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The most direct experimental signature of a compactified extra dimension is the appearance of towers

of Kaluza-Klein particles obeying specific mass and coupling relations. However, such masses and

couplings are subject to radiative corrections. In this paper, using techniques developed in previous work,

we investigate the extent to which such radiative corrections deform the expected tree-level relations

between Kaluza-Klein masses and couplings. As toy models for our analysis, we investigate a flat five-

dimensional scalar ��4 model and a flat five-dimensional Yukawa model involving both scalars and

fermions. In each case, we identify the conditions under which the tree-level relations are stable to one-

loop order, and the situations in which radiative corrections modify the algebraic forms of these relations.

Such corrections to Kaluza-Klein spectra therefore have the potential to distort the apparent geometry of a

large extra dimension.
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I. INTRODUCTION

The existence of Kaluza-Klein (KK) states is perhaps the
most important phenomenological prediction of extra di-
mensions, and any future search for physics beyond the
standard model will involve a hunt for signs of these
particles. For this reason, it is vital to understand the
properties of these states and the effects that they induce
on low-energy physics. Of course, one important way in
which excited KK states can affect low-energy physics is
through the radiative corrections that they induce for zero-
mode masses and couplings. Indeed, over the past decade,
a significant body of literature has developed in which this
topic is studied in a variety of contexts and from a variety
of perspectives.

However, with only a few exceptions, relatively little
attention has been paid to the radiative effects that the
excited KK states may have on their own masses and
couplings. Since these excited KK states are likely to be
our only direct experimental probes into the apparent
geometry of the compactification manifold, it is important
to understand the extent to which such radiative corrections
can distort the expected tree-level relations that the KK
masses and couplings can be expected to satisfy, and which
would ultimately be used as evidence of a geometric under-
pinning for such states.

To help sharpen the discussion, let us consider the
simplest possible case of a single extra dimension com-
pactified on a circle. At tree level, the masses of the
corresponding KK states can be expected to obey the
well-known dispersion relation,

m2
n ¼ m2 þ n2

R2
; (1.1)

where mn is the mass of the nth KK mode, where m is the
‘‘bare’’ mass associated with our original five-dimensional
field, and where R is the radius of the extra dimension.
Note that this result assumes only that the extra dimension
is flat and that the original theory obeys five-dimensional
(5D) Lorentz symmetry. Likewise, at tree level, the cou-
plings in a Lorentz-invariant theory on an extra dimension
are universal, independent of mode number. Specifically, if
�n;n0;... represents a tree-level coupling between KK modes

ðn; n0; . . .Þ, then
�n;n0;... ¼ ��nþn0þ...;0; (1.2)

where � is a constant related to the five-dimensional bare
coupling and where the delta function enforces 5D mo-
mentum conservation at the associated vertex. The impor-
tant point is that �n;n0;... takes this highly restricted form,

depending on the KK mode numbers ðn; n0; n00; . . .Þ only
insofar as they determine whether the coupling vanishes or
takes a fixed, mode-independent value.
Like the masses and couplings in any theory, however,

the masses and couplings of KK states can receive radiative
corrections. Thus, it is possible that the tree-level relations
in Eqs. (1.1) and (1.2) will no longer hold once these
masses and couplings are replaced by their one-loop
renormalized values. At first glance, it might seem that
the forms of Eqs. (1.1) and (1.2) are fixed by 5D Lorentz
invariance. However, we must recall that 5D Lorentz in-
variance is actually broken by the compactification from
five to four dimensions. The effects of this compactifica-
tion are what allow more complicated dispersion relations
to emerge in the fully quantum-mechanical theory.
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Focusing specifically on the mass relation in Eq. (1.1),
we can imagine a number of potential outcomes depending
on the specific theory in question. One possibility is that
the one-loop renormalized KK masses will continue to
obey a relation that preserves the form of Eq. (1.1)—i.e.,
that all radiative corrections can be bundled into a new
effective bare mass m or a new effective radius R. Despite
the fact thatm andR aremerely fixed parameters describing
our ultraviolet theory, we shall refer to these outcomes as
effective ‘‘renormalizations’’ of these quantities. However,
the breaking of 5D Lorentz invariance might also allow the
spectrum of renormalized KK masses to have an entirely
new dependence on mode number, implying that even the
forms of the tree-level relations might be violated.

More precisely, we can classify the different types of
quantum corrections that our squared KK masses may
experience:

(i) Case #1.—The corrections to each m2
n are indepen-

dent of mode number n. In this case, the bare massm
is effectively renormalized, but the KK dispersion
relation retains the same mathematical form as it had
at tree level. In this case, 5D Lorentz invariance is
preserved locally. However, since compactification
breaks 5D Lorentz invariance globally by singling
out the compactified extra dimension, this occur-
rence would be entirely unexpected. We shall never-
theless give an example where this phenomenon
arises to one-loop order in Sec. III.

(ii) Case #2.—The corrections tom2
n are proportional to

the square of the mode number n. In this case, we
can bundle the renormalizations into an effective
rescaling or renormalization of the radius R. To the
extent that the radius is an arbitrary parameter and
the form of the general KK mass relation is pre-
served, this also would not indicate a direct local
breaking of 5D Lorentz invariance. As such, this
case would also be unexpected, just like case #1
above. However, since such radiative corrections
would manifest themselves as effectively modifying
the value of R, it would appear that our underlying
compactification geometry is distorted somewhat,
with the radius of the circle shifting slightly. We
stress, however, that this is not an actual geometric
effect since the underlying compactification geome-
try is presumably unchanged (unless there are also
renormalizations of the higher-dimensional metric).
This is therefore merely a change in the apparent
compactification geometry, as inferred through the
masses of KK states.

(iii) Case #3.—The corrections to m2
n depend on mode

number n nonquadratically. In this case, it turns out
that there is a particularly relevant division into two
subcases which we shall consider:
– Case #3a.—The masses of an infinite subset of
states in the KK tower shift according to case #1
or case #2 (corresponding to shifts in the values

of m or R), but this is not true of the entire KK
tower. Thus, the KK dispersion relation is bro-
ken for the KK tower on a whole. We shall refer
to this as an implicit violation of the KK disper-
sion relation.

– Case #3b.—The KK dispersion relation does not
survive for any infinite subset of states in the KK
tower. We shall refer to this as an explicit viola-
tion of the KK dispersion relation.

In this paper, we shall see explicit examples of both
of these cases. Note that for either of these two
subcases, the KK masses as a whole no longer obey
Eq. (1.1). It would therefore seem that these KK
states could no longer be identified as the Kaluza-
Klein excitations of a quantum field compactified
on a circle—i.e., the apparent compactification
geometry of the extra dimension would appear
distorted in such a way in such cases that not
even an underlying circle is recognizable.

In this paper, our goal is to begin to develop an under-
standing of the sorts of theories which might lead to
corrections in each class. Towards this end, we shall there-
fore study two ‘‘toy’’ models: �4 theory and Yukawa
theory, each in five dimensions with a single extra dimen-
sion compactified on a circle. For each of these two theo-
ries, we shall obtain results for the radiative corrections to
the masses and couplings of the KK modes, and examine
the properties of the physics which results.
Both of these toy models may ultimately be relevant to

the Higgs sector of the 5D standard model. Despite this
fact, we emphasize that the primary purpose of this paper is
not phenomenological, and indeed many of these radiative
corrections will turn out to be numerically fairly small.
Rather, our primary focus will be on the mathematical
forms of the radiative corrections that emerge in each
case, and on the general mathematical patterns that de-
scribe the deformations of KKmasses and couplings which
emerge as a result of radiative corrections. For example,
one unexpected result we shall find is that the masses of the
fermions in the Yukawa theory receive corrections that
actually grow with mode number. Another is that a �5

interaction is radiatively induced in this theory. Even the
�4 theory will hold some surprises. For example, as we
shall demonstrate, radiative corrections tend to enhance the
couplings involving the production of excited KK modes.
This paper is organized as follows. First, in Sec. II, we

begin with some general comments concerning renormal-
ization and regulators in ‘‘mixed’’ spacetimes in which
some dimensions are compactified and others are not. We
also describe the general setup we shall be employing.
Then, in Sec. III, we analyze the ��4 theory, concentrating
on corrections to the masses and couplings of the KK
states. In Sec. IV, we then proceed to consider the
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Yukawa theory; as we shall see, the Yukawa theory is
significantly more complex than the ��4 theory due to
the involvement of fermions and issues of parity and
chirality. Finally, in Sec. V, we present our conclusions
and discuss how our results connect with other calculations
which have previously appeared in the literature.

