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Noncommutative Complex Scalar Field and Casimir Effect
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Using the noncommutative deformed canonical commutation relations proposed by Carmona et al.
[J. M. Carmona, J. L. Cortés, J. Gamboa, and F. Mendez, J. High Energy Phys. 03 (2003) 058.][J. Gamboa,
J. Lopéz-Sarrion, and A.P. Polychronakos, Phys. Lett. B 634, 471 (2006).][J. M. Carmona, J. L. Cortés,
Ashok Das, J. Gamboa, and F. Mendez, Mod. Phys. Lett. A 21, 883 (2006).], a model describing the
dynamics of the noncommutative complex scalar field is proposed. The noncommutative field equations
are solved, and the vacuum energy is calculated to the second order in the parameter of noncommutativity.
As an application to this model, the Casimir effect, due to the zero-point fluctuations of the non-
commutative complex scalar field, is considered. It turns out that in spite of its smallness, the non-
commutativity gives rise to a repulsive force at the microscopic level, leading to a modified Casimir

potential with a minimum at the point @, =
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L. INTRODUCTION

Since the birth of quantum mechanics and general rela-
tivity, many efforts have been made to understand the
nature of spacetime at very short distances of the order
of the Planck length, or at very high energies. There is now
a common belief that the usual picture of spacetime as a
smooth pseudo-Riemannian manifold should break down
at very short distances of the order of the Planck length,
due to the quantum gravity effects. Several physical argu-
ments are used to motivate a deviation from the flat-space
concept at very short distances of the order of the Planck
length. Among the new concepts are quantum groups,
quantum loop gravity, deformation theories, noncommuta-
tive geometry, noncommutative spacetime etc. The con-
cept of noncommutative spacetime was suggested very
early on by the founding fathers of quantum mechanics
and quantum field theory. This was motivated by the need
to remove the divergences that arise in quantum electro-
dynamics. However, this suggestion was ignored [1]. The
concept of noncommutative spacetime was discovered in
string theory and in the matrix model of M theory, where
noncommutative gauge theory appears as a certain limit in
the presence of a background field B [2—4].

In recent years, the idea of noncommutative spacetime
has attracted considerable interest, and has penetrated into
various fields in physics and mathematical physics, starting
from the standard model of particle physics, strings, renor-
malization, to the quantum Hall effect, two-dimensional
noncommutative harmonic oscillators, and noncommuta-
tive field theory [1,5-37]. One of the new features of
noncommutative field theories is the UV/IR mixing phe-
nomenon, in which the physics at high energies affects the
physics at low energies, which does not occur in quantum
field theories in which the coordinates commute [1,15,16].
The study of noncommutative spacetime and its implica-
tions to gauge and gravity theories, quantum field theories

1550-7998/2012/85(12)/125013(12)

S
o0

125013-1

PACS numbers: 11.10.Nx, 03.65.Ta, 04.30.Nk

and other areas of theoretical physics, is motivated by the
fact that the effects of noncommutativity of space may
appear at very short distances of the order of the Planck
length, or at very high energies. This may shed a light
on the real microscopic geometry and structure of our
universe.

In the last few years, there has been a great interest in the
Casimir effect, for both the theoretical and the experimen-
tal sides; it finds applications in various physical phe-
nomena, such as quantum field theory, condensed matter
physics, elementary particle physics, quantum reflection of
atoms on different surfaces and Bose-Einstein condensa-
tion [38,39].

In gravitation and cosmology, the Casimir effect can
drive the inflation process and leads to interesting effects
in brane models of the universe [39-43]. More practical
reasons for the recent interest in Casimir effects are their
implications for nanotechnology [38,39,43-45], where the
attractive forces could lead to restrictions in the construc-
tion of nanodevices [39,46]. Casimir forces are usually
attractive, but repulsive Casimir forces can be achieved
in special circumstances; repulsive Casimir forces might
prove useful in the construction of nanodevices, and
other systems in which material components are in close
proximity, including quantum levitation, quantum friction
etc. [39,46].

The Casimir effect provides an effective mechanism for
spontaneous compactification of extra spatial dimensions
in multidimensional physics; indeed the vacuum fluctua-
tions of higher-dimensional gravitational field may con-
tribute an attractive Casimir force to push the size of the
extra spaces in Kaluza-Klein unified theory and string
theories to the Planck scale. Near the Planck scale, it is
generally believed that the nonperturbative quantum grav-
ity can stabilize the size of the extra spaces [39,41,47—49].
It has been shown that the Casimir energy could give
repulsive force if some of the extra dimensions are
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noncommutative. This suggests that the noncommutativity
of spatial dimensions provides a possible mechanism to
stabilize the extra radius in high temperature [48-52].

