs. The operator c 0 is the field operator built
from the particle operators q0 that correspond to the bare,
pointlike particles, and s ¼ 0. By definition, all kinemati-
cal quantum numbers that label operators q on both sides
of Eq. (1), such as a three-momentum, charge, spin, iso-
spin, flavor, color, and the like, are not altered by Us.

The intuitive interpretation of parameter s in terms of a
size of the effective particles in the elementary model will
be explained later. It is based on the general RGPEP feature

that effective interactions contain the form factors that
limit how far off energy shell the interactions can extend.
The corresponding energy width of the form factors is
determined by 1=s (see below). The value s ¼ 0 corre-
sponds to absence of form factors. For a finite s, the
effective Hamiltonian is band diagonal on the energy scale
and the bandwidth is �1=s. The principle of using the
band-diagonal structure for the purpose of renormalization
is formulated in [9]. It is convenient to use the parameter
t ¼ s4 and label operators with t rather than s itself.
A canonical Hamiltonian density is built from products

of fields c 0 and their derivatives. A corresponding
Hamiltonian is obtained by integrating the density over a
space-time hyper-surface. The result is a polynomial
H 0ðq0Þ with coefficients c0. If a term inH 0ðq0Þ contains
a product of n operators q0, the coefficient has n argu-
ments. Each argument is a set of quantum numbers carried
by a corresponding particle. Similarly, an effective-particle
Hamiltonian H tðqtÞ is defined through its coefficients ct.
The RGPEP employs the equality

H tðqtÞ ¼ H 0ðq0Þ; (2)

which means that the same dynamics is expressed in terms
of different operators. The change of q0 to qt is accom-
panied with the change of coefficients c0 to ct so that the
physics is not changed. For example, the expansion of
eigenstates of the Hamiltonian into the t-dependent Fock
components involves the wave functions that depend on t,
but the states as a whole do not depend on t at all.
Variation of the coefficients ct with t is described by the

equation obtained by differentiating both sides of

H tðq0Þ ¼ Uy
t H 0ðq0ÞUt; (3)

with respect to t. One obtains

H 0
tðq0Þ ¼ ½Gtðq0Þ;H tðq0Þ�; (4)

where Gt ¼ �Uy
t U0

t is called a generator.
Correspondingly,

Ut ¼ T exp

�
�
Z t

0
d�G�

�
; (5)

where T orders operators from left to right in the order
from a smallest to largest t.
In the RGPEP, the generator is defined by

Gt ¼ ½H f;H Pt�: (6)

The operator H f, called the free Hamiltonian, is the part

ofH 0ðq0Þ that does not depend on the coupling constants,
H f ¼

X
i

p�
i q

y
0iq0i: (7)

The sum over subscript i extends over all particle species
and their quantum numbers, including integration over
momenta, and
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p�
i ¼ p?2

i þm2
i

pþ
i

: (8)

This is the FF free energy of a particle with mass mi and
kinematical momentum components pþ

i and p?
i . The op-

eratorH Pt is defined using the HamiltonianH t. Namely,
if H tðq0Þ is of the form

H tðq0Þ ¼
X1
n¼2

X
i1;i2;...;in

ctði1; . . . ; inÞqy0i1 � � �q0in ; (9)

where the coefficients ctði1; . . . ; inÞ are to be found using
RGPEP, the operator H Ptðq0Þ is defined by

H Ptðq0Þ¼
X1
n¼2

X
i1;i2;...;in

ctði1; . . . ; inÞ
�
1

2

Xn
k¼1

pþ
ik

�
2
qy0i1 ���q0in :

(10)

This means thatH Pt differs fromH t by multiplication of
each and every term by a square of a total þ momentum
involved in a term. The motivation for this definition of
H Pt is explained in Refs. [1,3] and exemplified below in
the elementary model in Sec. IVB. Generally, the reason
for multiplication by a square of a total þ momentum
involved in a term is to recover 7 kinematical symmetries
of the FF of Hamiltonian dynamics. Without the multi-
plication, the generator would depend on the frame of
reference and consequently the effective-particle dynamics
would also depend on the frame of reference.

In summary, the coefficients ct of products of operators
qt in the effective HamiltoniansH tðqtÞ are solutions of the
equation

H 0
t ¼ ½½H f;H Pt�;H t�; (11)

where all operators are written as polynomials in q0 and the
initial condition is provided by a regulated canonical
Hamiltonian with counterterms.

The counterterms are calculated in the RGPEP using a
condition that for finite t the coefficients ct with finite
arguments do not depend on the regularization parameters
used in the canonical Hamiltonian [9]. The difficulty of
satisfying the cutoff-independence condition for ct origi-
nates in the fact that the coefficients appear in the solution
forH tðqtÞwhile the counterterms are inserted in the initial
conditionH 0ðq0Þ and in-between there is a solution of the
RGPEP that spans the range from 0 to t. However, there is
no special difficulty associated with the counterterms in the
example discussed below because the coefficients ct with
finite arguments do not develop any dependence on regu-
larization in the model and solutions for them are known
exactly. Therefore, the adjustment of counterterms in the
model only amounts to specifying their finite parts. These
parts form the initial mass matrix. The only regularization
dependence in the example appears in one overall constant
term in H t, which is a pure number and drops out from
Eq. (11).

The generic feature of narrowness of H t as t increases
can be seen by introducing a projector R on a subspace in
the Fock space. Let H R ¼ RH tR. The corresponding
projected equation reads (for details, see Appendix C
in [1])

H 0
R ¼ ½½H f;H PR�;H R�: (12)

The free Hamiltonian H f commutes with R. The matrix

version of Eq. (12) resembles the Wegner flow equation
introduced in the IF of dynamics for Hamiltonians in
condensed matter physics [10–12]. Similar equations are
also successfully used in nuclear physics [13–15]. In rela-
tivistic quantum field theories, a narrow matrix must be
obtained from Eq. (12) for large t because the trace ofH 2

R

does not depend on t and thus [1]�X
mn

jH Imnj2
�0 ¼�2

X
km

ðM2
km�M2

mkÞ2jH Ikmj2�0; (13)

where Mkm denotes an invariant mass of the particles in a
state labeled with k that are connected through the inter-
action H I to the particles in a state labeled by m. The
interaction Hamiltonian is defined by H I ¼ H �H f

and the matrix elements H mn ¼ hmjH jni are evaluated
in the basis built from eigenstates jmi of H f. Equation

(13) means that the sum of moduli squared of all matrix
elements of the interaction Hamiltonian decreases as t
increases until all off-diagonal matrix elements of the
interaction Hamiltonian between states with different free
invariant masses vanish. For a sizable value of s, the width
of the narrow invariant-mass band in H R is s�1.