II. GENERAL SETUP

As stated in the Introduction, our goal is to determine
how the tree-level masses and couplings of KK modes
behave under renormalization. Before proceeding to exam-
ine the cases of specific toy models, however, there are
some general remarks which are in order and which will
apply to all cases we shall consider.

In general, KK masses and couplings will accrue radia-
tive corrections which are divergent. However, although
each of these corrections is individually divergent, the
difference between a correction corresponding to an
excited KK mode and that corresponding to the zero
mode is observable and therefore finite [1,2]. For example,
although the mass of the zero mode and mass of the first-
excited mode of a KK tower will each generally accrue
radiative corrections which are infinite, the difference
between these masses (i.e., the mass splitting between
these KK modes) is expected to remain finite even after
renormalization. The first step in determining such radia-
tive corrections is therefore to recast equations such as
Eq. (1.1) into forms whose corrections will be nothing other
than these finite differences. In other words, we wish to
express these tree-level equations as relations directly be-
tween measurable, four-dimensional quantities, eliminat-
ing the bare Lagrangian parametersm and � in the process.

In the case of Eq. (1.1), this is not hard to do. Since it
follows from Eq. (1.1) that m0 ¼ m at tree level, we can
rewrite Eq. (1.1) in the tree-level form

m2
n ¼ m2

0 þ
n2

R2
; (2.1)

whereupon it follows that any possible one-loop radiative
correction to this result must be finite and take the form

m2
n ¼ m2

0 þ
n2

R2
þ Xðm2Þ

n

R2
; (2.2)

where Xðm2Þ
n represents the finite mass correction term.

Note that we have chosen to explicitly scale out a factor

of R2 in this correction term so that the quantity Xðm2Þ
n is

dimensionless.

Given this definition for Xðm2Þ
n as a relative mass correc-

tion, we see that case #1 from the Introduction corresponds

to Xðm2Þ
n ¼ 0, while case #2 corresponds to Xðm2Þ

n � n2. By
contrast, Xn ¼ constant � 0 is actually an example of
case #3a, since this corresponds to a situation in which
all of the excited states in our KK tower have a uniform
shift relative to the zero mode. Thus, although the infinite

tower of excited states by themselves behave according to
case #1, the entire KK tower (including the zero mode)
does not.
In a similar way, we may also recast Eq. (1.2) in the form

�n;n0;... ¼ �0;0;...�nþn0þ...;0; (2.3)

whereupon a corresponding one-loop equation should take
the form

�n;n0;... ¼ ½�0;0;... þ Xð�Þ
n;n0;...��nþn0þ...;0; (2.4)

where Xð�Þ
n;n0;... is likewise a finite coupling correction.

The goal of this paper is to calculate these finite correc-

tions Xðm2Þ
n and Xð�Þ

n;n0;... to one-loop order in two different

theories, and to explore the properties of these corrections.
Of course, the emergence of such correction terms ulti-
mately reflects the breaking of the higher-dimensional
Lorentz invariance that is induced by the compactification
of the fifth dimension on a circle. We remark, however, that
although compactification of the fifth dimension breaks 5D
Lorentz invariance, translational invariance along the fifth
dimension (and thus conservation of the corresponding mo-
menta) is still maintained. It is for this reason that our radia-
tively corrected couplings �n;n0;... must still be proportional to

an overall Kronecker � factor, as indicated in Eq. (2.4).
At first glance, given a specific theory, it might seem to

be a rather straightforward exercise to evaluate the radia-
tive corrections X in Eqs. (2.2) and (2.4). However, as
discussed in Refs. [1,2], there are numerous subtleties
which come into play. The chief complication is that
although we expect our calculations to result in finite
relative corrections X, the correction to each individual
KK mass and coupling will itself be infinite, and we must
therefore utilize a particular regulator scheme in order to
extract meaningful results. However, in so doing, it is
critical that we choose a regulator which preserves not
only the four-dimensional Lorentz invariance that remains
after the compactification, but also the original higher-
dimensional Lorentz invariance which existed prior to
compactification. This is because a regulator must, by
design, be capable of handling ultraviolet (i.e., local
short-distance) divergences, and the physics of the ultra-
violet limit is governed by such five-dimensional symme-
tries in which the global process of compactification plays
no role. Moreover, in contexts in which our original higher-
dimensional Lagrangian contains a gauge symmetry, our
regulator should respect this higher-dimensional gauge
invariance as well.
This is an important point. Indeed, use of any regulator

which fails to respect the appropriate five-dimensional UV
symmetries such as 5D Lorentz invariance would introduce
spurious, unphysical 5D Lorentz-violating contributions
into the X corrections, and it would be difficult to disen-
tangle these spurious contributions from the bona-fide
physical effects of the 5D Lorentz violation induced by
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compactification. This would be completely analogous to
calculating a one-loop correction to the photon mass in
QED with a regulator that breaks gauge invariance: a
nonzero result will generically arise, but this would merely
be an artifact of the calculational technique and would not
reflect the true underlying physics. Our current situation
with 5D Lorentz invariance is similar, except that the
compactification itself also induces a breaking of 5D
Lorentz symmetry. However, our goal is to study the
effects of this compactification (as manifested by the ap-
pearance of radiative corrections X that deform the forms
of the tree-level KK mass and coupling relations) without
mixing such effects with the unphysical effects of having
chosen an unsuitable regulator.

In Refs. [1,2], two regulators were developed that can
handle precisely such calculations. These are the so-called
‘‘extended hard cutoff’’ regulator scheme and the so-called
‘‘extended dimensional regularization’’ scheme. Although
based on traditional four-dimensional regulators, the key
new feature of these higher-dimensional regulators is that
they are specifically designed to handle mixed spacetimes
in which some dimensions are infinitely large and others
are compactified. Moreover, unlike most other regulators
which have been used in the extra-dimension literature,
these regulators are designed to respect the original higher-
dimensional Lorentz symmetries that exist prior to com-
pactification, and not merely the four-dimensional symme-
tries which remain afterward. As we have discussed above,
this distinction is particularly relevant for calculations of
the physics of the excited Kaluza-Klein modes themselves,
and not merely their radiative effects on zero modes. By
respecting the full higher-dimensional symmetries, our
regulators avoid the introduction of spurious terms which
would not have been easy to disentangle from the physical
effects of compactification.

Using the regulators developed in Refs. [1,2], we can
evaluate the corrections X to one-loop order in a variety of
different theories. Regardless of the theory, however, it
turns out [1,2] that one-loop radiative corrections Xn with
a single KK index n can generally be expressed in the form

Xn ¼
X1

r¼�1

1

jnj
Xjnj�1

j¼0

Z 1

0
dv½�nðr; v; jÞ � �0ðr; vÞ�; (2.5)

where �0 and �n are finite, regulator-independent
functions and where the summations and integration in
Eq. (2.5) are all absolutely convergent. Here v is a
Feynman parameter, and it is assumed that all of the relevant
diagrams involved in such radiative corrections can be
evaluated with the use of a single Feynman parameter.
Indeed, an expression analogous to Eq. (2.5) is available
in certain cases requiringmultiple Feynman parameters [1],
and we shall see an example of this in Sec. IV.

At first glance, the result in Eq. (2.5) might not seem
particularly noteworthy. After all, an expression of this
general form arises immediately upon a straightforward

application of the Feynman rules, with appropriate one-
loop integrals taking the place of the � functions in Eq.
(2.5). However, such integrals are generally divergent. The
important point in Eq. (2.5), by contrast, is that the �
functions in Eq. (2.5) are both finite and regulator inde-
pendent; moreover, with the appropriate � functions in-
serted into Eq. (2.5), it turns out that the summations and
integration in Eq. (2.5) are also convergent. That such �
functions exist is the main substance of the results of
Refs. [1,2], and it is the use of the special regulators in
Refs. [1,2] which allows these functions to be obtained.
The explicit forms of these � functions therefore encapsu-
late the physical effects of the one-loop renormalizations
without including any of the spurious mathematical arti-
facts that might arise due to the use of regulators which do
not respect the full ultraviolet symmetries of the problem.
In this paper, therefore, we shall assume that the reader

is familiar with the calculational techniques leading to
these � functions, and we shall simply quote our final
results for the specific theories at hand. We also note that
in this paper we will calculate radiative corrections to KK
couplings as functions of a canonical (non-Wilsonian)
renormalization scale �. By contrast, we will calculate
radiative corrections to KK masses on resonance (i.e.,
with mass renormalization conditions imposed on shell).