In this paper, we present a model describing a non-
commutative complex scalar field theory with commuta-
tive base space and noncommutative target space, and we
explore possible implications that the noncommutativity in
the target space might have on the Casimir force. It turns
out that in spite of its smallness, the noncommutativity
gives rise to a repulsive force at the microscopic level,
leading to a modified Casimir potential with a minimum;
this result is important, as mentioned above, in nanotech-
nology and in the stabilization of the size of the extra
spatial dimensions.

By generalizing the noncommutative harmonic oscilla-
tor construction, an extension of quantum field theory
based on the concept of noncommutative target space has
been proposed in [30-32], where the properties and phe-
nomenological implications of the noncommutative field
have been studied and applied to different problems,
including scalar, gauge and fermionic fields [30-34]. The
idea of noncommutative target space has also been devel-
oped in the work of Balachandran et al. [53].

Our paper is organized as follows: In Sec. II, we con-
sider a noncommutative action for a complex scalar field
with self-interaction; in Sec. III, we derive and solve the
free noncommutative field equations; in Sec. IV, we con-
sider the noncommutative Casimir effect. Finally, in
Sec. V, we draw our conclusions.

II. NONCOMMUTATIVE ACTION

Consider a complex scalar field ®(x) with Lagrangian
density given by [54-58]

L =—(0,9)(0*D) — m*D*P — g(O*P)?, (1)

where m is the mass of the charged particles, and g is a
positive parameter. The metric signature will be assumed
to be — + + - - -; in what follows, we take 7 = ¢ = 1.
The complex scalar field can be quantized using the
canonical quantization rules. For this, we express it
in terms of its real and imaginary parts as ® =
715(¢1 + ip,), where ¢, @, are real scalar fields; in terms

of these real scalar fields the Lagrangian density reads
L= —10,0.)" —ulelle,) 2)

where u*[¢] = m* + 5 2(p,)*
Let 7, be the canonical conjugate to ¢,
o )
Tg = = @aq (3)
0@,
The Hamiltonian density then reads
H =m0, — L=Ym,)* + LV, + 1u[e]e,)%
“4)
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where the summation convention over repeated indices is
assumed throughout this paper.

To quantize the system, we split the Hamiltonian density
H = H,+ H,, into free and interaction terms [54]

H o =L, +2Ve,)? + Im(p,)? (5)

H i = 18(0,0,)? (6)

and then we pass to the interaction picture. In the interac-
tion picture the equations of motion are given by

SH,

¢ alx) = =75 D’

SH,
Sp,(x)’

where Hy = [d3%3, is the free Hamiltonian.

In the canonical quantization, the canonical variables ¢,
and the canonical conjugates 77, are assumed to be opera-
tors satisfying the canonical commutation relations

[@a(t, ), m(2, §)] = 18,,8°(X — 7)
[gpa(tr i)r ng(t! _)_;):l = O (8)
[774(t, %), (1, §)] = 0.

)

7.Ta(-x) ==

It is well-known, since the birth of quantum field theory
in the papers of Born, Dirac, Fermi, Heisenberg, Jordan,
and Pauli, that the free field behaves like an infinite number
of coupled harmonic oscillators [54]. Using this analogy
between free fields and an infinite number of coupled
harmonic oscillators, one can impose noncommutativity
on the configuration space of dynamical fields ¢,; to do
this we recall that the two-dimensional harmonic oscillator
noncommutative configuration space can be realized as a
space where the coordinates %,, and the corresponding
noncommutative momentum p,, are operators satisfying
the commutation relations

[pa’ ﬁb]:O [)fea’ ﬁb]: iéab: (9)

where 0 is a parameter with dimension of length, and €, is
an antisymmetric constant matrix.

It is well-known that this noncommutative algebra can
be mapped to the commutative Heisenberg-Weyl algebra
[35-37]

[)?a»)?b] = i928ab

[xa’ xb] =0 [pa’ pb] =0 [xa’ pb] = iéab (10)

through the relations

1
jea = Xa _Eazsubpb ﬁa = Pa- (11)
To impose noncommutativity on the configuration space
of dynamical fields ¢,, the noncommutative canonical
variables ¢, and the noncommutative canonical conju-
gates 7, are assumed to be operators satisfying the non-
commutative commutation relations [30-32]
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[@4(t, ), 7 (1, )] = i8> (X = §)Su
[04(2, %), @,(2, )] = i0e,,8° (X — 7) (12)
[7r(t, %), 4 (2, )] = 0,

where 6 is the parameter of noncommutativity, with di-
mension of length, which is assumed to be a constant, and
g,p 18 @ 2 X 2 real antisymmetric matrix

e =& =1L (13)

By generalizing the noncommutative harmonic oscil-
lator construction an extension of quantum field theory,
based on the concept of noncommutative fields satisfying
the noncommutative commutation relations (12), has
been proposed in [30-32], where the properties and
phenomenological implications of the noncommutative
field have been studied and applied to different problems
including scalar, gauge and fermionic fields [30-34].
Another approach, based on the relations (15) between
the noncommutative variables ¢, and 7, and the canoni-
cal variables ¢, and 7, has been used and developed
in the work of Balachandran et al. [53], where some
periodic boundary conditions are used to study a free
massless scalar field in the noncommutative target space
R2, the theory has been quantized via the Hamiltonian
formalism and applied to the study of the deformed
black-body radiation spectrum.