III. MODEL HAMILTONIAN

Let a theory of two real scalar fields � and � have a
classical Lagrangian density

L¼ 1
2½ð@�Þ2��2�2�þ 1

2½ð@�Þ2��2�2��m2��: (14)

The last term is called the mass-mixing term.

A. Classical Hamiltonian

In terms of the variables x� ¼ x0 � x3 and x? ¼
ðx1; x2Þ used to label points in space-time, so that @� ¼
2@=@x�, the Lagrangian density reads

L ¼ 1
2½@þ�@��� ð@?�Þ2 ��2�2�
þ 1

2½@þ�@��� ð@?�Þ2 � �2�2� �m2��: (15)

The FF of dynamics involves the four-momentum [16,17]

P� ¼ 1

2

Z
dx�d2x?T þ�ðxÞ; (16)

where the energy-momentum tensor density component
relevant for constructing the model Hamiltonian is

T þ�ðxÞ ¼ @þ�@��þ @þ�@��� 2L: (17)
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Hence,

P� ¼ 1

2

Z
dx�d2x?½ð@?�Þ2 þ�2�2 þ ð@?�Þ2

þ �2�2 þ 2m2���: (18)

B. Quantization

Let the fields � and � at xþ ¼ 0 have the Fourier
decompositions [18]

�ðx�; x?Þ ¼
Z
½p�ape�ipx; (19)

�ðx�; x?Þ ¼
Z
½p�bpe�ipx; (20)

where ½p� denotes the measure dpþd2p?=½2jpþjð2�Þ3� of
integration over momentum variables pþ ¼ p0 þ p3 and
p? ¼ ðp1; p2Þ. In this notation, the integration over mo-
mentum variables extends from �1 to þ1 for all three
components of p (a need for a cutoff on the range of p is
still ignored at this point). Quantum theory is obtained by
imposing commutation relations

½ap; aq� ¼ ½bp; bq� ¼ 2pþð2�Þ3�3ðpþ qÞ: (21)

The absence of y in the commutation relations is intended,
since it is the sign of pþ that distinguishes the operators
that create field quanta from operators that annihilate them.
Such kinematical distinction between creation and annihi-
lation processes is not available in the standard, IF ap-
proaches. The ‘‘annihilation’’ operators with negative pþ
correspond to creation operators and one has

a�p ¼ ayp; (22)

b�p ¼ byp: (23)

Note that these relations involve the change of sign of p?.
After quantization, the classical fields � and � are

turned into operators that create and annihilate quanta on

the front hyperplane, �̂ and �̂. The commutation relations
of Eq. (21) correspond to the spatial commutation relations

½�̂ðxÞ; @þ�̂ðyÞ� ¼ ½�̂ðxÞ; @þ�̂ðyÞ� ¼ i�3ðx� yÞ: (24)

The inverse relations are

ap ¼ jpþj
Z

d3xeþipx�̂ðxÞ; (25)

bp ¼ jpþj
Z

d3xeþipx�̂ðxÞ; (26)

where d3x ¼ dx�d2x? and integrals extend from �1 to
þ1 on the xþ ¼ 0 hyperplane (the behavior of fields in
spatial infinity remains unspecified at this point).

C. Quantum Hamiltonian

The quantum Hamiltonian is obtained from Eq. (18) by

inserting operator versions of Eqs. (19) and (20) for �̂ and
�̂, respectively, and by normal ordering,

P� ¼ 1

2

Z
dx�d2x?:½ð@?�̂Þ2 þ�2�̂2 þ ð@?�̂Þ2

þ �2�̂2 þ 2m2�̂ �̂�:: (27)

The normal ordering is defined using Feynman’s conven-
tion [19] with the ordering parameter set equal to pþ. In
this convention, it is understood that operators ap are

ordered in products according to the value of pþ so that
the greater pþ the further to the right the operator.
All terms in the Hamiltonian are bilinear in fields and all

of them contain one and the same integral

Z
dx�d2x?

Z
½qp�e�iqx�ipx ¼

Z
½qp�2ð2�Þ3�3ðqþ pÞ:

(28)

According to Eq. (27),

P� ¼ 1

2

Z
½p� 1

jpþj :½ðp
?2 þ�2Þapa�p

þ ðp?2 þ �2Þbpb�p þ 2m2apb�p�:: (29)

The normal ordering produces the operator that properly
counts the FF energy of field quanta,

P� ¼
Z
½p��ðpþÞ

�
p?2 þ�2

pþ aypap þ p?2 þ �2

pþ bypbp

þ m2

pþ ðaypbp þ bypapÞ
�
: (30)

The last term describes the mixing of bare particles of type
a associated with field� and of type b associated with field
�. From now on, the function �ðpþÞ is included in the
integration measure ½p�.
The diverging number that is removed by the FF normal

ordering in P�,

�� ¼ 2ð2�Þ3�3ð0Þ
Z
½p�ðp?2 þ�2=2þ �2=2Þ; (31)

involves factors VF ¼ 2ð2�Þ3�3ð0Þ and 	� ¼ R½p�ðp?2 þ
�2=2þ �2=2Þ. Factor VF has an interpretation of a volume
of the front that a Hamiltonian density is integrated
over. Factor 	� is associated with a ground-state energy,
cf. [20–24]. As a number, �� does not contribute to the
commutators in Eq. (11) and it is not included in the
RGPEP discussion in the next section. However, regarding
application of the RGPEP to more complex theories, one
should remember that the vacuum issue is not limited in
them to a constant such as ��, cf. [25,26].
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IV. SOLUTION OF THE RGPEP EQUATION

According to Sec. II, Eq. (11) has the form

P�0
t ¼ ½½P�

f ;P
�
Pt�;P�

t �; (32)

and should be solved using Eq. (30) as the initial condition,

P�
0 ða0;b0Þ¼

Z
½p�

�
p?2þ�2

pþ ay0pa0pþ
p?2þ�2

pþ by0pb0p

þm2

pþðay0pb0pþby0pa0pÞ
�
: (33)

A. Equations for coefficients ct

On the basis of direct inspection of how the RGPEP
equation works in the model and thus gained knowledge of
the operator structures that it is capable of generating, the
relevant operators can be written as

P�
t ða0; b0Þ ¼

Z
½p�½Atpa

y
0pa0p þ Btpb

y
0pb0p

þ Ctpðay0pb0p þ by0pa0pÞ�; (34)

P�
f ða0; b0Þ ¼

Z
½p�ðA0pa

y
0pa0p þ B0pb

y
0pb0pÞ; (35)

P�
Ptða0; b0Þ ¼

Z
½p�pþ2½Atpa

y
0pa0p þ Btpb

y
0pb0p

þ Ctpðay0pb0p þ by0pa0pÞ�; (36)

where the coefficients generically denoted by ct in Sec. II
read

Atp ¼ p?2 þ�2
t

pþ ; (37)

Btp ¼ p?2 þ �2
t

pþ ; (38)

Ctp ¼ m2
t

pþ : (39)

The initial conditions for these coefficients, denoted by c0
in Sec. II, are set by fixing the mass-squared parameters at
t ¼ 0,

�0 ¼ �; (40)

�0 ¼ �; (41)

m0 ¼ m; (42)

with constants �, �, and m, taken from P�
0 in Eq. (33).

