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We show, using strong subadditivity and Lorentz covariance, that in three-dimensional space-time the

entanglement entropy of a circle is a concave function. This implies the decrease of the coefficient of the

area term and the increase of the constant term in the entropy between the ultraviolet and infrared fixed

points. This is in accordance with recent holographic c theorems and with conjectures about the

renormalization group flow of the partition function of a three sphere (F theorem). The irreversibility

of the renormalization group flow in three dimensions would follow from the argument provided there is

an intrinsic definition for the constant term in the entropy at fixed points. We discuss the difficulties in

generalizing this result for spheres in higher dimensions.
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I. INTRODUCTION

The Zamolodchikov’s c theorem in two dimensions
shows the renormalization group flow can only connect
conformal field theories (CFT) at the ultraviolet (UV) fixed
point with higher Virasoro central charge than the CFT at
the infrared (IR) fixed point [1]. This establishes an order-
ing on the CFT in two dimensions, providing an interpre-
tation of the central charge as a measure of the field degrees
of freedom. These degrees of freedom are lost along re-
normalization flow due to the decoupling of massive
modes. Zamolodchikov’s proof is based on positivity and
covariance of the correlation functions. An alternative
proof of the same theorem based on the strong subadditi-
vity of the entanglement entropy was given in [2]. In both
cases the essential elements behind the validity of the
theorem are unitarity and relativistic symmetry of quantum
field theory (QFT).

Along the years much work and progress has been made
to find different c functions with monotonic behavior under
the renormalization group (RG) flow in higher dimensions.
An interesting proposal for even space-time dimensions is
to identify the monotonous quantity with the coefficient of
the Euler term in the trace anomaly [3]. This has received
much support from explicit examples [4] as well as from
investigations based on the general properties of QFT [5].
This anomaly coefficient has also an expression in terms of
the entanglement entropy as the coefficient of the logarith-
mic term in the entropy of spheres in even dimensions [6–9].

Recently, several c theorems where obtained holograph-
ically [8,10,11]. For even dimensions they give support to
the monotonic running of the above mentioned anomaly
coefficient. See [12] for further developments. For odd
space-time dimensions, where the trace anomaly is absent,
Myers and Sinha proposed the constant term in the entan-
glement entropy of a sphere as the relevant c function [11]

(see also [8,13]). They find this term changes monotoni-
cally along the renormalization group flow in holographic
theories by connecting this property to the null energy
condition in the AdS-CFT context.
In an apparently unrelated work, it was recently discov-

ered that the free energy F ¼ � logZ on a three sphere in
certain supersymmetric theories decreases under the renor-
malization group transformations [14]. This property was
called F theorem, and conjectured to be valid for any three-
dimensional theory. This conjecture has been further
checked in several models [15]. The partition function on
the three sphere and the entanglement entropy of the circle
for conformal theories where shown to be proportional in
[9] (see also [16]), thus establishing a connection between
the F theorem and the monotonous running of the finite
part of the circle entanglement entropy.
In this paper we extend the analysis of [2] to the case of

circles in d ¼ 2 spatial dimensions. We consider the com-
bined constraints imposed by strong subadditive inequality
(SSA) and Lorentz invariance to the entropy. In contrast to
the one-dimensional case, here we need to consider the
SSA inequalities involving an arbitrarily large number of
circles. This is necessary in order to obtain circles at both
sides of the inequalities in the limit of large number of
regions. We find the entropy of circles in 2þ 1 dimensions
have a concave entropy. This implies the constant term
increases from the UV to the IR fixed points. In more
dimensions a better understanding of the structure of di-
vergent terms for nonsmooth entangling surfaces is neces-
sary to generalize the three-dimensional construction.
The plan of the paper is as follows. In the next section we

review the entropic form of the c theorem in 1þ 1 dimen-
sions. In Sec. III we introduce an inequality for the entan-
glement entropy of an arbitrary number of regions which
follows from SSA. In Sec. IV we show the entanglement
entropy of circles in 2þ 1 dimensions is a concave func-
tion of the radius. An attempt to generalize this calculation
to any dimensions is given in Sec. V. Finally, in Sec. VI we
end with some discussion.
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II. INTERVALS IN TWO-DIMENSIONAL
SPACE-TIME

The strong subadditive inequality (SSA) for the entan-
glement entropy of spatial regions A and B write

SðAÞ þ SðBÞ � SðA \ BÞ þ SðA [ BÞ: (1)

Consider two boosted intervals A and B in 1þ 1 dimen-
sions with end points located on a light cone as shown in
Fig. 1. Applying SSA to the spatial regions in the dashed
line in Fig. 1 we have