III. ��4 THEORY

As our first simple toy model, in this section we will
examine the case of a purely bosonic ��4 theory on a
circular extra dimension of radius R.
We begin with a five-dimensional theory defined by the

�4 action

S¼
Z
d4x

Z 2�R

0
dy

�
1

2
@M��@M��1

2
m2�����ð5Þ

4!
�4

�
;

(3.1)

where y is the coordinate along the extra dimension, where

xM � ðx�; yÞ, where �ð5Þ is a 5D coupling, and � is
assumed to be a real scalar. Proceeding in the usual way,
we decompose the� field in terms of Kaluza-Klein modes,

�ðx�; yÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2�R

p X
n2Z

�nðx�Þeiny=R; (3.2)

and substitute this back into the original action in Eq. (3.1).
Since the 5D field � is real, we have ��

n ¼ ��n.
Integrating over y, we thus obtain a purely four-
dimensional action of the form

S ¼
Z

d4x

�
1

2

X
n

@���
n@��n � 1

2

X
n

m2
n�

�
n�n

� 1

4!

X
ni2Z

�n1;n2;n3;n4�n4�n3�n2�n1

�
; (3.3)

where the 4D KK masses m2
n are given exactly as in

Eq. (1.1) and where the 4D couplings �n1;n2;n3;n4 are given

by a special case of Eq. (1.2):
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�n1;n2;n3;n4 ¼
�ð5Þ

2�R
�n1þn2þn3þn4;0: (3.4)

As discussed above, the � function in Eq. (3.4) expresses
the conservation of five-momentum at a vertex, as appro-
priate for compactification on a circle in which transla-
tional invariance in the extra dimension is preserved.

Following the steps outlined in Sec. II, we can now
convert these mass and coupling relations to the forms
given in Eqs. (2.1) and (2.3), recasting them as direct
tree-level relations between observable, four-dimensional
quantities. We therefore expect that these equations will
accrue finite one-loop corrections of the forms given in
Eqs. (2.2) and (2.4). In order to explicitly calculate these

radiative corrections Xðm2Þ
n and Xð�Þ

n1;n2;n3;n4 in the current
��4 theory, we must evaluate the one-loop diagrams
shown in Fig. 1. Using the regulators developed in
Refs. [1,2], we then find the following results.

A. Mass corrections

We first examine the mass corrections Xðm2Þ
n in this

theory. Recall from Eq. (2.5) that each correction Xn can
be expressed in terms of corresponding functions �n and
�0. However, to one-loop order, it turns out that

Xðm2Þ: �n ¼ �0 ¼ 0 for all n: (3.5)

In other words, the corresponding mass corrections Xðm2Þ
n

all vanish, and the tree-level mass relation in Eq. (2.1)
remains intact to one-loop order.

This is clearly an example of case #1 from the
Introduction. We emphasize that this does not mean that
there are no radiative corrections to the individual KK
masses—indeed, each individual KK mass receives a cor-

rection which is infinite. However, these mass corrections
are all equal to each other. This implies that the corrections
to each KK mass are independent of the mode number n,
and consequently can be bundled within m0. Equivalently,
these radiative corrections can be absorbed within a single
shift in the bare parameter m in our original higher-
dimensional Lagrangian. Thus, the relation between zero-
mode masses and excited KK masses remains unchanged.
It is easy to see why this situation arises for the ��4

theory. The relevant diagram for one-loop mass renormal-
ization is shown in Fig. 1(a). Because of the topology of
this diagram, the momentum that flows through the loop is
wholly independent of the Kaluza-Klein index on the
external line. Thus, each external Kaluza-Klein state ac-
crues exactly the same mass correction, and it is possible to
bundle this into an effective ‘‘renormalization’’ of the
constant term m2

0. In other words, only one mass counter-

term is needed, and the KK mass relations predicted by 5D
Lorentz invariance are preserved.
We stress, however, that this is merely a one-loop phe-

nomenon. For example, two-loop diagrams contributing to
mass renormalization are shown in Figs. 1(e) and 1(f).
While Fig. 1(e) also leads to a mass renormalization which
is independent of the Kaluza-Klein number of the external
line, the contribution from Fig. 1(f) clearly depends non-
trivially on this index. Thus, to two-loop order, Fig. 1(f)
represents the only diagram leading to radiative effects
which break the tree-level mass relations.

B. Coupling corrections

We now turn to the coupling corrections Xð�Þ
n1;n2;... in ��4

theory. It is here that violations of 5D Lorentz invariance
will appear at one-loop order.

(c)

(f)

(b)

(e)

(a)

(d)

FIG. 1. Relevant diagrams for renormalization in the ��4 theory: (a) one-loop mass renormalization; (b), (c), (d) one-loop coupling
renormalizations; (e), (f) two-loop mass renormalizations. Of the diagrams contributing to mass renormalization, only diagram
(f) yields a contribution which depends on the Kaluza-Klein mode number of the external particle. Thus, only diagram (f) produces
Lorentz-violating deformations away from the form of the tree-level Kaluza-Klein mass relation.
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The one-loop diagrams which contribute to the radiative
corrections to the four-scalar couplings are shown in
Figs. 1(b)–1(d). These are respectively s-, t-, and
u-channel diagrams, and as such they can be treated simi-
larly. If we establish our momentum-labeling conventions
for incoming and outgoing states as indicated in Fig. 2,
then the corresponding Mandelstam variables for our five-
momenta take the forms

s ¼ ðp1 þ p2Þ2 � ðn1 þ n2Þ2=R2;

t ¼ ðp1 � p3Þ2 � ðn1 � n3Þ2=R2;

u ¼ ðp1 � p4Þ2 � ðn1 � n4Þ2=R2:

(3.6)

As customary in four-dimensional theories, these variables
continue to satisfy the on-shell relation sþ tþ u ¼ 4m2,
where m is now the five-dimensional mass given in
Eq. (3.1).

We then find that at one-loop order, the couplings
�n1;n2;n3;n4 are no longer universal; new corrections

Xð�Þ
n1;n2;n3;n4 are introduced. Defining these corrections

through the relation

�n1;n2;n3;n4 ¼
�
�0000 þ �2

4�
Xð�Þ
n1;n2;n3;n4

�
�n1þn2�n3�n4;0;

(3.7)

we find that they each receive three contributions:

Xð�Þ
n1;n2;n3;n4 ¼ �n1þn2ðsÞ þ �n1�n3ðtÞ þ �n1�n4ðuÞ: (3.8)

These three contributions correspond to the diagrams in

Figs. 1(b)–1(d) respectively. Unlike Xð�Þ itself, the � func-
tions depend on only a single KK index and a single
Mandelstam variable; they can thus be expressed in the
form in Eq. (2.5). Using the techniques discussed in
Refs. [1,2], we then find that the corresponding� functions
are given by

�nðsÞ:
�
�nðr; v; j; sÞ ¼ 1

4� log½ðr� vÞ2 þM2ððvþ jÞ=jnj; sÞR2�
�0ðr; v; sÞ ¼ 1

4� log½r2 þM2ðv; sÞR2�; (3.9)

where

M 2ðx; sÞ � xðx� 1Þsþm2: (3.10)

For notational simplicity throughout the rest of this paper,
we shall henceforth define

yn �
�
v for n ¼ 0
ðvþ jÞ=jnj for n � 0

(3.11)

and

	n �
�
r for n ¼ 0
r� v for n � 0:

(3.12)

We can then simply write our result in the compact form

�n ¼ 1

4�
log½	2

n þM2ðyn; sÞR2�: (3.13)

These results are completely general. However, in order
to evaluate these results numerically, it is necessary to
choose specific values for the kinematic Mandelstam var-

iables ðs; t; uÞ. At first glance, one might be tempted to
impose the sorts of renormalization conditions that would
apply to processes involving only zero-mode fields, such as
s ¼ 4m2 and t ¼ u ¼ 0. However, such conditions corre-
spond to situations in which all of the modes have vanish-
ing spatial momenta, and thus cannot accommodate the
sorts of processes which are of interest to us, such as those
involving the production of excited KK modes. Similarly,
one might consider a renormalization condition such as
s ¼ t ¼ u ¼ ��2, where � is the floating energy scale
associated with an experiment. However, these conditions
cannot be satisfied when any of the incoming or outgoing
particles are on shell.
We shall therefore adopt renormalization conditions of

the form

s ¼ �2 þ 4m2; t ¼ u ¼ ��2=2: (3.14)

Note that in the center-of-mass frame (defined as that
frame in which all spatial components of the total five-
momentum of the system vanish), we may identify the
energy scale � as

�2 ¼ 4ð ~p2 þ p2
5Þ; (3.15)

where ~p and p5 are the spatial momentum components of
any single particle alone. (Of course, in this center-of-mass
frame, the assigned KK mode numbers n� Rp5 of these
states might differ from those we have been assigning in
our four-dimensional ‘‘lab’’ frame.) However, despite the
somewhat intuitive form of the renormalization conditions
in Eq. (3.14), it is important to realize that these conditions
place special restrictions on the scattering angle. Such

(p  ,n  /R)

(p  ,n  /R)(p  ,n  /R)

(p  ,n  /R)

1 1

2 2

3 3

4 4

FIG. 2. Momentum labeling for 5D Mandelstam variables in
Eq. (3.6).
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restrictions are unfortunately unavoidable, and will arise
for any such constraint on the three Mandelstam variables.