These parameters include the finite parts of mass-squared
counterterms as discussed in Sec. II.
In this notation, the generator has the form

½P�
f ;P

�
Pt�¼

Z
½p�ðA0p�B0pÞpþ2Ctpðay0pb0p�by0pa0pÞ:

(43)

Equation (32) reads

P�0
t ða0; b0Þ ¼

Z
½p�½A0

tpa
y
0pa0p þ B0

tpb
y
0pb0p þ C0

tpðay0pb0p þ by0pa0pÞ� (44)

¼
Z
½p�ð�pþ2ÞðA0p�B0pÞðAtp�BtpÞCtpðay0pb0pþby0pa0pÞ (45)

þ
Z
½p�2pþ2ðA0p � B0pÞC2

tpðay0pa0p � by0pb0pÞ: (46)

By equating coefficients in front of the same bare particle
operators (or evaluating matrix elements between bare
one-particle states of types a and b), one obtains a set of
equations for the coefficients Atp, Btp, and Ctp in
P�

t ða0; b0Þ. Namely,

A0
tp ¼ 2pþ2ðA0p � B0pÞC2

tp; (47)

B0
tp ¼ �2pþ2ðA0p � B0pÞC2

tp; (48)

C0
tp ¼ ð�pþ2ÞðA0p � B0pÞðAtp � BtpÞCtp: (49)

This set contains as many triplets of equations as there are
different triplets of momentum labels p, which a priori is an
infinite number when one does not regulate the field ex-

pansions into their Fourier components by imposing cutoffs
on some discretized set of variables pþ and p?. However, it
is clear that the modes with different values of p are
decoupled. They evolve in t independently of each other.
This simplification is a consequence of the bilinear nature of
the initial Lagrangian. In addition, new generic simplifica-
tions occur thanks to the FF boost invariance of Eq. (11).

B. Generic simplification due to boost invariance

In full detail, Eqs. (47)–(49) read�
p?2 þ�2

t

pþ

�0 ¼ 2pþ2

�
p?2 þ�2

pþ � p?2 þ �2

pþ

��
m2

t

pþ

�
2
;

(50)
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�
p?2 þ �2

t

pþ

�0 ¼ �2pþ2

�
p?2 þ�2

pþ � p?2 þ �2

pþ

��
m2

t

pþ

�
2
;

(51)

�
m2

t

pþ

�0 ¼ ð�pþ2Þ
�
p?2 þ�2

pþ � p?2 þ �2

pþ

�

�
�
p?2 þ�2

t

pþ � p?2 þ �2
t

pþ

�
m2

t

pþ : (52)

It is visible that the kinematical variables pþ and p? drop
out. This feature is special to the FF of dynamics. Thus, the
a priori infinite set of different equations for infinitely
many coefficients with different kinematical variables p
actually reduces to a single set of just 3 equations for 3
mass parameters that are independent of p,

ð�2
t Þ0 ¼ 2��2ðm2

t Þ2; (53)

ð�2
t Þ0 ¼ �2��2ðm2

t Þ2; (54)

ðm2
t Þ0 ¼ ���2ð�2

t � �2
t Þm2

t ; (55)

where

��2 ¼ �2 � �2: (56)

This set can be written as a differential matrix equation,

�2
t m2

t

m2
t �2

t

" #0
¼ �2 0

0 �2

� �
;

0 m2
t

m2
t 0

� �� �
;
�2

t m2
t

m2
t �2

t

� �� �
;

(57)

for a 2� 2 matrix that will be called mass-squared matrix
below.

Note that Eq. (57) would be a Wegner-like equation if
the first matrix on the right-hand side contained �t and �t

instead of the initial mass parameters � and �. Such
change corresponds to inserting �2

t and �2
t in place of �2

and �2, respectively, in P f of Eq. (35). The resulting

Wegner-like equation for the mass-squared matrix can be
solved by proceeding in a way analogous to the one de-
scribed below. This is shown in the Appendix. The explicit
solution described in next sections is for constant masses
in H f.

C. Analytic solution for masses

One can introduce a dimensionless variable

u ¼ ��4t; (58)

and, denoting differentiation with respect to u with a
prime, one obtains Eqs. (53)–(55), in the form


0 ¼ 2�2; (59)

�0 ¼ �2�2; (60)

�0 ¼ �ð
� �Þ�; (61)

where the dimensionless functions of u are


 ¼ �2
t =��

2; (62)

� ¼ �2
t =��

2; (63)

� ¼ m2
t =��

2: (64)

If �2 ¼ �2, so that ��2 ¼ 0, the mass parameters do
not evolve with t irrespective of the initial value of
mass-mixing parameter m. It is assumed from now on
that �2 > �2, so that ��2 > 0.
Regarding the mass degeneracy in the initial theories,

one should observe that in order to trigger an RGPEP
evolution towards a solution when initially � ¼ �, one
has to introduce an artificial splitting of masses in H f.