SðXYÞ þ SðYZÞ � SðYÞ þ SðXYZÞ: (2)

For convenience, we choose the size of A and B to be
ffiffiffiffiffiffi
rR

p
,

for some r < R, and the size of Y equal to r, SðYÞ ¼ SðrÞ.
We are writing SðlÞ for the entanglement entropy of an
interval of length l. Since by causality the density matrix
of a region coincides with the one of any other spatial
region with the same causal domain of dependence, we

have SðXYÞ ¼ SðAÞ ¼ Sð ffiffiffiffiffiffi
rR

p Þ ¼ SðBÞ ¼ SðYZÞ. Also, the
region XYZ is equivalent to an interval of size R, hence
SðXYZÞ ¼ SðRÞ. Using this in (2) leads to

2Sð ffiffiffiffiffiffi
rR

p Þ � SðRÞ þ SðrÞ: (3)

Setting R ¼ rþ " and expanding for small " we get

rS00ðrÞ þ S0ðrÞ � 0: (4)

This is equivalent to C0ðrÞ � 0 for the quantity CðrÞ ¼
rS0ðrÞ. This c function is then dimensionless and always
decreasing. At the critical point the entropy has a general
form

SðrÞ ¼ c

3
logðr=�Þ þ c0; (5)

where c0 is a nonuniversal constant, � is a short distance
cutoff, and c the Virasoro central charge of the conformal
theory. In this case we have CðrÞ ¼ c=3. Therefore the
above inequality establishes an entropic form of the
Zamolodchikov’s c theorem [2,17]: the central charge of
the ultraviolet fixed point is always greater than the one of
the infrared fixed point.

Let us isolate c0 from the entropy in order to see how it
runs with the renormalization group. Define

c0ðrÞ ¼ SðrÞ � r logðr=�ÞS0ðrÞ; (6)

which coincides with c0 at the conformal point. We have

c00ðrÞ ¼ � logðr=�ÞðrS0ðrÞÞ0 ¼ � logðr=�ÞC0ðrÞ: (7)

Integrating between the UV and IR fixed points we have

�c0 ¼ cir0 � cuv0 ¼ �
Z 1

0
dr logðr=�ÞC0ðrÞ � 0: (8)

This is always positive, and c0 at the infrared is greater than
c0 the ultraviolet point. However, the constant c0 and its
total variation are not universal quantities and depend on
the cutoff. For example, for a massive field at the infrared
the entropy is a divergent constant S� c0 ¼ c

3 logðm=�Þ
[18] (�c0 can also have infrared divergences for scalar
fields).
According to (8) the only way�c0 is finite is thatC

0 ¼ 0,
that is, the IR and UV conformal theories have the same
central charge. But in this case there is no running at all in a
relativistic theory, and�c0 ¼ 0, as shown by (8). However,
the situation changes when a boundary and boundary con-
ditions are imposed on the theory. For a fixed bulk confor-
mal theory the boundary conditions introduce a boundary
contribution c0 ¼ logðgÞ to the entanglement entropy,
where logðgÞ is called the boundary entropy [18]. The
boundary conditions run with the renormalization group
producing a finite running in logðgÞ. It is known that
logðgÞ decreases to the infrared under the renormalization
group [19]. This is called the g theorem. Thus, this bound-
ary induced running for c0 is opposite to the one above,
related to the running of the bulk theory (see [20] for a
related conclusion). Our argument above for �c0 > 0 of
course does not apply directly when there are boundary
conditions breaking boost symmetries, though it would be
interesting if a connection with the g theorem could be
established (see [21] for a related argument).

III. SYMMETRIC FORM OF
SSA FOR MANY SUBSYSTEMS

There are several obstacles to generalize the above
construction for d � 2 spatial dimensions [17]. The most
evident one is that in general the intersection and union of
regions of a given shape are not of the same shape in more
dimensions, specially if these regions are boosted to each
other.
It is possible to avoid this problem in some specific cases

by taking the limit of an infinite number of regions whose
intersections and union tend to the desired shape in the
limit.