In Fig. 3, we plot the difference between the one-loop
�0;0;1;�1 coupling and the one-loop �0000 coupling as a

function of �. This difference, of course, would have
been zero at tree level, and reflects the breaking of 5D
Lorentz invariance that appears at one-loop order in this
theory. Note that �0;0;1;�1 is the coupling which governs the

process by which two zero-mode states scatter/annihilate
to produce two lowest-lying excited KK states. As we see
from Fig. 3, one-loop effects cause �0;0;1;�1 to become

larger than �0000. This implies that there is a small
enhancement of the coupling between the zero mode and
the first-excited KK mode relative to the couplings
amongst the zero modes themselves. Although this
enhancement is extremely small, we see from Fig. 3 that
it is largest precisely at the threshold for the production of
the first-excited mode, falling significantly as � increases.
We also observe that this enhancement decreases as the
five-dimensional scalar mass m increases, and ultimately
vanishes as m ! 1.

It is clear from this plot that the one-loop coupling
corrections in the ��4 theory are exceedingly small.

However, we shall see that the analogous corrections in
Yukawa theory will be significantly larger.
Finally, we observe that for certain values of s, the

function �ð�Þ
n ðsÞ in Eq. (3.9) can be complex. Although

the imaginary part of an amplitude can be important,
only the real part of an amplitude plays a role in the
renormalization of Lagrangian parameters such as masses
and couplings. Therefore, unless explicitly stated other-
wise, it is to be understood throughout the remainder of this
paper that we are implicitly taking the real part of any
expression which describes the magnitude of a radiative
correction for any KK parameter.

IV. YUKAWATHEORY

We now turn to the case of 5DYukawa theory in which a
scalar particle interacts with a Dirac fermion. In some
sense, this is the next-simplest theory to consider.
Moreover, as we shall see, the structure of the radiative
corrections is far more intricate, both for the KK masses
and for the couplings.
For Yukawa theory, we will consider two cases: one in

which the scalar is real, and the other in which it is
complex. In the case of a real scalar, we shall take the
5D action to be

S ¼
Z

d4x
Z 2�R

0
dy

�
1

2
@M�@M�� 1

2
m2

��
2

þ �c ði�M@M �mc Þc �G� �c c

�
; (4.1)

where � and c , respectively, denote the scalar and Dirac
fermion (with five-dimensional masses m� and mc , re-

spectively) and where G is the Yukawa coupling between
the two. In the case of a complex scalar, by contrast, our
action is slightly modified:

S ¼
Z

d4x
Z 2�R

0
dy

�
1

2
@M�

�@M�� 1

2
m2

��
��

þ �c ði�M@M �mc Þc �Gð� �c c þ H:c:Þ
�
: (4.2)

As we shall see, these two cases lead to somewhat different
results. Note that in both cases, our gamma matrices take
the form �M � ð��; ~�5Þ, where ~�5 � i�5 ¼ ��0�1�2�3.
Performing the KK reduction of this theory is relatively

straightforward. We first consider the case in which � is
real. The KK decomposition of the scalar is again given by
Eq. (3.2), while the KK decomposition of the fermion takes
the analogous form:

c ðx�; yÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2�R

p X
n2Z

c nðx�Þeiny=R: (4.3)

We then obtain the effective four-dimensional action

FIG. 3. One-loop enhancement of the coupling �0;0;1;�1 for the
production of the lowest-lying excited KK states. We plot �� �
X0;0;1;�1 ¼ ð�0;0;1;�1 � �0000Þ=
 as a function of the energy scale

�R, where 
 � �2
0000=4�. Curves A, B, and C, respectively,

represent the cases with m2R2 ¼ f0; 0:25; 0:5g. As always, the
four incoming and outgoing KK modes are taken to be on shell,
and the scale � is defined according to the conditions in Eq.
(3.14). Note that in this plot, the scale � runs from the ðn3; n4Þ ¼
ð1;�1Þ threshold energy at which the lowest-lying excited KK
states can be produced to the ðn3; n4Þ ¼ ð2;�2Þ threshold energy
at which the second-lowest excited states can be produced. We
observe that, in general, these radiative corrections are greater
for smaller five-dimensional masses m and decrease as functions
of �.
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S ¼
Z

d4x

�
1

2

X
n

@��
�
n@

��n þ
X
n

�c ni�
�@�c n

� 1

2

X
n

m2
�n�

�
n�n �

X
n

�c nmc nc n

�X
n

X
n0

�n0�n
�c n0 ĝn;n0c n þ � � �

�
; (4.4)

where the tree-level boson masses are given by

m2
�n ¼ m2

� þ n2

R2
(4.5)

and where the fermion masses mc n and couplings ĝn;n0 are

matrices in spinor space, each with a ‘‘vector’’ or ‘‘Dirac’’
part (proportional to the identity in spinor space) and an
‘‘axial’’ part (proportional to �5):

mcn ¼ mðDÞ
c n � imðAÞ

c n�
5; ĝn;n0 ¼ gðDÞ

n;n0 þ igðAÞ
n;n0�

5

(4.6)

with tree-level values given by

mðDÞ
c n ¼ mc ; mðAÞ

cn ¼ n=R;

gðDÞ
n;n0 ¼ G=

ffiffiffiffiffiffiffiffiffiffi
2�R

p � g; gðAÞ
n;n0 ¼ 0:

(4.7)

Note that the axial part of the boson/fermion coupling
vanishes at tree level.

The situation is nearly identical for a complex scalar
field. Following the same Kaluza-Klein reduction results in
a four-dimensional action of the form in Eq. (4.4) except
that we no longer identify ��

n with ��n, and we replace
�r0�r ! �r0�r þ��

r�r0 in the final coupling term.

It may seem, at first glance, that the appearance of the
axial �5 terms in the four-dimensional action violates four-
dimensional parity symmetry. However, it turns out that all
terms which are proportional to �5 will also be odd with
respect to n ! �n. As a result, parity will actually be
conserved at all energy scales. This, of course, is ultimately
a reflection of underlying five-dimensional symmetries.
Indeed, while �5 is odd under the four-dimensional P
and CP symmetries, the quantity n is actually proportional
to the momentum component along the fifth dimension.
Thus, the quantity n is ‘‘odd’’ under P, thereby making the
product �5n even, as required.

We see, then, that there are five quantities in KK-
reduced 5DYukawa theory which are capable of receiving

radiative corrections: m�n, m
ðDÞ
c n , m

ðAÞ
c n, g

ðDÞ
n;n0 , and gðAÞ

n;n0 . We

shall now explore the one-loop corrections to each of these
in turn.

A. Boson KK mass corrections

Regardless of whether the 5D scalar is real or complex,
we shall parametrize the one-loop corrections to the KK
boson masses m�n in the form

m2
�n ¼ m2

�0 þ
n2

R2
þ g2

4�R2
X
ðm2

�
Þ

n ; (4.8)

where g is the universal tree-level coupling in Eq. (4.7), as
appropriate for a calculation of this order. Using the tech-
niques developed in Refs. [1,2], we then find that the
corresponding functions �n are given by

�nðr; v; jÞ ¼ 1

�
f½	2

n þ ð1� 2ynÞjnj	n� logð	2
nÞ

� ½	2
n þ ð1� 2ynÞjnj	n þ 3M2

�ðyn;m2
�ÞR2�

� logð	2
n þM2

�ðyn;m2
�ÞR2Þg; (4.9)

where yn and 	n are, respectively, defined in Eqs. (3.11)
and (3.12) and where

M 2
�ðy;m2

�Þ ¼ m2
c þ yðy� 1Þm2

�: (4.10)

This compact result contains a wealth of information.

One important feature is the behavior of X
ðm2

�
Þ

1 —i.e., the

radiative correction to the mass of the first-excited KK
boson relative to the mass of the KK zero mode—as a
function of the two five-dimensional masses in our prob-
lem, m� and mc . This behavior is shown in Fig. 4, where

X
ðm2

�
Þ

1 is plotted as a function of mc for three different

‘‘benchmark’’ values of m�. Several features are immedi-

ately apparent:

(i) X
ðm2

�
Þ

1 ¼ 0 for m� ¼ mc ¼ 0. We shall see, in fact,

that this is a general phenomenon for all X
ðm2

�
Þ

n .