For example, such splitting is needed in the case of local
theories with massless bare particles and chiral symmetry.
Two other physically important cases in which the mass
degeneracy and its minimal lifting may play important
roles as far as an application of RGPEP is concerned, are
neutrinos in electroweak interactions and u and d quarks
in QCD.
Equations (59) and (60) imply that the sum 
þ � as a

function of u is a constant. This constant, denoted by T ¼
T=��2, results from the constancy of a trace of the mass-
squared matrix, T ¼ m2

1 þm2
2, wherem

2
1 andm

2
2 denote its

eigenvalues. The remaining coupled set of equations reads

�0 ¼ 4�2; (65)

�0 ¼ ���; (66)

where � ¼ 
� �. Multiplying the first of these two equa-
tions by 2� and the second by 2�, one arrives at

�20 ¼ 8��2; (67)

�20 ¼ �2��2; (68)

and concludes that

2 ¼ �2 þ 4�2 (69)

does not depend on u. In fact,

2 ¼ T 2 � 4D; (70)

where D ¼ D=��4 and D is the determinant of the mass-
squared matrix. Hence, 2 ¼ ðm2

1 �m2
2Þ2=��4. Using the

constant , one can eliminate �2 from Eq. (67) to obtain

�0 ¼ 2 � �2; (71)

which is an ordinary differential equation. Since the dif-
ference between eigenvalues of a Hermitian 2� 2 matrix
is never smaller than the difference between its diagonal
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matrix elements, one always has �0 > 0 except when
� ¼  and the mass-squared matrix is diagonalized.
Without any loss of generality, one can assume  > 0.

Integrations of Eqs. (71) and then (66) produce solutions
for the elements of mass-squared matrix as functions of t,

�2
t ¼ 1

2ð�2 þ �2Þ þ 1
2��

2
t ; (72)

�2
t ¼ 1

2ð�2 þ �2Þ � 1
2��

2
t ; (73)

��2
t ¼ ��2 coshxt þ  sinhxt

coshxt þ �1 sinhxt
; (74)

m2
t ¼ m2 1

coshxt þ �1 sinhxt
; (75)

where xt ¼ ��2�m2t. Note that  ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2m2=��2Þ2p

.
For t ! 1, one obtains

�21 ¼ m2
1; (76)

�21 ¼ m2
2; (77)

m21 ¼ 0: (78)

These results mean that the RGPEP eventually produces a
Hamiltonian for the two new species of particles of types 1
and 2 that are free, i.e., they no longer mix due to inter-
actions, and their masses squared are given by the eigen-
values m2

1 and m2
2 of the initial mass-squared matrix.

D. Effective particles

The result of RGPEP is a family of Hamiltonians Pt ¼
P tðat; btÞ for t 	 0, which is obtained from P tða0; b0Þ in
Eq. (34) by replacement of a0p and b0p by atp and btp,

respectively. The effective-particle operators are obtained
from Eq. (1). Namely,

atp ¼ Uta0pU
y
t ; (79)

btp ¼ Utb0pU
y
t ; (80)

where Ut is given in Eq. (5) as a solution of

U0
t ¼ �Ut½P�

f ;P
�
Pt�: (81)

The generator, i.e., the commutator on the right-hand side
of Eq. (81), is given in Eq. (43). Using results of the
previous section, the generator can be written as

½P�
f ;P

�
Pt� ¼ ��2m2

t

Z
½p�ðay0pb0p � by0pa0pÞ: (82)

Boost invariance of the RGPEP thus yields the generator
that is a product of a function of t times a constant operator.
The t-ordered exponential in Eq. (5) is

Ut ¼ expð’tAÞ; (83)

where

’t ¼ ���2
Z t

0
m2

�d� (84)

¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
þ 1

� 1

s
� arctanext

ffiffiffiffiffiffiffiffiffiffiffiffi
þ 1

� 1

s
; (85)

A ¼
Z
½k�ðay0kb0k � by0ka0kÞ: (86)

The effective-particle operators atp and btp are obtained

from the formula

qtp ¼ e’tAq0pe
�’tA (87)

with q ¼ a and q ¼ b, respectively, using

½A; a0p� ¼ �b0p; (88)

½A; b0p� ¼ a0p: (89)

Suppose there exists a combination

q0p ¼ a0p þ z1b0p; (90)

for which one has

½A; q0p� ¼ z2q0p; (91)

where z1 and z2 are some complex numbers. This is
possible when z1 ¼ z2 ¼ �i and

e’tAq0p�e�’tA ¼ e�i’tq0p�: (92)

where q0p� ¼ a0p � ib0p. Knowing that

a0p ¼ 1
2ðq0pþ þ q0p�Þ; (93)

b0p ¼ �i

2
ðq0pþ � q0p�Þ; (94)

one obtains

atp ¼ cos’ta0p � sin’tb0p; (95)

btp ¼ sin’ta0p þ cos’tb0p; (96)

and the inverse relations

a0p ¼ cos’tatp þ sin’tbtp; (97)

b0p ¼ � sin’tatp þ cos’tbtp: (98)

Equations (95) and (96) provide explicit definitions of
annihilation operators for effective particles corresponding
to the RGPEP parameter t ¼ s4. The corresponding rela-
tions for creation operators are obtained by Hermitian
conjugation.

E. Interpretation of s as the effective-particle size

The interpretation of parameter s as a size of effective
particles requires explanation in the context of our mass-
mixing model because the mass-mixing interaction does
not change any three-momentum that could be an argu-
ment of a form factor whose width might be related to a
concept of a particle size. However, in more advanced
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theories, interactions change an invariant mass of the in-
teracting particles when their relative momenta change. To
be specific, consider a fermion of mass mf that emits a

boson of massmb. The associated change of invariant-mass
squared is

M2
fb;f ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f þ k2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

b þ k2
q �

2 �m2
f: (99)

The exponential factor of the type expð�s4M4
fb;fÞ be-

comes exp½�ð2skÞ4� for large k. This is the origin of
interpreting the parameter s as a size of effective particles
in complex theories. Namely, only particles with small size
s can interact producing a large momentum k, cf. [18].

In the mass-mixing model, there is no change of relative
three-momentum involved. Instead, the interaction
strength m2

t in Eq. (75) is limited in strength roughly by
expð���2�m2s4Þ. The change of interaction strength
comes solely from the change of a particle mass.
Therefore, the role of the effective-particle size parameter
s is reduced to taming changes in the mass. The pointlike,
bare particles at s ¼ 0 can change mass through a mass-
mixing interaction by arbitrary amounts that are introduced
in the initial P�. But the effective particles of large s can
change mass only by amounts not exceeding 1=s, as if the
motion of their constituents could not involve a large
excitation without breaking them apart. Thus, when s is
large, the effective particles can only change their masses
by small amounts. Eventually, when s ! 1, they cannot
change mass at all, which means that they do not interact
through a mass-mixing term at all (see Sec. IVG below). In
any case, the RGPEP suggests that mass mixing in low-
energy effective theories should be small. Realistic effec-
tive theories appear to share this feature.