X

Y

Z

A B

FIG. 1. Two interval A and B of size
ffiffiffiffiffiffi
rR

p
have their end points

on the light cone. The size of Y is r while the distance between
the upper end points of A and B is R.
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For three sets we have repeatedly using SSA

SðAÞ þ SðBÞ þ SðCÞ
� SðA \ BÞ þ SðA [ BÞ þ SðCÞ
� SðA [ B [ CÞ þ SððA [ BÞ \ CÞ þ SðA \ BÞ
� SðA [ B [ CÞ þ SðððA [ BÞ \ CÞ [ ðA \ BÞÞ

þ SðA \ B \ CÞ
¼ SðA [ B [ CÞ þ SððA \ CÞ [ ðA \ BÞ [ ðB \ CÞÞ

þ SðA \ B \ CÞ: (9)

Using this same idea for an arbitrary number of sets Xi,
with i ¼ 1; 2; . . . ; N, one shows by induction thatX
i

SðXiÞ�Sð[iXiÞþSð[fijgðXi\XjÞÞ

þSð[fijkgðXi\Xj\XkÞÞþ . . .þSð\iXiÞ: (10)

There are N terms on each side. The sets on the right-hand
side are ordered by inclusion from right to left, and each
one of the terms is totally symmetrical under permutations
of the N regions Xi.

IV. CIRCLES IN 2þ 1 DIMENSIONS

We want to use (10) for objects whose intersection and
union do not belong to the same class of the original sets,
but when a limit of infinitely many sets is taken these do
belong to the same class. As an example, the intersection
and union of circles in the plane gives place to different
shapes as shown in Fig. 2. But using N copies of circles

rotated an angle 2�k
N with k ¼ 1; 2; . . .N around a point

different from the center, and taking the infinite N limit,
the sets at the right-hand side of (10) look like circles
centered at the same point. Of course, we have to see if
the limit of the entropies goes smoothly to that of the
circles. In the case of circles in the plane the answer is
no, since for any intersection and union of a pair of circles
the SSA relation gives place to an inequality with infinite
difference between both sides. This is due to the presence
of corners in the intersection and union of circles. The
corners give place to logarithmically divergent contribu-
tions on the entropy which are not present in the circles
[22]. Also, the regions in the right-hand side of (10)
approach circles (in some unspecified ‘‘eyesight’’ topol-
ogy) but their perimeters do not approach the one of the
corresponding circle (see Fig. 2), and the divergent parts of
the entropies do not match. Therefore, the inequality is
trivially satisfied and no universal information can be
obtained from this construction.
However, if we instead take N rotated copies of a

boosted circle which has the boundary in the light cone
t2 ¼ x2 þ y2, even if these wiggles for the sets in the right-
hand side of (10) are still there, they are located on a null
surface. This has two important consequences. First, the
perimeter of the regions coincides with that of smooth
circles crossing through the wiggles. Second, the angles
of the corners on the null surface should not produce
logarithmically divergent terms. Even though there is at
present no direct evidence of this by explicit calculation of
the entropy in a region with these null boundary features,
we can argue as follows, based on our knowledge of the
contribution of corners located on spatial planes [22].
Since divergent contributions are local on the boundary

of the region, in order to evaluate the logarithmic term we
can simplify the problem thinking in plane angular sectors.
Consider first a corner in a spatial plane and let T1 and T2

be the two different unit vectors tangent to the corner
boundary at the corner vertex. We choose them pointing
away from the vertex, such that T1:T2 ¼ cosð�Þ, with � the
corner angle. For a corner in a spatial plane, the logarithmi-
cally divergent contribution to the entropy is a function of
the corner angle � which vanishes when � ¼ � or equiv-
alently T1:T2 ¼ �1. This is because in this case the corner
becomes a straight line and there is no UV feature produc-
ing the logð�Þ term.1 (in fact the contribution vanishes
quadratically as ð�� �Þ2, since the entropies of angle �
and angle 2�� �, corresponding to complementary re-
gions, must be equal in a global pure state).
Now, for a corner formed by two spatial lines on a null

plane we can decompose the tangent vectors as Ti ¼
aiK þ biX, i ¼ 1, 2, where K is the (arbitrarily normal-
ized) null vector of the plane, K:K ¼ 0, and X is a unit

FIG. 2. Circles on a plane obtained by rotating a single circle
around a point different from its center. The marked contour
shows a typical set involved in the series of the right-hand side of
(10). This set approaches a circle of specific radius as the number
N of rotated circles increases, but the perimeter of the resulting
shape is greater than the one corresponding to a circle. Also,
since the slope of the wiggles around the limit circle does not
change with N, the contribution of the corners to the entropy
does not vanish in the large N limit.