Our approach is different from that proposed in [30-32],
but it bears some similarities with the approach used in the
work of Balachandran er al. [53]; both approaches are
based on the relations (15) between the noncommutative
variables ¢, and 7r, and the canonical variables ¢, and 7,
but in our approach the equations of motions of the de-
formed theory will be used to quantize the deformed theory
via the Peierls bracket.

The noncommutative Hamiltonian density is assumed to
have the form

H = Ya)? +4Ve, 2+ 1u6)@.2  (14)

It is easy to see that the noncommutative commutation
relations (12) can be mapped to the canonical commutation
relations (8) if the noncommutative variables ¢, and 7,
are related to the canonical variables ¢, and 7, by the
relations

A

Pa = Pg — Eegabﬂ'b 7,i-a = Tg. (15)

Using these transformations, the noncommutative
Hamiltonian density (14) can be rewritten, up to a total
derivative term and up to second order in the parameter 6,
as
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A

H = %7T~(|] + ié’z(m2 — gsé’s))ﬂ' — %6277”6277

+10m (m? — V2 + g(e,)Y)sg

+ %¢N(m2 -V %g(%)z)go +0(6°),
where
N [1( ~ )2]— ~ 8., +2 (16)
Tapb 5¢a5§0b 4 Y Y POy PaPp

with [ denoting the 2 X 2 unit matrix, and ¢~ denoting the
transpose of ¢.
From now on we keep only the modifications due to the
noncommutativity up to second order in the parameter 6.
The relation between 7, and ¢, is given by

SH

PENE 1n

¢ ,(x) =

where H = f &xo. Using the expression of H ,one gets

. N 22

@,(x) = (I] + 16%(m* — gsas))ahﬂh(x) — 16>V 7, (x)
+300m> = V¥ + g(@,))ea @1 (). (18)

From this relation we get, by iteration, the following
expression of 7,

Ty, = ¢, T ieZ(%z - (m2 - gsa—s))abgbb
—100m* = V* + ¢(0,)2) 80 @s- (19)

We note that the noncommutative Hamiltonian density
can be derived from the following noncommutative
Lagrangian density

Q=%¢”<u +102(V? = (m2 - gsé’s))){o
+06™(m =V + g0, )z
—%qf(mz —V +1lg(@,)? —162(m? —V* +g(¢a)2)2>¢
(20)

A

via the usual Legendre transformation Q= T, — H.

III. NONCOMMUTATIVE FIELD EQUATIONS

Let us now consider the free theory, g = 0; the non-
commutative free Hamiltonian density reads

.7A-[ = %(1 + }‘02m2)77~77 - %0277’6277
+10m~ (m? — Veg + 1o~ (m2 = Ve, (1)

The noncommutative field equations are given by

125013-3



FARID KHELILI

N

N

QDg(.X) - 57711()6), (22)
8H

’7Ta(x) = _m. (23)

From the first equation we get

Ty = g +10%(m2 — V)¢, — 10(m* — V)e0,  (24)

The second equation gives
Ta = _(m2 - 62)§0a + %e(mz - 62)‘9(1}177-17' (25)

The noncommutative field equations Eq. (24) and (25) may
be written in the form

2
[-A, B -

St B —Cle =0, (26)

where

A- [1 — 1622 - %]u — A~
C= [1 — %t?z(m2 — %z)il(m2 — ﬁz)ﬂ =C~ @7
B=0(m*> — V)e = —B~

and A~ denotes the transpose of the operator A.

It is easy to see that the field equations Eq. (26) may be
derived from the Lagrangian Eq. (20)

L= [d%?[%ngﬂgo +1o7 By - %goNCgo]. (28)

The general solution of Eq. (26) may be written as (see
Appendix A):

o) = Y[u (ay + iy (va,]

A

+ 3Tl (0by + iy (x)bs] (29)
A

for some time-independent complex numbers a4, b, and
=(*)

their complex conjugates a,, b,, where it are the com-
plex conjugates of the mode functions ug )
W (0 %) = xa@e g, (30)

(=)

The frequencies w, ’ are given by Eq. (A9)

A =) = l[+00'A + ‘\'40.14 920%]

~ JG, 7 105, + 10257 (31)
where y, are the eigenvectors of the operator —V? with
eigenvalues o, and 4, = m?> + o,.