F. Constancy of the Hamiltonian

The effective Hamiltonian, P�
t ¼ P�

t ðat; btÞ, is ob-
tained from P�

t ða0; b0Þ in Eq. (34) by replacing a0p and

b0p in the latter by atp and btp. The result is

P�
t ¼

Z
½p�½Atpa

y
tpatpþBtpb

y
tpbtpþCtpðaytpbtpþbytpatpÞ�;

(100)

where the coefficients Atp, Btp, and Ctp are given in

Eqs. (37)–(39), respectively, and the mass parameters in
them are given in Eqs. (72), (73), and (75). Using Eqs. (95)
and (96), one obtains

P�
t ¼ P�

0 þ
Z
½p�

�
��2

pþ ay0pa0p þ
��2

pþ by0pb0p

þ�m2

pþ ðay0pb0p þ by0pa0pÞ
�
; (101)

where

��2 ¼ �2
t c

2 þ �2
t s

2 þ 2m2
t cs��2; (102)

��2 ¼ �2
t s

2 þ �2
t c

2 � 2m2
t cs� �2; (103)

�m2 ¼ �ð�2
t � �2

t Þcsþm2
t ðc2 � s2Þ �m2; (104)

s ¼ sin’t, and c ¼ cos’t. Direct inspection demonstrates
that ��2 ¼ ��2 ¼ �m2 ¼ 0 for all values of t in the
range from 0 to 1, which means that the operators P�

t ¼
P�

t ðat; btÞ and P�
0 ¼ P�

0 ða0; b0Þ are the same for all

values of t.

G. Spectrum of the theory

The initial Hamiltonian, P�
0 in Eq. (33), is transformed

as a result of the RGPEP to P�
t in Eq. (100). At the same

time, the RGPEP secures equality P�
t ¼ P�

0 , as shown in

Sec. IV F. Since the eigenvalues and eigenstates of P�
0 and

P�
t are identical, one can derive them using any value of t

one wishes. The simplest to discuss is the case of t ! 1,
because in this case there is no mass mixing, m1 ¼ 0. The
mixing vanishes in the limit t ! 1 provided that initially
� � �. This is assumed in what follows. The case of
� ¼ � is addressed near the end of this section.
The effective theory with t ¼ 1 is a free theory, with a

correspondingly simple spectrum. Details of the spectrum
are described below for two reasons. One reason is the
completeness of the article. The other reason is a prepara-
tion for the discussion in Sec. V concerning the ground
state, or vacuum. Simplicity of the RGPEP illustrated here
is contrasted with complexity of other approaches there.
In the limit of t ! 1,

P �1ða1; b1Þ ¼
Z
½p�

�
p?2 þ�21

pþ ay1pa1p

þ p?2 þ �21
pþ by1pb1p

�
; (105)

where

a1p ¼ cos’1a0p � sin’1b0p; (106)

b1p ¼ sin’1a0p þ cos’1b0p; (107)

and the angle ’1 is

’1 ¼ � arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
� 1

þ 1

s
: (108)

Note that this angle is the same as the one in Eq. (A10) that
results from solving RGPEP equations with a different
generator in the Appendix.
Eigenvalues of the Hamiltonian in Eq. (105) are free

energies of n11 particles of mass m1 and n12 particles
of mass m2, each with some momentum components pþ
and p?,
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P�
fp1i;i¼1;...;n11g;fp2j;j¼1;...;n12g ¼

Xn11

i¼1

p?2
1i þm2

1

pþ
1i

þ Xn12

j¼1

p?2
2j þm2

2

pþ
2j

: (109)

The spectrum is degenerate. The eigenstates can be closely
identified because the RGPEP provides expressions for the
operators a1 and b1. A complete set of eigenstates (not
normalized) is defined by writing

jfp1i; i ¼ 1; . . . ; n11g; fp2j; j ¼ 1; . . . ; n12gi

¼ Yn11

i¼1

ay1p1i

Yn12

j¼1

by1p2j
j0i; (110)

where j0i denotes the vacuum state. The vacuum state is
annihilated by all annihilation operators of all particles for
all values of t and one can treat j0i as one and the same
state for all values of the parameter t ¼ s4.

Since the creation operators ay1p and by1p are given by

linear combinations of ay0p and by0p implied by Eqs. (106)

and (107) through Hermitian conjugation, the eigenstates
defined in Eq. (110) can also be written as combinations of
states created from the same vacuum state by products of

the operators ay0p and by0p with the corresponding mo-

menta. The total number of particles in every resulting
component of an eigenstate is the same. However, an
eigenstate with definite numbers n11 and n12 of effective
particles with t ¼ 1 corresponds to a combination of states
with varying numbers of initial particles, n01 and n02, that
satisfy the condition n01 þ n02 ¼ n11 þ n12. If the total
number of particles is large, a simple state of effective
particles with t ¼ 1 is a complex mixture of many states
made of bare particles corresponding to t ¼ 0.

When � ¼ �, the RGPEP does not change the particle
operators, since the generator is zero. On the other hand, it
is clear that a nonzero mixing term m2 causes the eigen-
vectors of mass-squared matrix in a classical Lagrangian to
be definite combinations of the initial basis vectors. In the
quantum theory, in order to generate a solution using the
RGPEP, one may introduce a small artificial difference
between the initial masses. When the initial mass degen-
eracy corresponds to symmetry, the small artificial differ-
ence that breaks the degeneracy breaks also the symmetry.
The RGPEP can be said to use consequences of such small
breaking to finesse quantum symmetry-breaking solutions.

In summary, the RGPEP produces the spectrum in a
simple way. However, the simplicity is to some extent
deceptive because the RGPEP allows one to ignore ques-
tions concerning the vacuum state j0i. The next section
discusses this issue.

V. THE VACUUM PROBLEM

The vacuum problem appears in the quantization of
fields [4–6]. One starts with quantizing a free classical
theory. This renders a quantum theory of noninteracting
particles in terms of a free Hamiltonian H0. Interaction
terms are added to H0 in the form of HI. The latter can be
constructed by starting from local products of classical
fields multiplied by coupling constants and replacing the
classical fields with the quantized ones. The vacuum prob-
lem becomes apparent when one attempts to solve the
eigenvalue problem for H ¼ H0 þHI. The problem is
that HI takes eigenstates of H0 out of the Hilbert space.
In particular, the ground state of the free theory, denoted by
j0i, is changed by HI to a state with an infinite norm. The
situation is further discussed below using the mass-mixing
example, in which the vacuum problem appears in a similar
way as in the model used by Dirac to discuss the vacuum
problem [4].