1For explicit evaluations of the corner contribution in free
theories see [22], and for holographic entanglement entropy [23]
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norm spatial vector, which is necessarily orthogonal to K,
K:X ¼ 0. Using this decomposition one checks that for
normalized T1 and T2 we have necessarily T1:T2 ¼ �1.
The case where the two sides of the angular sector are
spatial to each other is the case T1:T2 ¼ �1. Therefore, all
angular sectors are equivalent on the null plane, and are in
fact related to each other by boosts symmetries. This shows
a corner in a null plane can be approached by a corner on a
boosted spatial plane, in the large boost limit, provided the
corner angle (as seen in the reference system at rest with
respect to the spatial plane) tends to �. This leave us with
zero logarithmic contribution in the null plane limit
T1:T2 ¼ �1.

Hence, we expect the entropy of the wiggly regions
really approaches the one of circles on the null cone. Let
us then be more explicit with the construction we have in
mind. Take the intersection of a spatial plane and the null
cone, which determines a (boosted) circle D (see Fig. 3).
We obtain a series of N of these boosted circles, Dk,
by rotating the x, y coordinates the angles 2�k

N ,

k ¼ 0; . . . ; N � 1. The view of this construction projected
on the x, y plane is similar to Fig. 2, but where the circles
are replaced by ellipses.2 The SSA relation requires the
spatial regions involved to have their boundaries spatial to
each other [24]. We do not have to worry about this
requirements since all the boundaries are located on the
null cone. Also, we do not need to keep track of the surface
itself, since the boundary determines the class of all spatial
surfaces with equivalent domain of dependence.

Let R be the radius of the circle which is formed by the
union of the rotated boosted circles in the infinite N limit,
and r the one of the intersection of all of them. The radius

of the circleD is then given by
ffiffiffiffiffiffi
Rr

p
. TakingD on the plane

t ¼ x
ðR� rÞ
ðRþ rÞ þ

2rR

rþ R
; (11)

the circle center is the point

ðx; y; tÞ ¼
�
R� r

2
; 0;

Rþ r

2

�
: (12)

The circle equation is then given by

Rr ¼
�
x� R� r

2

�
2 þ y2 �

�
t� Rþ r

2

�
2
; (13)

supplemented by the plane equation (11).
The different radius l for the approximate circles which

appear in the right-hand side of (10) are given by the
distances to the origin of the projections to the x, y plane
of the intersections ofD with the rotated copies ofD. For a
rotation angle � this intersection point has

y ¼ x tan

�
�

2

�
: (14)

Then, using (11) and (13) we get

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
¼ 2rR

Rþ r� ðR� rÞ cosð�2Þ
: (15)

Therefore, the inequality (10) reads

NSð ffiffiffiffiffiffi
Rr

p Þ � XN
i¼1

~S

�
2rR

Rþ r� ðR� rÞ cosð�iN Þ
�
; (16)

where we havewritten ~S instead of S in order to remark that
these are circle entropies only approximately. The limit
N ! 1 becomes

Sð ffiffiffiffiffiffi
Rr

p Þ � 1

�

Z �

0
dzS

�
2rR

Rþ r� ðR� rÞ cosðzÞ
�

¼ 1

�

Z R

r
dl

ffiffiffiffiffiffi
Rr

p

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðR� lÞðl� rÞp SðlÞ: (17)

For a term in the entropy proportional to the circle
perimeter this inequality turns out to be an equation, that
is, we have

1

�

Z �

0
dz

2rR

Rþ r� ðR� rÞ cosðzÞ ¼
ffiffiffiffiffiffi
Rr

p
: (18)

The equation also holds for a constant term. We could have
anticipated the equality in these cases because the SSA
inequality (for two regions) is already an equation for the
area and the constant terms (this latter for intersecting
regions). Writing R ¼ rþ " and expanding (17) for small
" produces

S00 � 0: (19)

At the conformal point we expect the entropy of the
circle to be a linear function of the radius (for spheres the
logarithmic term is related to the conformal anomaly, and
this is absent for odd space-time dimensions [9])

r

R

FIG. 3. The figure shows two parallel circles of radius r and R
obtained by cutting the light cone with two parallel spatial
planes. Another spatial plane cuts the light cone in a circle of
radius

ffiffiffiffiffiffi
rR

p
which is tangent to the two parallel circles.