(ii) X
ðm2

�
Þ

1 is negative when mc ¼ 0 and m� � 0. This

means that the mass splitting between the first-
excited KK boson mode and the KK zero mode is
reduced by one-loop radiative corrections—i.e.,
these two states begin to approach each other.
Moreover, the magnitude of this effect increases
with increasing m�.

(iii) X
ðm2

�
Þ

1 ! 0 as mc ! 1 for all m�. This occurs

because the functions �n and �0 in Eq. (4.9)
approach each other in this limit. There is therefore
no difference in this limit between the corrections
to the masses of the KK zero mode and first-excited
mode—i.e., in this limit the tree-level mass spacing
between the zero mode and first-excited mode is
preserved to one-loop order.

(iv) X
ðm2

�
Þ

1 is generally nonmonotonic as a function of

mc . For m� above a critical value, X
ðm2

�
Þ

1 actually

reaches a positive maximum for a value of mc

which increases with m�. This nonmonotonic be-

havior emerges as the result of a competition be-
tween the corrections to the mass of the first-excited
KK mode and the corrections to the mass of the KK
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zero mode. Indeed, each of these corrections is
individually monotonic.

(v) Finally, although it may be somewhat difficult to

observe in Fig. 4, it turns out that X
ðm2

�
Þ

1 actually

experiences a kink (i.e., a slight discontinuous
change in slope) as a function of mc prior to reach-

ing its maximum value. Indeed, this occurs for all
m� > 0. These kinks mark the thresholds for the

decays of either the KK boson zero mode or the KK
first-excited mode. Indeed, these thresholds corre-
spond to values of mc at which the imaginary parts

of the diagrams which renormalize the scalar masses
become zero.

We can also examine X
ðm2

�
Þ

n as functions of n. This
behavior is shown in Fig. 5 for different values of m�

and mc . Once again, certain features are readily apparent:

(i) For m� ¼ mc ¼ 0, we find that X
ðm2

�
Þ

n ¼ 0 for all

n � 0. This is therefore an example of case #1 from
the Introduction: the tree-level form of the KK mass
relation for the bosonic fields is preserved at one loop.
We thus see that it is only the presence of a nonzero

five-dimensional mass, either m� or mc , which

breaks the apparent 5D Lorentz invariance as far as
the tree-level bosonic spectrum is concerned.

(ii) For m� ¼ 0 and mc � 0, we find that X
ðm2

�
Þ

n ¼
constant as a function of n. In fact, this constant
depends onmc in a nonmonotonic way, hitting zero

only formc ¼ 0 (as discussed in the previous case).

This is therefore an example of case #3a from the
Introduction: all excited KK modes have masses
which shift uniformly relative to that of the KK
zero mode. Thus, all KK modes continue to obey
the tree-level mass relation except for the zero
mode.

(iii) Form� � 0, we find that X
ðm2

�
Þ

n increases with n but

quickly reaches a nonzero asymptote as n ! 1.

This is therefore an example of case #3b, but with a

behavior resembling that of case #3a for the upper-

most portions of the KK tower.

It should come as no surprise that the radiative correc-

tions to KK masses are generically of the form given in

case #3a when n ! 1—i.e., that they become independent

FIG. 4. The relative one-loop boson mass corrections X
ðm2

�
Þ

1 between the first-excited KK boson mode and the KK zero mode, plotted
as functions of mc for different values of m�.
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of n as n ! 1. The limit of large KK mode numbers

corresponds to high momentum components along the

extra dimension, and the discretization of momentum

that arises due to compactification becomes negligible in

this limit. We therefore expect that the limit of high KK

mode numbers should correspond to an uncompactified

theory in which the tree-level KK dispersion relation holds

(signifying the restoration of a full 5D Lorentz invariance).

By contrast, the lower portions of the KK tower are more

sensitive to the discretization of the momentum in the

compactified dimension. Thus, the upper portions of the

KK tower have approximately equal mass-squared spac-

ings relative to each other, but this pattern does not hold all

the way down to the zero mode.
It is also instructive to see how this asymptotic behavior

of equal spacings emerges analytically. Towards this end,
we can use the �n functions in Eq. (4.9) in order to

calculate the contribution to X
ðm2

�
Þ

n from states with a fixed
mode number n0. For simplicity, we shall assume that
n0 	 n, and likewise we shall assume that n0 is chosen
sufficiently large that� 	 m�, mc , where � � n0=R. We

can then expand this contribution in powers ofm=�, where
m denotes eitherm� ormc , and we find that this expansion

takes the form

g2

4�2

��7m2
c �m2

�

3

�
1

�2
þ

�9m2
c �m2

�

10R2
� 11m4

c

2
þ 1

6

�
�1

þ 1

10n2

�
m4

� þ 1

3

�
5� 1

5n2

�
m2

cm
2
�

�
1

�4
þOðm6=�6Þ

�
:

(4.11)

Although we have made no assumptions about the size of n
itself, we see that each coefficient in our expansion
depends on n only through negative powers. This is ulti-
mately the source of the fact that our total mass corrections
exhibit a finite, asymptotic limit as n ! 1. Indeed,
although the results in Eq. (4.11) hold only for very large
n0, it turns out that the behavior illustrated in these results is
in fact completely general, and holds even for smaller
values of n0 as well.

B. Fermion KK mass corrections

We now turn to the renormalized masses of the KK
fermion modes. Recall from Eq. (4.7) that these masses

FIG. 5. The relative one-loop corrections X
ðm2

�
Þ

n for the KK boson squared masses, plotted as functions of n for different values ofm�.
In each plot, Curves A, B, and C represent the cases with m2

cR
2 ¼ f0; 0:25; 0:5g, respectively—a naming scheme that will continue to

hold for all remaining figures in this paper.
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contain both a vector (or Dirac) component mðDÞ
c and an

axial component mðAÞ
c . Parametrizing the one-loop correc-

tions to these masses in the form

mðDÞ
c n ¼ mðDÞ

c 0 þ
g2

4�R
X
ðmðDÞ

c
Þ

n ; mðAÞ
c n ¼ n

R þ g2

4�RX
ðmðAÞ

c
Þ

n ;

(4.12)

we find that the corresponding �n functions take the forms

X
ðmðDÞ

c
Þ

n : �ðcDÞ
n ¼ mcR

4�
ð1þ ynÞ logð	2

n þM2
c ðynÞR2Þ

X
ðmðAÞ

c
Þ

n : �ðcAÞ
n ¼ signðnÞ

4�
	n½logð	2

n þM2
c ðynÞR2Þ

� logð	2
nÞ�; (4.13)

where

M 2
c ðyÞ � ðy� 1Þ2m2

c þ ym2
�: (4.14)

The variables yn and 	n were defined in Eqs. (3.11) and
(3.12), respectively. While these results apply if the five-
dimensional scalar � is real, promoting the 5D scalar to a
complex field merely doubles the values of both of the �n

functions. Note that the quantity signðnÞ in Eq. (4.13) is
taken to be zero when n ¼ 0, as a consequence of which

the function �ðcAÞ
0 vanishes.

The results in Eq. (4.13) describe the corrections to the
masses of the fermion KK modes. However, for the sake of
comparison with our results for the boson KK modes, it
will actually be more appropriate to consider the corre-
sponding corrections to the squared masses of the fermion
KK modes. However, given the parametrizations in
Eq. (4.12), we immediately see that

mðDÞ2
c n ¼ mðDÞ2

c 0 þ g2

4�R2
Y
ðmðDÞ

c
Þ

n þ 1

R2
Oðg4Þ

mðAÞ2
cn ¼ n2

R2
þ g2

4�R2
Y
ðmðAÞ

c
Þ

n þ 1

R2
Oðg4Þ; (4.15)

where the corrections to the squared masses are given to
lowest order in g by

Y
ðmðDÞ

c Þ
n ¼ 2mðDÞ

c 0RX
ðmðDÞ

c Þ
n ; Y

ðmðAÞ
c Þ

n ¼ 2nX
ðmðAÞ

c Þ
n : (4.16)

Indeed, retaining higher orders in g would be incorrect
since additional contributions at such orders would also
come from two-loop diagrams, which we have been
neglecting.

The corrections to the squared Dirac masses are shown
in Fig. 6. Likewise, corrections to the squared axial masses
are shown in Fig. 7. As we observe from these figures, the
Dirac and axial mass corrections do exhibit certain com-
mon behaviors. For example, in both cases these correc-
tions are monotonic with mode number n, and they each
approach constant values as n ! 1.