Quantization of the noncommutative complex scalar
field theory is straightforward via the Peierls bracket (see
[55] for more details). In the quantum theory, the field ¢
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becomes a Hermitian operator, and the operator version of
Eq. (29)

ox) = Z[u;+><x>aA + iy ()]

+ Z[MA )by + i (x)b%] (32)

holds for some constant operators a,, b, and their
Hermitian conjugates aj;, b). By using the Wronskian
relations Eq. (A13)—(A16) we get

a, = —i '[d3xug+) () We(x)

@ = +i f Pl () We(x)
(33)
b, = —i f P (W)
bt = +i f Pl ()W ).
The quantum theory is obtained by setting
[@a(x), 0, ()] = iG o (x, y), (34)

where G is the commutator matrix

Gl y) = =iy u) 0u ™" () + iY@l ()
A A

— iZug_)(x)ufq_)*(y) + iZﬂﬁf)(x)uE()N(y).
A A

Using the Wronskian relations Eq. (A13)—(A16) one can
see that the commutator matrix G is the unique function
that solves the Cauchy problem

o) = j &5 G, )W) e (y)

at the same time ¢ = x% = y0.

(35)

Moreover, the commutator matrix G satisfies the equa-
tion

(:)2
[—;4—2+ B -
at

Using Eq. (34) and the Wronskian relations
Eq. (A13)-(A16) we get the commutation relations

C]G(x, y) = 0. (36)

[aA: ﬂB] = [a:’ a}}] =0
[bA, bE] = Ous [bA’ bB] = [b*, bz] =0 (37)
[aA: bB] = [a:: bE] = [a:’ bB] = 0

It is easy to show, by substituting the expression of 7
Eq. (24) into Eq. (21), that the noncommutative
Hamiltonian operator can be written as

[aA! a;}] = 8ABJ

[aAr bz] =

=1 [ @3- Wlgw (38)
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using the Wronskian relations Eq. (A13)-(A16), and the
expression of ¢ Eq. (32), the noncommutative Hamiltonian
operator H of the system can be expressed as

H= Z(a)ng)aZaA + a)y)beA) + %Z(wi‘ﬂ + w/(()),
A A

(39)

where the commutation relations Eq. (37) have been used
to get this form.
The noncommutative vacuum energy E,,. reads

Eyac <VaC|Hlvac> = 2Z(w(-*-) + ol ))

= Z(\/mz + oyt g92(m2 + a'A)(3/2)), (40)
A

where the summation over A is constrained by the condi-
tion Eq. (A21). The noncommutative vacuum energy E.,,
in the case where the free scalar field is confined in a
D-dimensional rectangular box of volume V = LP with
periodic boundary conditions on the walls of the box, can
be written as

Ege= D ([mz n i(ZznkY:ll/z

ny,ny,...Np
2mn 32
2 k
+89[m+Z<L)] ) “h

where the summation over ny, n,, .. .,
the condition Eq. (A23).

In the limit L — o0 we can approximate the sums that
occur in Eq. (41) with (divergent) integrals

np is constrained by

dPp
(2m)P

. | P,
Eue =V (152 + w1 + G023 + P

(42)

Although these integrals are mathematically meaning-
less, one can use some sort of regularization technique that
makes the integrals finite. Using the /- function regulari-
zation (see the definitions and intermediate stages of the
calculation in Appendix B) [59], we get the following
expression for the vacuum energy E,,.

27(D+1)/2 s=D—1
E,. — [% lzmz]—<.v/z>n+:)
(4mm)P/? ¢
1 V[mz](D+3)/2 . F(Ss—D—3
202 D/2 [lzmz] (/2 352*3 ]
8" (4m) I3 d—o

(43)

If D is even, the right-hand side of Eq. (43) is analytic at
s = 0 with the result
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VI r(—w[ 1 2 37 ]
T @mP? T(=Y) D+1

_ V[mz](DH)/z (_2)D/2 [ 102 3m2 ]

(4mP/2  1.35...(D+1) D+1/[

where we have used the following properties of the
I'-function [56,59]

d@)=TE+1)
F<5 ”)_1.3.5...(2,1_1)’ n=123...