2It is also possible to interpolate between the case of N circles
on the plane in Fig. 2 and construction with the circles on the
null cone by drawing boosted circles on a spatial hyperboloid
t2 � x2 � y2 ¼ �2. As the curvature of the hyperboloid goes to
infinity (� ! 0), the construction approaches the one on the null
cone, and all the corner angles smoothly tend to the ‘‘no corner’’
angle �.
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SðrÞ ¼ c0 þ c1r; (20)

and consequently S00 ¼ 0. The total renormalization of the
c1 coefficient between fixed points reads

�c1 ¼ cuv1 � cir1 ¼ S0uv � S0ir ¼ �
Z 1

0
drS00 � 0: (21)

Since the second derivative of the entropy eliminates the
divergent term, we expect that S00ðrÞ is universal, and the
same applies to cuv1 � cir1 . In the free case the total running

of c1 is�c1 ¼ �
6 m, both for massive scalars [25] and Dirac

fermions [26,27].
Now let us turn attention to the running of c0. Notice that

the function SðrÞ is concave and it is defined for r > 0.
Then the height at the origin of the asymptotic tangent
at large r has to be greater than the one of the tangent at
r ¼ 0. To be more precise, consider the quantity

c0ðrÞ ¼ SðrÞ � rS0ðrÞ; (22)

which coincides with c0 at the fixed points. We have

c00ðrÞ ¼ �rS00ðrÞ � 0: (23)

Then,

�c0 ¼ cir0 � cuv0 ¼ �
Z 1

0
drrS00ðrÞ � 0: (24)

In a recent paper [13], while searching for an adequate c
function corresponding to the running of the constant term,
the authors define this same function (22) and conjecture
Eq. (23).

Because of S00ðrÞ should be universal, the same is
expected for the quantity in (24). Thus,�c0 is well defined.
We also expect it is finite in general, since at large mass the
entropy would have an expansion of the form SðrÞ � ðk1 þ
k2mÞrþ c0 þ k3

mr þ k4
ðmrÞ2 þ . . . . This is the case for free

fields [25,26]. This is also the case in generic holographic
models [13]. Then S00ðrÞ � r�3 and the integral (24) is
convergent at r ¼ 1.

The relation �c1 � 0 cannot be consider an analogous
to the c theorem. Even disregarding the question of the
universality for the moment, since c1 is dimensionful, it
cannot depend on the CFT alone, and keeps track of the
path in the renormalization trajectory from the UV to the
IR fixed points. For example, a massive free field has a
massless free UV fixed point and no degree of freedom at
the IR. However, �c1 ¼ �

6 m depends on the specific mass

of the field connecting these limits.
On the other hand, c0 is dimensionless. The relation

�c0 � 0 was first obtained holographically and proposed
as a generalization of the c theorem to three dimensions in
[11]. As mentioned in the introduction, this property is
equivalent to the F theorem for the three sphere partition
functions [14]. However, we want to note here that these
results, at least when referring to the entanglement entropy,
could be of a different nature than the two-dimensional c

theorem. They establish the increase (decrease) of a quan-
tity from the UV to the IR fixed points, and the total change
is well defined. However, the quantity itself at the fixed
point is not. At present it is not possible to establish a
correspondence of c0 with some physical property of the
continuum theory. There is an indefinition of c0 by an
additive constant which we do not know how to resolve.
This is related to the fact that in the expression SðrÞ ¼
c1rþ c0 the constant c1 ¼ const=�, with � a distance cut-
off. Because there is a cutoff �, we cannot fix the physical
size of the radius r better than an error of order �. Changing
the definition of the radius r ! rþ const �we change c0 at
will. This is clear, for example, in lattice evaluations of the
free entanglement entropy of a sphere using the radial
discretization of the Srednicki method [28]. In order to
compute the entropy function is necessary to choose a
definition of what the radius means in the lattice in terms
of a number times the lattice spacing. While variations of
this choice do not change the continuum limit of the
correlation functions (and hence they all give place to the
same continuum theory) they do alter the definition of c0.
A possible way out of this indetermination is to fix the
global constant such that it takes the value zero for the limit
of no degrees of freedom (by adding masses for all the
fields).3 This allows to compute a unique c0 for any theory
and specific way to go to zero degree of freedom. But it
does not rule out the possibility that the resulting c0 could
be RG path dependent. If this is the case, the running (24)
cannot be used to compare conformal theories at the fixed
points. In particular, it would not rule out cycles in the
renormalization group.
Perhaps it is of interest to end this section showing that

the finite inequality (17) contains the same information of

the infinitesimal one (19). Write u ¼ ffiffiffiffiffiffi
Rr

p
, v ¼

ffiffiffi
R
r

q
> 1,

and (17) becomes

SðuÞ � 1

�

Z �

0
dzSðgðu; v; zÞÞ ¼ hðu; vÞ; (25)

with

gðu; v; zÞ ¼ 2u

vþ 1
v � ðv� 1

vÞ cosðzÞ
: (26)