However, there are also certain crucial differences be-
tween the behaviors of the Dirac and axial mass correc-
tions. The Dirac corrections, for example, vanish if

mc ¼ 0 (regardless of the value of m�); thus, it is the

fermion bare massmc which is responsible for triggering a

nonzero one-loop mass correction. Likewise, the Dirac
corrections are positive and increase as functions of mc ,

while they generally decrease as functions ofm� (withmc

held fixed).
By contrast, the axial mass corrections are positive if

m� >mc , negative if mc <m�, and zero if mc ¼ m�.

Indeed, the behavior of the correction X
ðmðAÞ

c Þ
1 to the linear

axial mass of the first-excited KK fermionic state is shown
in Fig. 8 as a function of the difference m2

� �m2
c , and we

see that this function is positive when this difference is
positive, negative when this difference is negative, and zero
precisely when this difference is zero.
It is an interesting phenomenon that the axial mass

corrections vanish for mc ¼ m�. It is straightforward to

demonstrate this explicitly at one-loop order using the
expressions for the mass corrections given above, and
one finds that this results from a cancellation between the
effects of the different KK boson and fermion propagators
in the loop. This suggests a possible supersymmetric origin
for this cancellation, and indeed we observe that although
the Yukawa theory under study here is not supersymmetric,
the one-loop corrections to the fermion masses in this
Yukawa theory are equivalent (up to an overall multiplica-
tive constant) to the corresponding corrections in a super-
symmetric Yukawa theory, provided mc ¼ m�. This is

significant because supersymmetry forbids KK fermions
from accruing axial mass corrections.
Finally, we observe that the corrections to the axial

fermion masses mðAÞ
c n are also odd functions of the mode

number n. Although this is not evident from the plots in
Fig. 7, this result follows directly as the consequence of the
analytic expression for the axial mass correction given in
Eq. (4.13): the prefactor signðnÞ is odd under n ! �n,
while the rest of the expression is manifestly even under
n ! �n. This property is a direct consequence of the
overall P and CP symmetries of our original five-
dimensional theory. As a corollary, this symmetry protects
the fermion zero mode from gaining an axial mass.
Thus far, we have discussed the corrections to the indi-

vidual Dirac and axial components of the KK fermion
masses. However, for many purposes the important quan-
tities are actually the total physical fermionic masses
themselves—i.e., the masses corresponding to the poles
in the KK fermion propagators. In general, the squares of
these masses are the sums of the squares of the two
individual mass components:

m2
cn � my

ncmnc ¼ mðDÞ2
cn þmðAÞ2

c n ; (4.17)

where mc n is the fermion mass given in Eq. (4.6). It then

follows from Eq. (4.15) that the corrections to this mass
take the form
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m2
c n ¼ m2

c 0 þ
n2

R2
þ g2

4�R2
Y
ðmc Þ
n þ 1

R2
Oðg4Þ; (4.18)

where we have recognized m2
c 0 ¼ mðDÞ2

c 0 þOðg4Þ=R2 and

where

Y
ðmc Þ
n � Y

ðmðDÞ
c

Þ
n þ Y

ðmðAÞ
c
Þ

n : (4.19)

These corrections are shown in Fig. 9.
Unlike the individual corrections to the Dirac and axial

mass components, these overall corrections do not behave
as simple monotonic functions of the bare masses m� and

mc . This nontrivial behavior ultimately arises as the result

of a competition between the contributions from the Dirac
and axial corrections in Eq. (4.17). Indeed, as evident in
Figs. 6 and 7, these corrections to the squared Dirac and
axial masses vary in opposite directions with respect to the
fermion bare mass. We also observe that these corrections
are also generally largest whenm� ¼ 0. This enhancement

arises due to the fact that the logarithms in the Dirac and
axial corrections become large when their arguments tend
to zero. We nevertheless see that these corrections all
approach constant values as n ! 1, indicating that the

uppermost portions of the KK tower effectively behave
according to case #3a from the Introduction. We also
observe that these corrections vanish only when m� ¼
mc ¼ 0. This is then an example of case #1.

C. Yukawa coupling corrections

Finally, we consider the one-loop corrections to the
Yukawa coupling. Like the coupling in the ��4 theory
discussed in Sec. III, we shall express the Yukawa coupling
and its one-loop corrections as functions of a canonical
(non-Wilsonian) renormalization scale �, which we shall
here take to be the squared five-momentum of the scalar
mode (i.e., �2 ¼ �Q2 where QM is the scalar five-
momentum). This in some sense defines the energy of
the experiment through which this coupling is measured.
However, unlike the case of ��4 theory, the results for the
one-loop coupling corrections here are more complicated
due to several factors, including the presence of nonzero
field-strength renormalizations and the existence of
relevant Feynman diagrams involving more than a single
Feynman parameter. Neither of these features appeared in
the ��4 theory at one-loop order. Moreover, as indicated
in Eq. (4.6), the Yukawa coupling actually has two

FIG. 6. The relative one-loop corrections Y
ðmðDÞ

c Þ
n for the KK fermion squared Dirac masses, plotted as functions of n for different

values of m� and mc .
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independent components, one vector (or Dirac) and the
other axial.

Despite these complications, we can parametrize the
one-loop corrections to these Yukawa coupling compo-
nents in the form

gðDÞ
n1;n2 ¼ gðDÞ

00 þ g3

8�3=2
½LðDÞ

n1;n2 þ Zð�Þ
n2�n1 þ Zðc Þ

n1 þ Zðc Þ
n2 �

gðAÞn1;n2 ¼
g3

8�3=2
LðAÞ
n1;n2 ; (4.20)

FIG. 8. The relative one-loop correction X
ðmðAÞ

c Þ
1 to the linear axial mass of the first-excited KK fermion, plotted versus �m2 for fixed

values ofm2. The quantitiesm2 and �m2 are defined such thatm2
c ¼ m2 ��m2, andm2

� ¼ m2 þ�m2. As in Fig. 7, we see that these

corrections are positive if m� >mc , negative if m� <mc , and zero if m� ¼ mc .

FIG. 7. The relative one-loop corrections Y
ðmðAÞ

c Þ
n for the KK fermion squared axial masses, plotted as functions of n for different

values of m� and mc .
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where g is defined in Eq. (4.7). In Eq. (4.20), the quantities

Zð�;c Þ represent the contributions from bosonic and fermi-

onic field-strength renormalizations, while LðD;AÞ represent
those parts of the appropriate one-loop vertex renormal-

ization diagram which are proportional to 1 and �5,

respectively, in spinor space. Note, in particular, that

what we are denoting Zð�;c Þ are merely contributions

from the field-strength renormalizations; they are not the

complete renormalizations themselves. As might be ex-

pected, field-strength renormalizations yield corrections to

Dirac (vector) couplings but not the axial couplings. In this

connection, we observe that there were no one-loop field-

strength renormalization contributions to the analogous
coupling corrections in the ��4 case because the appro-

priate loop integral in the ��4 case was completely inde-

pendent of the momentum on the external leg. This is

ultimately the same reason that the KK mass relation for

the � fields in the ��4 theory was invariant to this order.
Given the parametrization in Eq. (4.20), our results are

as follows. The field-strength renormalization contribu-

tions Zð�;c Þ take the standard form in Eq. (2.5), where
the corresponding �n functions are given by

Zð�Þ
n : �n ¼ 1ffiffiffiffi

�
p ynð1� ynÞ

�
3 logð	2

n þM2
�ðyn;�2ÞR2Þ

þ ð1� 2ynÞjnj	n þ 2M2
�ðyn;�2ÞR2

	2
n þM2

�ðyn;�2ÞR2

�

Zðc Þ
n : �n ¼ 1

4
ffiffiffiffi
�

p yn

�
logð	2

n þM2
c ðynÞR2Þ

þ 2ðy2n � 1Þm2
cR

2

	2
n þM2

c ðynÞR2

�
: (4.21)

Note that the quantities yn, 	n, M2
�, and M2

c are defined

in Eqs. (3.11), (3.12), (4.10), and (4.14), respectively. Also

note that on-shell renormalization conditions for Zðc Þ have
been applied in obtaining Eq. (4.21).
The situation is significantly more complex for the con-

tributions LðD;AÞ coming from the vertex renormalizations
because the relevant diagrams in this case involve two
Feynman parameters rather than just one. However, it turns
out that there does exist a simple closed form for these
corrections which is analogous to that in Eq. (2.5) when
either n1 or n2 is zero. For concreteness, let us assume that
n2 is zero. In such cases, Eq. (2.5) is replaced by