When D is odd, the right-hand side of Eq. (43) is not
analytic at s = 0; it has simple poles at s = 0, one simple
pole from I'((=3=1), and another simple pole from
F(%). If we expand Eq. (43) about the pole, in the
case where D = 3, we find

V /m?\2 m? 2 S5m?
-=— 1+—02]— [1+—02]
S D%l al %

[1+1—602]1 %} (44)

Evac =

To get this expression, the following formula has been
used [56,59]

F(—n—i—e):(—’ll')”(é_y_i_1+%+...+%)+0(6)’

(45)

where n is a positive integer or zero, and vy is the Euler
constant.

The vacuum energy, when D is odd, is divergent; this is
just one example of a variety of ultraviolet divergences that
are encountered in quantum field theory. They arise in a
continuum theory due to the infinite number of degrees of
freedom that exist even in a finite volume, they can be
reabsorbed into a rescaling of the fields and into a rescaling
of coupling constants. These ultraviolet divergences can be
eliminated by hand since only energy differences can be
observed; they are only important if we worry about gravi-
tational phenomena, since in general relativity any form of
energy contributes to the gravitational interaction [54,57].

IV. NONCOMMUTATIVE CASIMIR EFFECT

The Casimir effect is a nonclassical, electromagnetic,
attractive force which is concerned with vacuum fluctua-
tions in the electromagnetic field between two uncharged
parallel conducting plates [38]. The size of this force was
first predicted and calculated in 1948 by Casimir, who
found that there is an attractive force per unit area between
two parallel, uncharged, perfectly conducting plates sepa-
rated by a distance a
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hcr?

240a*

Casimir —

This was first looked for by Sparnaay (1958), and re-
cently has been confirmed by Lamoreaux, Mohideen and
Roy, and recently by Chan, Aksyuk, Kleiman, Bishop, and
Capasso [38,60-66].

In this section, we will consider the complex scalar field
analogue of the Casimir effect, for this we consider a
massive complex scalar field in a D-dimensional rectan-
gular box, satisfying Dirichlet boundary conditions at
x; =0 and x; = a, but is unconfined in the remaining
directions, let Ly =a, L, =L; =...= Lp = L be the
sides of the box, and V = L|L,L5... Lp its volume,
ultimately we will let L becomes infinitely large. The
normalized eigenvectors y, and the eigenvalues o, of
—V? with Dirichlet boundary conditions Eq. (A25) on
the walls of the box are given by Eq. (A26) and (A27) [59].

The noncommutative vacuum energy E,,. is given by
Eq. (40)

Eyoe = Esgg + EE}:IIE)
- S v oo apn) a
A

where Ef,(;z is the classical vacuum energy

n=lny=—o np=-—
(47)
and E(VZICC ) is the pure noncommutative vacuum energy
NC
Esac) = _022(’"2 + UA)3/2

ny=1ny=—o0 np=-—
27Tnk)2:|3/2
+ . 48
(7 “

The classical vacuum energy can be written as

ES) = lim(s) = E(0), (49)

where the energy /-function E(s) is given by

-3 ¥ o 3 e (0

n=1ny=—o0 np=-—00

D (1-9)/
Se]

k=2
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In the limit L — oo, we can replace the sums over

ny, ns, ..., np with integrals, so the energy /- function
becomes
d°~'p r(n\w (1-5)/2
E(s)=1" Y + p? + mz] .
=g 2 | Gar Gt (0) +7

(D

Using the relations Eq. (B7)—(B13)) in Appendix B, the
energy {-function, when m — 0, can be written as

V —5 1" s—D
E(s) = l_s(477)(0—‘>/2a(5)0 ( 2-{(s=D), (52

e
where {(s) = Y%, n* is the Riemann {-function. Let us
now consider the interesting case where D = 3, in this case
the vacuum energy takes the form

m2A

720a%’

where A = L,L, = L? is the area of the parallel (un-
charged conducting) plates. The noncommutative vacuum

a

energy Eyac
np=—00

ES = E©0) =

2y
—7677§(—3) = - (53)

ES/I;ICC) 02[ 3s Z Z

ny=1ny=—o0

D
27 \2B0-5)/2
2]

k=2

(54)

s—0
can be written as (see Eq. (B14)—(B18) in Appendix B)

1% I*((3Av72D*2))

ES/I;ICC) 2 021—35

= 35— 3
a(@m) PR TES)
i 2 —((3s—=D-2)/2)
X Z[(T) - mz:l NEL)
n=1 a
When m — 0, the noncommutative vacuum energy E(Vacc)

becomes

£NO) _ 1 0 174 ( )D+2 r(w)
TR am @ =)
% (%’)_ ¢(Bs— D —2). (56)