The variation of hðu; vÞ with respect to v is

@hðu; vÞ
@v

¼ 1

�

Z �

0
dzS0ðgðu; v; zÞÞ @gðu; v; zÞ

@v
; (27)

with

3In [13] the authors computed c0ðrÞ ¼ rS0ðrÞ � SðrÞ numeri-
cally for a free massive scalar and find evidence for universality
as well as for c0 going to zero at the IR. However, we think this is
tied to the special choice r ¼ ðnþ 1=2Þ� they make for the
radius in terms of the number n of lattice points.
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@gðu; v; zÞ
@v

¼ ð�2uÞð1� 1
v2 � ð1þ 1

v2Þ cosðzÞÞ
ðvþ 1

v � ðv� 1
vÞ cosðzÞÞ2

: (28)

Now we write

@hðu; vÞ
@v

¼ 1

�

Z �

0
dzS0ðgðu; v; zÞÞ @

@z
fðu; v; zÞ; (29)

with

fðu; v; zÞ ¼
Z z

0
dz0

@gðu; v; z0Þ
@v

¼ 2u sinðzÞ
1þ v2 þ ð1� v2Þ cosðzÞ : (30)

Then

@hðu; vÞ
@v

¼ 1

�
jS0ðgðu; v; zÞÞfðu; v; zÞjz¼�

z¼0

� 1

�

Z �

0
dzS00ðgðu; v; zÞÞ @gðu; v; zÞ

@z
fðu; v; zÞ:

(31)

By explicit evaluation fðu; v; 0Þ ¼ fðu; v; �Þ ¼ 0. Then

@hðu; vÞ
@v

¼ � 1

�

Z �

0
dzS00ðgðu; v; zÞÞ @gðu; v; zÞ

@z
fðu; v; zÞ:

(32)

We have seen the second derivative S00 < 0 is negative. The
derivative

@gðu; v; zÞ
@z

¼ � 2uðv� 1
vÞ sinðzÞ

ðvþ 1
v � ðv� 1

vÞ cosðzÞÞ2
(33)

is negative in z 2 ½0; ��, and fðu; v; zÞ ¼
is positive in z 2 ½0; �� [as can be seen from (30)]. Then

@hðu; vÞ
@v

� 0: (34)

That is, the inequality (25) improves as we make v smaller
keeping u fixed. Therefore, the best inequality holds for
v ! 1 which gives S00 � 0.

V. SPHERES IN dþ 1 DIMENSIONS

In this section we attempt a naive generalization of the
above construction in more dimensions and find some
difficulties related to the more complicated structure of
the UV divergences in the entropy.

It is not possible in general to divide the solid angle of
the unit sphere in dimension d > 2 with points located
symmetrically for any N. This seems not to be a problem
as long as we consider a large number of points with a
constant density per unit solid angle. Again our boosted

sphere D with boundary on the light cone has radius
ffiffiffiffiffiffi
Rr

p
.

It lies in the hyperplane given by Eq. (11) and has center at
the point

x1¼ðR�rÞ
2

; x2¼ . . .¼xd¼0; t¼ðRþrÞ
2

: (35)

The equation of D is

Rr ¼
�
x1 � R� r

2

�
2 þ x22 þ . . .þ x2d �

�
t� Rþ r

2

�
2
;

(36)

supplemented by Eq. (11).
Each wiggly sphere resulting of a set in (10) must have

one of its vertices on D. Then we focus attention on the
surface of D. One of this sets is the union of all the
intersections of, let say k rotated spheres. Hence, at this
level k the radius of the wiggly sphere is given by the
maximum radius of a point belonging to k different spheres
at the same time. In order to find this radius we have to take
these k spheres as much tightly packed in solid angle
around the direction of D as possible.
As we increase k we have to open up the solid angle

around the direction of D. We have dk ¼ N
volðsd�1Þd�,

where volðsd�1Þ ¼ 2�d=2=�ðd2Þ is the total solid angle cor-

responding to the volume of the d� 1-dimensional unit
sphere. We can relate the differential of solid angle with the
radius l of the wiggly sphere (centered at the origin) by

writing d� ¼ d�
dA

dA
dl dl where dA is the differential of area

on the surface D. Since D is a null surface, dA ¼ dA?,
where this last differential is the area of the surface differ-
ential projected along the null rays generating the light
cone. On the other hand, dA? is equal to d�ld�1.
Thus, we have

dk ¼ N

volðsd�1Þ
1

ld�1

dA

dl
dl: (37)

The dA is given in terms of the differential of azimuthal
angle d� on the sphere D by

dA ¼ volðsd�2Þðx⊺Þd�2
ffiffiffiffiffiffi
Rr

p
d�; (38)

where x⊺ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 þ . . .þ x2d

q
is the radius of the d�

1-dimensional sphere which is the solution with fixed t of
Eqs. (11) and (36). Note that as these points are on the cone
we have t ¼ l. We get from these equations

x⊺ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rRðl� rÞðR� lÞp

ðR� rÞ : (39)