FIG. 9. The relative one-loop corrections Y
ðmc Þ
n for the physical KK fermion masses, plotted as functions of n for different values of

m� and mc .
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Ln1;0 ¼
X1

r¼�1

1

jn1j
Xjn1j�1

j¼0

Z 1

0
dv1

Z 1

0
dv2½�n1;0ðr; v1; v2; jÞ � �0;0ðr; v1; v2Þ�: (4.22)

We then find that the corresponding �n1;0 functions are given by

LðDÞ
n1;0

: �n1;0 ¼
1ffiffiffiffi
�

p ð1� yn1Þ
�
logð	2

n1 þM2
gðyn1 ; y00;�2ÞR2Þ þ 1

2

M2
gðyn1 ; y00;�2ÞR2 þ ð2� v1 � v2Þ2m2

cR
2

	2
n1 þM2

gðyn1 ; y00;�2ÞR2

�

LðAÞ
n1;0

: �n1;0 ¼ � 1ffiffiffiffi
�

p ð1� yn1Þð2� yn1 � y00Þ
	n1mcR

	2
n1 þM2

gðyn1 ; y00;�2ÞR2
;

(4.23)

where yn and 	n are defined as in Eqs. (3.11) and (3.12)
except with v replaced by v1, where y

0
0 � v2ð1� yn1Þ, and

where

M 2
gðy; y0;�2Þ � ðyþ y0Þ2m2

c þ ð1� y� y0Þm2
�

� yy0�2: (4.24)

The above expressions for the � functions assume that
n1 � 0 and n2 ¼ 0. However, analogous results exist when
n1 ¼ 0 and n2 � 0. Likewise, the results listed above apply
when the 5D scalar in our theory is real. When this field is
complex, by contrast, the � functions corresponding to the

Zðc Þ and LðD;AÞ corrections double, while the � function

corresponding to the Zð�Þ correction remains invariant.
In Fig. 10 we plot the energy dependence of the total

one-loop correction to the coupling component gðDÞ
1;0 which

governs the production of a pair of first-excited KK fer-
mion modes via the t-channel interaction shown in Fig. 11
between two incoming zero-mode fermions. Note, in this

connection, that gðDÞ
0;1 ¼ gðDÞ

0;�1 ¼ gðDÞ
1;0 ¼ gðDÞ

�1;0. Relative to

the corrections to the zero-mode couplings, these KK-

production couplings can be either positive or negative,
depending on the energy scale and the values of the bare
masses. As a result, we see that these one-loop corrections
can either enhance or suppress the amplitude for the cre-
ation of the first-excited KK mode. However, unlike the
analogous case shown in Fig. 3 for the coupling in the ��4

theory, the coupling that governs the production of excited
KK fermion modes in the Yukawa theory actually in-
creases relative to the zero-mode coupling as a function
of the energy scale.
Results in Fig. 10 are plotted for ðm�RÞ2 ¼ 0:25 and

ðm�RÞ2 ¼ 0:5. However, when m� ¼ 0, there are infrared

divergences in the one-loop diagrams responsible for cor-
rections to the zero-mode coupling. For this reason no
results are plotted in this case. Needless to say, this is not
an inconsistency: infrared divergences always cancel in
calculations of observables, and will do so in this higher-
dimensional Yukawa theory as well. Indeed, such infrared
divergences also appear in the one-loop diagrams in the 4D
Yukawa theory, and even in the case of full four-
dimensional QED which this Yukawa theory is meant to
resemble.

FIG. 10. The total relative one-loop correction LðDÞ
1;0 þ Zð�Þ

�1 þ Zðc Þ
1 þ Zðc Þ

0 to the coupling component gðDÞ
n1 ;0

that governs the
production of the first-excited KK fermion modes, plotted as functions of �R for different values of m� and mc . The plotted range

in �R extends approximately from the threshold for producing a particle/antiparticle pair of the first-excited KK fermion mode to the
threshold for producing the second, assuming the t-channel interaction shown in Fig. 11 between two incoming zero-mode fermions.
Unlike the analogous case shown in Fig. 3 for the coupling in the ��4 theory, we see that the coupling that governs the production of
excited KK fermion modes in the Yukawa theory actually increases relative to the zero-mode coupling as a function of the energy
scale. Thus, the production of excited KK fermions is actually slightly enhanced to one-loop order in this theory.
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The results shown in Fig. 10 illustrate the Dirac-

component coupling gðDÞ
1;0 . By contrast, the corrections to

the corresponding axial coupling gðAÞ1;0 are shown in Fig. 12.

Unlike the Dirac coupling, we observe that the axial cou-

pling vanishes when mc ¼ 0; thus, as expected, it is the

presence of nonzero mc which triggers a nonzero axial

coupling at one-loop order. We also observe that this axial
coupling increases monotonically as a function of mc ,

although it decreases monotonically as a function of m�.

Furthermore, this coupling is a monotonically decreasing
function of the energy scale �; thus, just as in the case of
the ��4 theory, the maximum coupling correction actually
occurs at the threshold for the production of the first-
excited KK fermion mode.
It is important to recognize that to one-loop order, the

‘‘corrections’’ shown in Fig. 12 are nothing but the axial
couplings themselves, since all of these axial couplings
vanish at tree level. This is therefore an instance in which a
one-loop correction, though small, is actually dominant. As
a consequence, any process which proceeds through such
an axial coupling is a direct probe of the one-loop radiative
corrections we have calculated. Such a process, though
suppressed, would be uniquely characterized through an
axial correlation between the spin and the corresponding
angular scattering amplitude.

ψ
1

ψ
−1

ψ

ψ

φ

0

0

1

FIG. 11. Feynman diagram showing the tree-level production
of two first-excited KK fermions c
1 via t-channel scattering of
two zero-mode fermions c 0 in the Yukawa theory. Arrows
indicate the routings of five-momentum according to which the
KK indices indicated in this figure are assigned. The amplitude
of this process is proportional to g0;1g0;�1 ¼ g21;0.

FIG. 12. The total relative one-loop contribution LðAÞ
1;0 to the axial coupling component gðAÞn1 ;0

, plotted as a function of �R for different
values of m� and mc . As in Fig. 10, the plotted range in �R extends approximately from the threshold for producing a particle/

antiparticle pair of the first-excited KK fermion mode to the threshold for producing the second, assuming a t-channel interaction
between two incoming zero-mode fermions.
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V. CONCLUSIONS AND RELATION
TO PRIOR WORK

In this paper, we investigated the extent to which radia-
tive corrections deform the expected tree-level relations
between Kaluza-Klein masses and couplings in higher-
dimensional interacting theories. Such calculations are
surprisingly subtle because they rely intrinsically on
having quantum field-theoretic regulators which preserve
higher-dimensional Lorentz invariance (and higher-
dimensional gauge invariance, when appropriate); other-
wise the standard renormalization calculations would pro-
duce spurious, unphysical effects which would be difficult
to disentangle from the bona-fide physical effects resulting
spacetime compactification. Using techniques developed
in Refs. [1,2], we concentrated on two toy theories: five-
dimensional ��4 theory and five-dimensional Yukawa
theory, each with a single dimension compactified on a
circle. We then studied the resulting one-loop corrections
to the tree-level mass and coupling relations, and deter-
mined those situations in which these corrections exhibited
a variety of special algebraic forms and behaviors as
functions of the bare five-dimensional masses in these
theories and the overall renormalization energy scale.

For both ��4 theory and Yukawa theory on a circle, we
found that our KK masses can deform in a variety of
different ways. In some cases, these deformations do not
disturb the underlying KK mass relations between differ-
ent KK modes. In such cases, therefore, the underlying
five-dimensional Lorentz invariance of the KK mass
spectrum appears to be preserved. In other cases, these
deformations induce changes in these relations which can
be interpreted as mere shifts or ‘‘renormalizations’’ of the
underlying five-dimensional masses or the radius of the
compactification circle. However, in the most general
cases, these deformations result in new KK mass relations
which do not exhibit the signatures normally associated
with compactification on a circle.

Similar results were also found for the KK couplings:
renormalization effects can induce nontrivial splittings
between KK couplings which are otherwise equal at tree
level. For ��4 theory, we found that these splittings lead to
enhanced production of the first-excited KK mode. In
Yukawa theory, by contrast, we found that renormalization
effects can lead to either enhanced or suppressed produc-
tion of the first-excited KK mode. Whether this production
is ultimately enhanced or suppressed depends on the values
of the underlying five-dimensional masses and the energy
scale of the experiment through which it is measured.