A. Vacuum problem due to mass mixing

The parameter m2 in the mixing term in the Lagrangian
of Eq. (14) is treated as a coupling constant. Settingm ¼ 0,
one obtains a Lagrangian density of a free theory,

L0 ¼ 1
2½ð@�Þ2 ��2�2� þ 1

2½ð@�Þ2 � �2�2�: (111)

The IF quantization of a free theory is well known and
nothing new is said here about it except for stressing one
aspect that concerns the vacuum. Namely, when one eval-
uatesH0 ¼

R
d3xH 0, where the Hamiltonian densityH 0

is canonically obtained from L0, the terms that involve
products of two creation or two annihilation operators all
cancel out, as desired. This happens because of the free-
energy formulas, E2

aðpÞ ¼ �2 þ p2 and E2
bðpÞ ¼ �2 þ p2,

that are used in defining the time derivatives, or canonical
momenta for the field variables. These energy formulas
produce the desired cancellations in the sum of terms

involving �2
�,

~r�2, and �2�2, and similarly for �2
�,

~r�2, and �2�2. The resulting H0 in the IF of dynamics
has the form

H0ða0; b0Þ ¼
Z
½p�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ p2

q
ay0pa0p

þ
Z
½p�b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ p2

q
by0pb0p: (112)

The integration measures obtain the subscripts a and
b because of the energies in their denominators. The non-

zero commutation relations are ½a0p; ay0q� ¼ 2EaðpÞ�
ð2�Þ3�3ð ~p� ~qÞ and ½b0p; by0q� ¼ 2EbðpÞð2�Þ3�3ð ~p� ~qÞ.
Possible additional quantum numbers can be ignored here.
An infinite constant �0 has been removed by the IF

normal ordering, analogous to the constant �� removed
from the FF Hamiltonian P�, see Eqs. (30) and (31). The
constant�0 can be subtracted this way [4,27], or it can also

RENORMALIZATION GROUP PROCEDURE FOR EFFECTIVE . . . PHYSICAL REVIEW D 85, 125018 (2012)

125018-9



be included in variational estimates of the ground-state
energy when interaction terms are taken into account
[20,21].

In a theory set up this way, the IF vacuum problem
emerges in the model due to the interaction term,

HI ¼
Z

d3xm2�� (113)

¼
Z d3p

ð2�Þ3
m2

4EaEb

ðay0pby0�pþay0pb0p

þby0pa0pþa0pb0�pÞ: (114)

The result of action of HI on the vacuum state is

HIj0i ¼
Z d3p

ð2�Þ3
m2

4EaEb

ay0pb
y
0�pj0i: (115)

This state has an infinite norm. The infinity occurs
through two factors. One factor is the volume of space in
which the states with definite three-momentum are
normalized. In the case of a state in Eq. (115), the three-
momentum is zero. Another source of infinity is the inte-
gral over all momentum labels p. This divergence results
from the infinite number of momentum scales in the theory.

Acting on the state in Eq. (115) with HI again also
generates infinity. Multiple action of HI creates further
infinities. For example, the infinities appear in action of
the evolution operator U ¼ expð�iHtÞ on j0i, since U
involves all powers of HI [4].

If states of the theory are built starting from j0i, the
mixing operator HI creates infinities in all of them.
Removal of the infinities requires a cutoff on the range of
momentum p in the Fourier expansions of fields � and �.
However, every cutoff on the momentum range in a theory
violates the Lorentz symmetry [4]. One has to redesign the
quantization procedure in the example in order to recover
the quantum theory that was straightforwardly found as a
solution using the RGPEP in previous sections.

On the one hand, it is known in the elementary model
what needs to be done to solve it. On the other hand, one
can look at the model as sharing some basic features with
theories in which a more complex HI is added to H0 and it
is not known how to deal with the vacuum problem in them
beyond perturbation theory. Therefore, the model is of
interest as a potential source of ideas about how to use
the RGPEP to try to work around the vacuum problem in
complex theories and attempt to break through the barriers
that this problem poses in general.

B. General scope of vacuum problems

Dirac pointed out that problems with vacuum may re-
quire a reinterpretation of quantum field theory [4]. He
argued for such reinterpretation in the case of QED.
Similar divergences occur in the vacuum problem of
QCD but they cannot be as easily worked around as
Dirac suggested for QED [26].

One reason is that the coupling constant in QCD is much
larger than in QED. The QED coupling constant is so small
that one can use very large cutoffs in diverging terms in
perturbation theory and still does not need to worry about
the Lorentz-symmetry violation in practice. In QCD,
where the coupling constant is much larger than in QED,
the cutoffs would have to be much smaller than in QED in
order to exclude large terms in perturbation theory. But
much smaller cutoffs on j ~pj could lead to effects that
violate the Lorentz symmetry much stronger. Asymptotic
freedom enables perturbative calculations in QCD but does
not solve the vacuum problem. The other reason is the need
for explaining spontaneous chiral symmetry breaking
[28,29] for which a nontrivial vacuum structure is seen as
the origin. The third reason is the desire to explain con-
finement. Confinement is often associated in the literature
with a concept of a complex ground state. In any case, the
ground state of QCD still awaits a construction. More
generally, questions concerning a ground state, spontane-
ous symmetry breaking, and mass generation are of con-
cern in the present standard model and theories trying to
explain its origin. A famous ambiguity involved in the
vacuum concept is the vacuum energy density, which can
be seen as relevant to cosmology [30,31].
In the FF of Hamiltonian dynamics, the vacuum problem

does not appear in the same way as in the IF. For example,
the vacuum problem in the FF version of QCD can be
formulated as a renormalization group problem for
Hamiltonians [26]. Using the RGPEP, one can also envi-
sion a scenario for solving the canonical FF of QCD in
which the effects commonly associated with a gluon con-
densate in vacuum [32] may actually originate in an analo-
gous expectation value but merely in the gluon medium
that exists only inside the volume of a hadron, rather than
in the entire space [1]. Discussions of the idea that con-
densate parameters may actually correspond to expectation
values of operators in the medium present inside hadrons,
instead of the entire space, are available in [33–36], in-
cluding implications for cosmology.
The scope of vacuum problems is broad enough to

suggest that the features that enable RGPEP to work
around the vacuum problem and produce an exact quantum
solution in the elementary example should be identified.
This is done in the next section.

C. RGPEP path around the vacuum

The general features that enable RGPEP to circumvent
the vacuum problem and still produce a relativistic solution
in the model stem from the FF of Hamiltonian dynamics.
The key properties of the FF are the positivity of pþ and
boost invariance. The RGPEP takes advantage of these
properties in the design of its generator.
The positivity of pþ results from the assumption that for

a free particle of an arbitrary mass �> 0 one can write for
arbitrary three-momentum ~p that
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pþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ~p2

q
þ pz 	 0: (116)

Thus, one assumes in the FF of quantum dynamics that a
creation operator for a particle may only carry positive pþ
as a label. This feature is summarized in Eqs. (22) and (23)
in Sec. III B.