In the case where D = 3, E(VI:CC) takes the form

1 T V 2 1 A
(NC) _ 2 02
Ev, =5 . (57
The total vacuum energy E,,. = Ei‘ji + E(VI;ICC ), is given by

hc77'2A 76>
Evac - Esf(i-i:(): ES/IECC) ( -

. 58
720a3 28a2) (58)
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The Casimir force reads

oE hem?A
FCasimir == = —

da 240a°

2 o,
(a g 477' 0 ) (59)
where the first term represents the classical attractive
Casimir force, while the second term represents the non-
commutative Casimir force, which is repulsive. From
Eq. (59) we see that the total vacuum energy E,,. has a
minimum at

5
Amin = 1|=—70,

oa 0 #0. (60)

At the equilibrium point a,;,, the total vacuum energy E.,
takes the value

. hcmA 1 726>
E'vtélél = Evac(amin) == 3 T he 2
720a; ;. 28 ai..
A
= —(3.8497 X 10728 Jm)ﬁ. (61)

It is well-known that the motion near the equilibrium may
be approximately described as harmonic oscillations, in-
deed near the equilibrium we may write a = ap;, + 96,
expanding the total vacuum energy E,,. in a Taylor series

Evac(a) = Evac(amin) + E(/ac(amin)6

+ %ECaC(amin)62 toee (62)
we get
hcm?A 1 7262
E(a) = — —3< — 3 —2)
720a 28
hcm?A 1 ([ hem?A
> 2T _< il )52. (63)
1800a;,,, 2 120afnin

Hence the equation of motion near the equilibrium may
be derived from the following (harmonic oscillator)
Lagrangian

e 1 252
2pA5 2pAa) 6%, (64)

where p is the density of the parallel plate, and w is the
angular frequency of vibration

hcar? 3.9499 X 10713 1
120pa’... NG 0

V. CONCLUSION

Throughout this work we have considered a noncommu-
tative complex scalar field theory with self-interaction, by
imposing noncommutativity to the canonical commutation
relations. The noncommutative field equations are derived
and solved, the vacuum energy is calculated to the second
order in the parameter of noncommutativity. As an ex-
ample, we have considered the Casimir effect, due to the
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zero-point fluctuations of the noncommutative complex
scalar field. It turns out that in spite of its smallness, the
noncommutativity gives rise to a repulsive force at the
microscopic level, leading to an effective Casimir potential

with a minimum at the point a,;, = \/5770.

APPENDIX A: MODE FUNCTIONS AND
WRONSKIAN RELATIONS

The noncommutative field equations Eq. (24) and (25)
may be written in the form

[—Aa—2+33—c] (x)=0 (A1)
ot ot P

where

A- [1 — 1622 — %]u — A~

c=[1-1gw D) - Pp=c 4

B =0(m>—V)e = —B"

and A~ denotes the transpose of the operator A.
To get the general solution of Eq. (A1) one begins by

looking for solutions of the form [55]
ug(t, X) = xa(X)e=0a'¢, (A3)

known as mode functions, where y, are the eigenvectors of
=2 . .
the operator —V* with eigenvalues o4

- 62)(A(37) = o xa(X) (A4)

and £, are 2 X 1 constant columns.
Insertion of Eq. (A3) into Eq. (Al) leads to the
eigenvector-eigenvalue problem

[(1 - iez&A)(&A — w2) + i@&AswA]gA =0, (A3
where we have used the abbreviation 6, = m?> + 4.

This eigenvector-eigenvalue problem has a nontrivial
solution if and only if the frequencies w, are roots of the
equation

det[(l - %.92@)(&,, — w2) + i6’6’A8wA] =0, (A6)
which can be written in the equivalent form

(1-16254) (04 — 030 = 25303 = 0. (AD)

Hence, the frequencies w, are the positive roots of the
equations
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The solutions are given by
o\ =1—05, + 454 + 6753]

Ga— 100, + 1625

o) =1+05, + |40, + 6252]

192 =3/2
ga O-A .

(A9)
=, +100, +
Because the mode functions

w1, %) = xa(@e o g (A10)

form a complete set the general solution of Eq. (A1) may
be expanded in terms of them

o(x) = Y[u Wa, + " (a, + Y ul ()b,
A A

+ ity (x)5,] (A1)

for some time-independent complex numbers a,, b, and

=(*)

their complex conjugates @,, b,, where u are the com-

plex conjugates of the mode functions u A Startlng from

the equations satisfied by the mode functions ug )

92 0
+B—-—

— Al2
a2 ot (Al2)

[ ¢ Jut0 =0

one can see, after some algebraic operations [55], that these
mode functions satisfy the Wronskian relations

—i/dg)?ul(:)*Wug) = SAB’

+lfd3xu(+) WM(+) = 6AB’

(A13)
—i[d3)?ug+)~Wu(B+) = (),
+i [ P Wil = o,
—i[dSX’uE\_)*Wu%_) = Sap
+l/d3)_c)uf47)~\</_)\/ﬁ(37) = 6AB’