The quantity d�
dl is obtained setting x3 ¼ . . . ¼ xd ¼ 0 onD

and computing

d�

dl
¼ d�

dt
¼

��������
dðx1ðtÞ; x2ðtÞ; tÞffiffiffiffiffiffi

Rr
p

dt

��������¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðR� lÞðl� rÞp : (40)

Combining all together we obtain a relation giving the
number of wiggly spheres in terms of the radius l,
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dk ¼ N
volðsd�2Þ
volðsd�1Þ

ðx⊺Þd�2
ffiffiffiffiffiffi
Rr

p
ld�1

dlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðR� lÞðl� rÞp : (41)

At this point we are prepared to write down the inequal-
ity (10) in the limit N ! 1. Let us naively assume again
that the microscopic structure of the wiggles does not
contribute in the limit N ! 1 and assimilate the entropy
of these surfaces to entropy of spheres. We have

Sð ffiffiffiffiffiffi
Rr

p Þ � 2d�2�ðd=2Þffiffiffiffi
�

p
�ððd� 1Þ=2Þ

�
Z R

r
dl

ðRrÞðd�1Þ=2ððl� rÞðR� lÞÞðd�3Þ=2

ðR� rÞd�2ld�1
SðlÞ:
(42)

This inequality is an equation for the area term,
SðlÞ � ld�1 and the constant term SðlÞ � const. Setting
R ¼ rþ " and expanding for small " we get

rS00ðrÞ � ðd� 2ÞS0ðrÞ � 0: (43)

A related inequality was obtained in [29] for the strip
geometry.

Let us check inequality (43) in d ¼ 3 (3þ
1-dimensional space-time) for a conformal theory. On
general grounds we expect an entanglement entropy of
the form

SðrÞ ¼ c2r
2 þ c1rþ clog logðRÞ þ c0; (44)

with constant c2, c1, clog and c0. The relation (43) gives

c1 þ 2
clog

r
� 0: (45)

However, in d ¼ 3 the coefficient of the logarithmic term
clog is always negative [6,9]. Thus this inequality does not

hold for small enough r. One could argue that c1 has to
compensate this up to the scale of the cutoff. However, if
there is a covariant regularization of the entropy, one does
expect it is possible to set c1 ¼ 0. This is because by
dimensional arguments it must be c1 � ��1, and this ul-
traviolet divergent term must be generated locally on the
surface of the sphere. But there are no local geometric
invariant quantities which integrated on the surface would
give a dependence proportional to r on the entropy [13,30].

One could still argue that the inequality (43) has to hold
for the leading divergent term in the entropy. Thus, it

follows from (43) that the function ðd� 1Þ�1r�ðd�2ÞS0ðrÞ
decreases from the ultraviolet to the infrared, while at the
fixed points it is simply cd�1, the coefficient of the area
term (at leading order in the cutoff). Then we have

�c2 ¼ cuvd�1 � cird�1 ¼ �
Z 1

0
dr

�
S0ðrÞ

ðd� 1Þrd�2

�0 � 0: (46)

However, it is expected that the leading divergent term is a
property of the ultraviolet fixed point, and does not run
with the RG. For the case of a massive scalar the renor-
malization of the area term is [25]

�c2 ¼ �dvolðsd�1Þmd�1 logðm�Þ for d odd;

�c2 ¼ �dvolðsd�1Þmd�1 for d even; (47)

with �d ¼ ð�1Þðd�1Þ=2½6ð4�Þðd�1Þ=2ððd� 1Þ=2Þ!��1 for d

odd, and �d ¼ ð�1Þd=2þ1½12ð2�Þðd�2Þ=2ðd� 1Þ!!��1 for d
even. Thus, in these free examples, the change of the
coefficient of the area term is subleading in powers of �

with respect to the leading term���ðd�1Þ. This invalidates
the argument in this case since we know our inequality has
to be corrected for subleading terms. Hence, it is not
surprising that the corrections (47) can have any sign
depending on the dimension.
The reason for these subtleties with the inequality (43)

has to reside in the replacement of the wiggly sphere

entropy ~SðrÞ by the one corresponding to a smooth sphere
SðrÞ. For dimensions d > 2 there should be different con-
tributions due to the microscopic structure of the surface.
For the case d ¼ 3 we can see at least two contributions.
One is due to the different curvatures of the small patches