While many of our results were expected, others were
more surprising. One interesting result, for example, is the
radiative generation of a �5 interaction amongst zero modes
in the Yukawa theory. Indeed, such an interaction is com-
pletely absent at tree level. As we discussed in Sec. IV, this
interaction does not lead to parity or CP violation, and is
analogous to the axial fermion mass terms which appear in

the KK Lagrangian at tree level. Another somewhat surpris-
ing result is that the corrections to the axial masses of the
fermions in Yukawa theory vanish when the zero-mode
masses of the boson and fermion are equal. As we briefly
discussed in Sec. IV, this cancellation ultimately occurs
because the one-loop corrections to fermion propagators
in Yukawa theory are equivalent to those in a supersym-
metric model, up to an overall multiplicative constant.
Supersymmetry should forbid axial mass corrections.
Needless to say, many previous studies have focused on

loop corrections in KK theories. However, most of this
prior work focused on the effects induced by the excited
KK states on the properties of the zero modes. For ex-
ample, a relatively early calculation of the runnings of
zero-mode gauge couplings appears in Ref. [3], where
it was found that the higher-dimensional radiative correc-
tions to such runnings have the potential to lead to gauge-
coupling unification well below the usual grand unified
theory scale. Such running can also generate fermion mass
hierarchies [3]. However, the analysis of Ref. [3] focused
purely on the radiative corrections to the couplings of the
zero modes, and thus did not require use of regulators
designed to respect higher-dimensional Lorentz or gauge
symmetries. Likewise, the authors of Ref. [4] calculated
gauge-coupling corrections in warped AdS5 space. A re-
cent study of loop effects in this geometry appears in
Ref. [5].
Another type of zero-mode calculation involves the

special case in which loop corrections are finite to a certain
order in perturbation theory. This variety of calculation
appears in Ref. [6], for example, where the authors calcu-
lated the correction to the muon magnetic moment in
higher dimensions. At one-loop order, the correction was
found to be finite in 5D.
There do, however, exist several studies which have

examined loop effects on excited modes. For example,
the authors of Ref. [7] showed that when an extra dimen-
sion is compactified to an orbifold, loop corrections lead to
logarithmically divergent terms localized at the orbifold
fixed points. These can take the form of new kinetic terms
or coupling terms at the fixed points.
The authors of Ref. [8] calculated corrections to KK

masses in five-dimensional QED and in a five-dimensional
standard model, considering the cases in which these theo-
ries are compactified on a flat, circular universal extra
dimension and on a flat S1=Z2 orbifold. For the case of
compactification on a circle, they found that if zero-mode
fermion masses are neglected, the photon zero mode re-
mains massless while the excited KK photons receive mass
corrections of the form

�m2
n ¼ � e2�ð3Þ

4�4R2
; n � 1; (5.1)

independent of the mode number n. Other gauge theories
lead to similar results. This sort of behavior is clearly an
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example of case #3a from the Introduction: the entire
excited tower experiences a uniform mass shift, while
gauge invariance protects the (vanishing) mass of the
gauge-boson zero mode.

The authors of Ref. [8] correctly obtained this result by
performing a Poisson resummation, casting KK sums into
sums over winding numbers. Indeed, the use of Poisson
resummations in calculations of loop corrections first
appeared in Ref. [9], and it has been verified [1] that use
of our regulators also reproduces the result in Eq. (5.1). At
first glance, it might seem that such a Poisson-resummation
technique might also apply to the calculations in this paper.
Unfortunately, this is not the case because this method does
not yield closed-form expressions when the zero-mode
masses are nonvanishing. Indeed, as we have seen, many
of our results arise precisely because of the nonvanishing
nature of these masses. As a result, regulators of the type
we introduced in Refs. [1,2] are needed for the calculations
in this paper.

As an aside, we remark that there also remains the
technical issue that a Poisson resummation by itself does
not regularize a divergence, but merely expresses it in a
different language. In Ref. [1], for example, we noted that
Poisson resummation worked in Ref. [8] because the mass
corrections in those calculations were finite. For the diver-
gent case, however, we noted that one would have to
calculate differences between corrections for excited
modes and zero modes, analogous to the differences in-
troduced in Refs. [1,2]. Of course, one might be tempted to
simply subtract the contribution arising from vanishing
winding number. However, this merely corresponds to
the correction in a noncompactified theory, and does not
relate directly to observables in the compactified theory.

The authors of Ref. [10] calculated loop corrections to
KK gauge-boson masses using a mixed propagator. In
this approach, the four large dimensions are treated in
momentum space, as usual, while the compactified extra
dimension is treated in position space. This avoids the
introduction of a KK sum altogether. However, in such
situations the higher-dimensional divergences are not elim-
inated—they are the same as would appear in the corre-
sponding higher-dimensional uncompactified theory, as
this formalism makes abundantly clear. Of course, it is
possible that the true UV limit of a given higher-
dimensional theory is not higher dimensional at all [11].
Such ‘‘deconstructed’’ extra dimensions would change the
UV divergence structure of the theory in a profound way
that would eliminate the need for many of these different
regularization techniques, and indeed it has been demon-
strated [12] that such deconstruction techniques lead to
results which are consistent with those in Ref. [8] and in
other papers.

In a similar vein, radiative corrections may be finite in
cases in which there exist additional symmetries (either
unbroken or softly broken) to protect against divergences.

Well-known examples of this phenomenon include radia-
tive corrections in theories with supersymmetry broken
through the Scherk-Schwarz mechanism [13], or in theo-
ries in which the Higgs is identified as a component of a
higher-dimensional gauge field and consequently has a
mass for which radiative corrections are protected by
gauge symmetries [14].
The authors of Ref. [15] calculated loop corrections to

the KK masses of gauge bosons in a theory with an extra
dimension compactified on an S1=Z2 orbifold. Like the
authors of Ref. [8], they used Poisson-resummation tech-
niques to calculate bulk effects and the methods of Ref. [7]
to calculate brane terms. By explicitly calculating loop
diagrams, they showed that quadratic divergences to the
Higgs mass are avoided. This is in agreement with a
previous study [16], which showed that quadratic diver-
gences are avoided in a particular model involving
gauge-Higgs unification. However, these analyses take
place within the contexts of theories in which a higher-
dimensional gauge theory is broken to a gauge subgroup at
orbifold fixed points via the Hosotani mechanism [14].
Another approach to loop corrections in higher dimen-

sions is to embed Kaluza-Klein theory into string theory,
and to perform string-theory calculations. Indeed, the au-
thors of Ref. [17] analyzed higher-dimensional vacuum
polarization diagrams in this context, and reproduced the
gauge-boson KK mass corrections discussed above. This
correspondence holds when the string scale is much greater
than the inverse radius of the extra dimension. Other
string-motivated methods of dealing with the divergences
in higher-dimensional theories are discussed in
Refs. [18,19]. In a similar vein, the authors of Ref. [17]
demonstrated that similar results can be obtained using
techniques from lattice field theory. Of course, this as-
sumes that the lattice spacing is much smaller than the
compactification radius. Other regularization techniques
for KK theories are discussed in Refs. [20–22].
Quantum corrections involving KK states are also rele-

vant to the calculations of Casimir energies, and more
generally to the evaluation of the stability of an extra
dimension. As a result, there have been a number of papers
examining topics along these lines. For example, the
authors of Ref. [23] examined a gravitational analogue of
the Casimir effect along an extra dimension compactified
on a circle using a hard cutoff to regularize momenta of KK
states. Other techniques have also been used [24–28].
Finally, we remark that in addition to quantum corrections

in higher-dimensional theories, there are also nontrivial
classical effects which can also distort the ‘‘apparent’’
geometry of an extra dimension as measured through analy-
ses of KK spectroscopy. Indeed, the authors of Ref. [29]
showed that the geometry of an extra dimension can even
experience a type of classical renormalization.
Needless to say, there are a number of extensions of this

work that may be pursued in the future. For example, one
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avenue is to calculate radiative corrections in higher-
dimensional theories with supersymmetry. Such an analy-
sis may permit a determination of what radiative effects are
allowed in supersymmetric models, and how the radiative
effects on KK bosons and fermions come into alignment.
This question is particularly relevant in our case, since we
have already seen that the axial mass corrections in the
nonsupersymmetric Yukawa theory analyzed here actually
vanish in a limit corresponding to supersymmetry. Another
avenue for future research is to employ the regulators
developed in Refs. [1,2] in order to analyze decays of
KKmodes in higher-dimensional theories; indeed, prelimi-
nary results along these lines [30] suggest a number of
striking properties which may have deep significance for
the phenomenological properties and ultimately the stabil-
ity properties of these modes. This may be particularly
relevant for recent discussions of dynamical dark matter

[31]. Finally, a third avenue for further research involves an
examination of more realistic compactification scenarios,
especially those involving orbifolds (rather than mani-
folds), as needed in order to produce chiral four-
dimensional theories. Work along all of these lines is in
progress.
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