(A14)

—ifd3iug_)NWu%_) =0,

+i [ Bl " Way ) = o,

PHYSICAL REVIEW D 85, 125013 (2012)
—i[d%uﬁ“ﬂ/u%ﬂ =0,

+i / Bzl Way) =0,

(A15)

[ qu W = o,

+i f Bzl Wiy = o,

—ifd3iug+)NWu§9—) =0,

+i f Pl Wil = o,
(Al6)

—ifd%uf)NWug) =0,

i [ P "Wl = o,

where

o J J

W(x) = —./’Zl(x)a + ‘ﬂ(x)g + B(x) (A17)

is the Wronskian operator corresponding to the differential
operator [55]
92 9

F=-A-—+B—-C

Al8
a2 ot (A18)

The Wronskian operator W has the following symmetry
and reality properties:

5

W~=-W  W=-W (A19)

Here O, O* and O~ denote the complex conjugate, the
Hermitian conjugate and the transpose of the matrix (or the
operator) O, respectively.

In order that these Wronskian relations must hold, the
operators A and C must be positive definite operators, but
the eigenvalues of the operators A and C are given by

Aul(x) = [1 — 1622 — 62)]u§f>(x)
= (1 — %626'A)u£‘t)(x)
Cul () = [1 — 102(m? — 62)](m2 — P ()

— (1 - %Bzé'A)é'Auf)(x) (A20)

so these eigenvalues are not positive for all indices A;
to solve this problem, we use the fact that § ~ 1013
[35-37,67], s0 (1 — 1625 ,) > 0 for all indices A such that
4 <4 ~ 10%. To make the spectrum of the operators A
and C bounded, we impose the following boundary con-
ditions on the eigenfunctions y4(X) of the operator —V?
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d

—Xxalxp, .. x5, xp) =

o
cees — j=12,...,D
dx; =z 0

(A21)

at some arbitrary point X = d, and « is some constant with
dimension (length)~/2). Note that in the classical limit
where 6 — 0 this condition is trivially satisfied.

As an example, we consider the free scalar field confined
in a D-dimensional rectangular box of volume V = L and
impose periodic boundary conditions on the walls of the
box, the normalized eigenfunctions y4(X) of the operator

- 62, are [59]

1 2. 2ri
\/;expl:z 7TL’”"xk:| with n, =0, =1, *2,...,

k=1
foreach k=1,2,..., D

(A22)

In this case the boundary conditions Eq. (A21) read

27n; aV
I l=—— =12....,D A23
I 7 0 J (A23)
If we choose o = 711)_\/ we get
1 1 2. 127n,\2
gy = o+ $ 2
4714 ,; L
1 ’pv
= o + eV, (A24)

where we have used the fact that @ is an infinitesimal
parameter such that #2m? < 1. Hence A and C are positive
definite operators.

As a second example, we consider the free scalar field
confined in a D-dimensional rectangular box of volume
V = LP and impose Dirichlet boundary conditions on the
walls of the box, the normalized eigenvectors y, of —V?
with Dirichlet boundary conditions on the walls of the box

xXa0, x5, x3, ..., xp) = xa(L, xp, %3, ..., xp) =0
XA(xl’ ey xk—l’ O, )Ck+1, ey )CD)
=)(A(xl,...,xk,l,L,ka,...,xD), k=2, ,D
(A25)
are given by [59]
_VQXA(J_C)) = o xa(X)
(X) = 2 Sin(ﬂ-n1 >eX I:i 2min ] 0
Xalx v I X1 p P’ Xk
with ny=1,2,... and n,=0,x1,£2,... for k=
2,3,....,D

PHYSICAL REVIEW D 85, 125013 (2012)

The eigenvalues are given by

D
- TNy 2 27Tl’lk 2
OA = Oningnp = (T) + Z( I .

k=2

(A27)

In this case, the boundary conditions Eq. (A21) read

ad
_XA(xl,u-,X . Xp)
ax X=a
2 sn(ﬂnl | |27Tn o ) D
= 1 —da ) = 4. s
% 1 9 J
(A28)
ad
Ia—XA(xl’ » Xj , Xp) )
X1 X=d
2 |nm (7Tl’l1 ) _« (A29)
= |2t ) =2
Vi L L 0
leading to the constraints
2mn; 1 L
| 77”/ T a\/_ —ﬁN, ]:1,2,.. ,D
L |sm( Ta)l 207 a
(A30)
1 Vv L
T |< el Len
L | cos(Tta))l 26 a

If we choose a = Jm and a; = 0, we get

1, _1 2[ (7Tn1>2 D(27Tnk>2]
- =- + +
4070 L kgz L

_ 2
g, D=LV

<1

—<1, A32
a; 8w ( )

where we have used the fact that # is an infinitesimal
parameter such that #2m? < 1. Hence A and C are positive
definite operators.