Positivity of pþ in Eq. (116) implies that the classical,
translation-invariant mass-mixing interaction term in
Eq. (18),

P�
I ¼

Z
dx�d2x?m2��; (117)

results in the quantum interaction operator in Eq. (33),

P�
I ¼

Z
½p��ðpþÞm

2

pþ ðay0pb0p þ by0pa0pÞ; (118)

which does not contain any terms of the type aypby�p and
apb�p that appear in Eq. (114) for HI in the IF of quantum

dynamics. Such terms are excluded because both pþ and
�pþ in them are required to be positive. This is not
possible for particles of a finite mass in the presence of a
cutoff on p ¼ j ~pj, as is visible in Eq. (116), no matter how
large such cutoff is. Note also that the FF integration
measure ½p� does not depend on the mass � used in the
condition (116).

When the cutoff on j ~pj can be made arbitrarily large, one
can have boost invariance in practice in an arbitrarily large
range of momenta provided that the theory respects the
symmetry [26]. This is the case at s ¼ 0 in the RGPEP. In
order to maintain the Lorentz symmetry in an effective
theory, the sliding cutoff parameter � ¼ 1=s emerges in the
RGPEP through its equations. They are so designed that
the sliding cutoff is not limiting j ~pj of individual particles.
Instead, the effective-theory cutoff limits only the changes
of invariant mass caused by interactions. The mass is
invariant with respect to all 7 FF kinematical symmetries,
including boost invariance.

The boost invariance is secured by design of the RGPEP
generator in Eq. (6). The commutator guarantees that only
connected interactions are generated. The total transverse
momenta of interacting particles before and after an inter-
action cancel each other in the arguments of resulting
vertex form factors. Spectators do not contribute to these
arguments. The multiplication by a total þ momentum
squared of interacting particles in the definition of H Pt,
Eq. (10), results in the factor pþ2 in Eq. (36). In the
absence of sensitivity to cutoffs on pþ, this factor removes
pþ from the RGPEP evolution equation entirely.
Therefore, the arguments of resulting vertex form factors
depend only on the change of invariant mass squared
among the particles that are involved in the interaction.

These features, combined with the absence of divergen-
ces due to separation of momentum modes, reduce the
RGPEP in the elementary mass-mixing model to solving
an evolution equation for particle masses as functions of

t ¼ s4. Quite generally, renormalized equations for coef-
ficients ct in H t may involve only masses, relative
momenta, coupling constants, and the parameter t. Thus,
in the elementary model, the equations involve only�2

t , �
2
t ,

mass-mixing parameter m2
t , and t itself. These equations

are independent of the particle momentum p. As a result,
the RGPEP equations render a different representation of
the same relativistic quantum theory for every value of t.
Each and every one of the effective theories derived

using the RGPEP is defined in terms of a different basis
in the space of operators acting in the Fock space. In the
mass-mixing example, the effective representations tend in
the limit of t ! 1 to a relativistic theory of free particles
with massesm1 andm2. No variation of the ground state j0i
with t is required in the procedure.

D. Standard, IF approach versus RGPEP

The comparison relies on a change of field variables in
the classical Lagrangian of Eq. (14). The new variables are
determined by diagonalization of the mass-squared matrix.
The mass terms,

�2Lmass ¼ �2�2 þ �2�2 þ 2m2��; (119)

can be written in the form of a 2� 2 matrix sandwiched
with a doublet of fields � ¼ ½�;��. Namely,

�2Lmass ¼ �yM2� (120)

¼ ½�;�� �2 m2

m2 �2

" #
�

�

" #
: (121)

The eigenvalues of matrix M2, denoted by m2
1 and m2

2

above Eq. (65) in Sec. IVC, and the corresponding eigen-
vectors, are

m2
1;2 ¼ ð�2 þ �2Þ=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 � �2Þ2=4þm4

q
; (122)

v1 ¼
cos’1
� sin’1

" #
; v2 ¼

sin’1
� cos’1

" #
; (123)

where ’1 is given in Eq. (108). Inverting the relation

� ¼ �v1 þ �v2; (124)

one can define the fields

� ¼ cos’1�� sin’1�; (125)

� ¼ sin’1�þ cos’1�: (126)

This is a unitary change of field variables. Since the terms
that involve derivatives of the fields � and � have equal
coefficients in the classical Lagrangian density of Eq. (14),
the density can be written as

L ¼ 1
2½ð@�Þ2 �m2

1�
2� þ 1

2½ð@�Þ2 �m2
2�

2�: (127)
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This classical expression can now be quantized from
scratch in the IF of dynamics.

The IF quantization involves definitions of the fields �
and � and their conjugated momenta. The quantization
leads to a theory of particles with masses m1 and m2

when one defines the quantum fields � and � and their
conjugated momenta �� and �� using energy expressions

E2
�ðpÞ ¼ m2

1 þ p2 and E2
� ðpÞ ¼ m2

2 þ p2 in defining the

time derivatives of the fields, respectively. The new energy

expressions guarantee that all terms of the type ay�pa
y
��p or

ay�pa
y
��p cancel out in the Hamiltonian. Equations (125)

and (126) imply that

a�p ¼ cos’1a0p � sin’1b0p; (128)

a�p ¼ sin’1a0p þ cos’1b0p: (129)

These relations match Eqs. (106) and (107). The matching
shows that the IF quantization of fields � and � produces
the same result as the solution obtained entirely in one
quantum theory using the RGPEP, in which there is no
need to requantize the theory due to inclusion of the mass-
mixing interaction term.

On the basis of knowing the full quantum implications
of the mass-mixing interaction term in the FF of
Hamiltonian dynamics, one can also write expressions

for the initial IF quantum fields �̂, �̂, �̂�, and �̂�, in terms

of the fields �̂, �̂ , �̂�, and �̂� , using Eq. (124) and right

energies for the time derivatives needed in �̂� and �̂� .

Substituting these expressions into a classical IF
Hamiltonian that canonically corresponds to the
Lagrangian density of Eq. (14), one obtains the IF quantum
Hamiltonian that explicitly describes the same physics as
the FF quantum Hamiltonian obtained from the RGPEP at
t ¼ 1. The vacuum-altering terms cancel out for all modes
with a finite momentum.