of spheres with radius
ffiffiffiffiffiffi
rR

p
which cover the sphere of

radius l. This has to give place to different logarithmically
divergent terms in the entropies. Also, the trihedral angles
might give a logarithmic contribution to the wiggly sphere
which is not present in the smooth sphere. Some contribu-
tions to the entropy of singular entangling surfaces in four
and higher dimensions have been recently studied [31]. In
the worst case these missing terms could make the inequal-
ities trivial. These contributions are not present in the
d ¼ 2 case, where there is no curvature for the arc patches,
and the vertices have angle �.
One way to convince oneself of the different behavior of

the trihedral and planar angles is to think in an approxi-
mation of a sphere by plane polyhedrons with many
phases. In the two-dimensional case we have N angles on
the polygon boundary which deviate from � by a quantity
of order N�1. As the logarithmic contribution for angles
�� � goes like �2 for small �, the total logarithmic
contribution is of order N=N2 ¼ N�1 and vanishes in the
limit of a circle. This is another way to see the circle
does not have logarithmic contributions. In contrast, the
logarithmic contribution of the polyhedron must come
from the trihedral vertices, and must sum up the nonzero
logarithmic term of the sphere in the limit.

VI. FINAL REMARKS

The result of this paper for the monotonous RG running
of the constant term of the circle entropy gives a QFT proof
of the recent holographic result for this same quantity and
the related ones for the free energy on a three sphere. The
only principles underlying this property are relativistic
covariance and unitarity. It would be an analogous in three
dimensions to the two-dimensional Zamolodchikov’s c
theorem if the fixed point value of the monotonous quantity
could be intrinsically determined. Lacking of a good
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definition of c0 at the conformal points we do not knot at
the moment if c0 can be globally defined or it keeps a
memory of the RG trajectory in interacting theories.

One alternative which deserves future investigation is
the possible definition of c0 through the mutual informa-
tion. The mutual information of two regions IðA; BÞ ¼
SðAÞ þ SðBÞ � SðABÞ is well defined in the continuum
limit, and for finite systems with pure global state we
have IðA;�AÞ ¼ 2SðAÞ. Then, in quantum field theory
we expect the mutual information between a sphere and
the outside region separated by a distance �, �A�, has an
expansion IðA;�A�Þ � k

� þ 2~c0 þOð�Þ for small �. Here

~c0 would be the regularization independent definition of c0.
However, at the moment it is not known how to extend the
geometric construction to prove monotonicity for ~c0 in the
mutual information.

Our result in two spatial dimensions also shows the
coefficient of the area term on the entropy of circles is
decreasing with the radius. The coefficient of the area term
for a conformal theory must be a local property indepen-
dent of the shape of the region. This suggests an interesting
(albeit speculative) interpretation for the decreasing of the
coefficient of the area term. It could in principle be con-
verted to a c theorem-like result by going outside the
domain of QFT. There is in fact an intrinsic way to deter-
mine the area term in a theory which is coupled with
gravity. In that case, the quantity c1, the coefficient of the
area term, is supposed to be related to the Newton constant
through the Hawking entropy [32] as

c1 ¼ �

2G
; (48)

where G is the Newton constant. In this context, the mean-
ing of (46) is that the Newton constant increases from the
UV to the IR (the Planck mass decreases). When massive
modes decouple their degrees of freedom are not computed

any more in the IR theory but their contribution is remem-
bered by the Newton constant through virtual loops. The
Sakharov’s induced gravity is the case in which gravity is
free at the UV point and at the infrared G is entirely
generated by the integrated fields.
The issue of divergences in the entanglement entropy in

higher dimension is more subtle. We need a covariant
regularization of the entropy which respect the SSA prop-
erty. In order for this regularized entropy to be non trivial,
that is, not given exclusively as boundary terms which
cancel in the mutual information, there must be regions
for which it takes negative values [24]. This situation is odd
for the entropy in ordinary quantum theory of finite number
of degrees of freedom, but it is natural for the classical
entropy of fields. Nevertheless, this covariant entropy
would still be ambiguous under redefinitions by addition
of boundary terms such as the area term or the Euler
number of the region [24].
One interesting point which deserves future investiga-

tion is to find the missing terms in Eq. (42). These terms
must come from the microscopic structure of the surface.
In particular, in d ¼ 3 we have to understand the logarith-
mic contributions of trihedral angles. We hope an improved
inequality could have a bearing on the monotonous
behavior for the coefficient of the logarithmic term of the
sphere, which is proportional to the Euler trace anomaly,
and the best candidate for a c theorem in odd spatial
dimensions d � 3.
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