APPENDIX B: ZETA FUNCTION
REGULARIZATION

The noncommutative vacuum energy E,,. is given by
(¢ NC
Eyoe = ES/a(): + Esac)

= Z(\/mz + o, + %ez(nﬂ + oA)3/2), (B1)
A

where ES) is the classical vacuum energy
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55 3

ny=lny=—o -

Ay B CT
(B2)

NO) - .
and EN is the pure noncommutative vacuum energy

B0y 3 e 3 [ (T
8 ny=1ny=—o00 a

ST

To deal with the infinite sum of zero-point energies in
Eq. (B2) and (B3), we must introduce a regularization
method to extract finite expression [56,59,68,69]. One
elegant way of doing this is to use - function regulariza-
tion [59]; the idea of the method is to define the divergent
sum Y 4E, over zero-point energies in Eq. (B2) and (B3)
by the analytic continuation of a convergent sum. First, we
consider the infinite sum in Eq. (B2), we define the energy
{- function by [59]

(B3)

E(s) = Y E4(IE,) ", (B4)
A

where E, = \/m? + 0,4, s is a complex variable and [ is a
constant with units of length, introduced to keep (IE,)
dimensionless. This ensures that E(s) has dimensions of
energy for all values of s.

The classical vacuum energy can be written as

E\id = limE(s) = E(0), (BS)
where the energy - function E(s) is given by
(o] 0 2
E=12Y Y - z[u(””’)
n=1ny=—o0 np=—o0 a
27mk)2]<1—s>/2
+ . B6
kg( ” (B6)

In the limit L — oo, we can replace the sums over

ny, ns, ..., np with integrals, so the energy /- function
becomes
d°~'p [ (n m\2 (1=9)/2
E(s + pr+ mz] .
() . _1 2m)P- 1[( ) u

(B7)

Using the identity

PHYSICAL REVIEW D 85, 125013 (2012)

—z " di lo—at (B8)

1

T2
which holds for Re(z) > 0 and Re(a) > 0, where I'(z) is
Gamma function

I'(z) = [0 Y dr et (B9)

defined for Re(z) > 0, we obtain the following expression
for the energy /- function

V
E(s)=1"°— (S 1 / drts=3/2
n *1

(L) )

Xexpl —|{—) +m” |t
a

The integration over the (D — 1)- dimensional momentum

integral on the right-hand side can be performed with the
help of the relations [56,59,70,71]

D—13

" 'p .
Wexp(—pzt).

n/2

[arar =T [ e s

(B10)

and

(B11)

[+Oo dttzsilef‘”z = a
0

with the results

o 1% rEs2 ny
Blo=1 (47r)L—D/2g F(szl) Z[( )

ny =1

](D—S)/Z

(B12)

When m — 0, the energy - function becomes

14 m\D-s (822
(477')(01)/2(l<a) 1"(9;21) {(s—D),

where {(s) = 3> n™* is the Riemann - function.
By the same steps we will now calculate the non-

E(s)=1"°

(B13)

commutative vacuum energy ENO et E(s) be the energy

{- function
o0 o0 o0 2
EW=17F 5 - ¥ [ n (”;”)
ny=1ny=-—o00 np=—00
D 23(1—-5))/2
+ Z(zmk) ] ” (B14)
o\ L
Then
ERNO — limé(s) = £(0). (B15)
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In the limit L — oo, we can replace the sums over

ny, ns, ..., np with integrals, so the energy /- function
becomes

d’~1p 2 ((1-5)/2
=Y S (AT ]
(s) Z (27)P1 p

(B16)
Using the relation (B8), one gets

N
EO =10 2156 -1)

o0 D—1 3
x f drOs=902 f A7 P lmfar ey
0 m)P-1

(B17)

The integration over the (D — 1)- dimensional momentum
integral on the right-hand side can be performed
with the help of the relations (B10) and (B11), one
finds

PHYSICAL REVIEW D 85, 125013 (2012)

Vv 1
a(dm)P=V2TE (s — 1))

[ /nmT\2 —((3s—D-2)/2)
2
< 3(7) ]

% j'°° d(Gs=D=2/2-1 1
0

E(s) =173

Using Eq. (B9) to perform the integration over ¢, we get

3s—D—-2
v o TE=22)
a(@m)P~V2 TES)

% i[(ﬂ)z N mz:lf((&sfbfz)/z)‘
n=1 a

When m — 0, the energy /- function becomes

Els) =13

(B18)

= () T

alm®V2\a) T

% (%T)ﬂsg(m —D-2). (B19)
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