However, when in a more complex theory than the
elementary example some additional interaction terms
cause divergences and other effects that are difficult to
see through, the IF quantization approach may get stuck
due to lack of a right guess for the time derivatives. In
contrast, the RGPEP still indicates a direction for further
studies in realistic cases. Namely, while the free theory that
results from diagonalization of a bilinear part in a
Lagrangian density is certainly not sufficient for establish-
ing how to deal with the IF vacuum problem, the RGPEP
promises some capability to work around the vacuum
problem using the FF.

The FF Hamiltonian at t ¼ s4 ¼ 0, P�
0 , involves fields

� and �. Their conjugate ‘‘momenta,’’ �� ¼ @þ� and

�� ¼ @þ�, do not involve FF time derivatives, i.e., they do

not involve derivatives with respect to xþ. Instead, the
‘‘momenta’’ are expressed through gradients of the fields
in the front hyperplane. Rotation of the quantum fields
automatically rotates the quantum ‘‘momenta.’’

By the way, the fields � and � can be used as initial
variables also in the FF. The RGPEP provides no additional
value in such setup, since there is no interaction between
the free fields � and � . However, when more interactions
are added, nothing prevents the RGPEP from application
to the whole quantum theory using the effective-particle
operators associated with the fields � and � , instead of �
and �.
It should be mentioned that an interesting example of the

IF application of a similarity renormalization group proce-
dure in a fixed source model has been recently considered
by Jones and Perry [37]. In the fixed source model, the
interaction term is only linear in the quantum field varia-
bles, different momentum modes evolve separately, and
one obtains the well-known solution in an elegant way. The
fixed source model does not appear to suggest how to
proceed in the IF when interaction terms involve more
than one field and create a genuine vacuum problem.

VI. CONCLUSION

The case of a theory with two free fields with a mass-
mixing interaction term can be generalized to theories with
an arbitrary number n > 2 of fields and mass-mixing
terms. In such theories, the RGPEP equation describes
the evolution of a mass matrix of dimension n� n with
s. The solution tends for s ! 1 to a diagonal matrix,
whose eigenvalues provide physical masses for n species
of free particles.
Degeneracy of the mass matrix, which may correspond

to a symmetry in a theory, prevents its full diagonalization
via the RGPEP equation. In this case, an artificial infini-
tesimal breaking of the degeneracy can be introduced in
order to enable RGPEP to identify a solution in the limit
s ! 1, as the artificial breaking is being removed.
The diagonalization of the mass matrix does not corre-

spond to a minimization of a classical potential in the IF.
Instead, it corresponds to identification of the eigenmodes
in classical field oscillations. One has to use the eigen-
modes in the IF quantization procedure in order to solve a
vacuum problem in the absence of interactions other than
the mass mixing. However, when such additional interac-
tion terms, involving products of more than two fields, are
included in a theory, the IF vacuum problem can no longer
be solved using the field combinations that correspond to
eigenvectors of the mass matrix. The additional interac-
tions typically contribute to particle masses, bound states
may develop, and, as it would have to happen in the case of
confinement, the full theory eigenmodes do not even cor-
respond to the fields present in an initial Lagrangian.
The intriguing feature of the RGPEP, illustrated here in

the elementary model with a mass-mixing interaction term,
is that it applies to quantum theories via steps that are
essentially independent of the type of interaction one
grapples with, while the vacuum problem is treated in a
new way. Namely, the vacuum stays simple while the
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interaction terms evolve towards expressions in terms of
effective degrees of freedom. This feature makes the
RGPEP a deserving candidate for application to more
realistic theories than the elementary model discussed
here. It is evident from the works referenced in this article
that the RGPEP can be applied to realistic quantum field
theories. The elementary example described here is thus of
interest not only as an illustration of an exact nonperturba-
tive solution of the RGPEP equations but also as the
indicator of a difference between the options one has left
for treating vacuum problems in the IF and FF of
Hamiltonian dynamics in relativistic quantum field
theories.

APPENDIX: SOLUTION FOR H f

DEPENDENT ON t

The discussion of Eq. (57) in Sec. IVB included the case
of H f containing masses dependent on t, which yields a

2� 2 mass-squared matrix equation of the form

�2
t m2

t

m2
t �2

t

" #0
¼ �2

t 0

0 �2
t

" #
;

�2
t m2

t

m2
t �2

t

" #" #
;

�2
t m2

t

m2
t �2

t

" #" #
:

(A1)

This equation matches the Wegner equation for a
Hamiltonian matrix [10] of a two-level system. Its analytic
solution is well known but as far as the author knows it was
never considered before in the context of particle masses in
an exactly soluble quantum field theory in the FF of
dynamics.

Proceeding as in Sec. IVC, one obtains

�0 ¼ 4��2; (A2)

�0 ¼ ��2�: (A3)

Multiplying the first of these two equations by 2� and the
second by 2�, one arrives at

�20 ¼ 8�2�2; (A4)

�20 ¼ �2�2�2; (A5)

which implies the same constant 2 ¼ �2 þ 4�2 as in
Sec. IVC. After eliminating �2 from Eq. (A4),

�20 ¼ 2�2ð2 � �2Þ: (A6)

The solutions corresponding to Eqs. (74) and (75), are

��2
t ¼ ��2 extffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � 1þ e2xt
p ; (A7)

m2
t ¼ m2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � 1þ e2xt
p ; (A8)

where xt ¼ ð�m2Þ2t.
Since the generator given in Eqs. (43) and (82) is now

altered to contain the varying ��2
t instead of the constant

��2, the angle ’t given by Eq. (84) is replaced by

’t¼�
Z t

0
��2

�m
2
�d�¼1

2

�
arctan

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�1

p �arctan
eð�m2Þ2tffiffiffiffiffiffiffiffiffiffiffiffiffi
2�1

p
�
:

(A9)

This result deviates from the result in Eq. (85) for finite
values of t. The difference in the angles of rotation, ’t,
implies different combinations of operators a0p and b0p in

Eqs. (95) and (96) for the same t. This means that the
effective-particle operators at any finite t > 0 depend on
the choice of the generator, although the Hamiltonians as
operators are just one and the same operator for all values
of t and both choices of the generator. When t ! 1,
Eqs. (84) and (A9) produce the same result for ’1 for
arbitrary values of  > 1,

’1 ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
þ 1

� 1

s
� �=2 ¼ 1

2
arctan

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 1

p � �=4:

(A10)

Thus, the change in the generator from a constantH f to a

t-dependent full free part of H t does not lead to any
change in the effective particles that one obtains for
t ! 1 as a solution of the theory.
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