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Recently, Navier-Stokes equations have been derived from the duality between the black branes and a

conformal fluid on the boundary of anti-de Sitter5. Nevertheless, the full correspondence has to be

established between solutions of supergravity in anti-de Sitter5 and supersymmetric field theories on the

boundary. That prompts the construction of Navier-Stokes equations for a supersymmetric fluid. In the

framework of rigid supersymmetry, there are several possibilities and we propose one candidate. We

deduce the equations of motion in two ways: both from the divergenceless condition on the energy-

momentum tensor and by a suitable parametrization of the auxiliary fields. We give the complete

component expansion and a very preliminary analysis of the physics of this supersymmetric fluid.
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I. INTRODUCTION

In the recent literature, the duality between gravity on
manifolds with boundary and conformal fluids on the
boundary has been intensively studied [1–10]. It has been
shown that given a black hole/brane solution with the
corresponding set of zero modes one can derive the
Navier-Stokes equations for the conformal fluid. That re-
lation also permits the computation of the fluid dynamic
coefficients beyond the perturbation theory in the case of
strongly interacting theory. Several examples have been
carefully studied and analyzed confirming different ideas
in the AdS/CFT correspondence and using the membrane
paradigm of black holes.

Nonetheless, the complete duality can be only rigor-
ously established between supergravity in the bulk and
superconformal fluid on the boundary. With this idea in
mind, the authors of the present paper [11] have considered
the fermionic zero modes of a supersymmetric black hole
in d ¼ 5, N ¼ 2 supergravity in anti-de Sitter5 (AdS5)
background and computed the corrections to the fluid
dynamics due to fermionic bilinears (currents built in terms
of a fermion field) on the boundary. Those corrections
modify the Navier-Stokes equations governing the dynam-
ics of the boundary theory and the complete set of these
corrections can be parametrized by an effective action. For
that purpose, here we propose a supersymmetry general-
ization of the usual Navier-Stokes equations to take into
account the corrections due to the fermionic degrees of
freedom.

The construction of supersymmetric Lagrangian leading
to Navier-Stokes equations has been discussed in the lit-
erature. We have to recall works [12,13] where a possible

supersymmetric action has been proposed. There, the bo-
sonic degrees of freedom are parametrized by a conserved
current j�, the dynamics is encoded into a function fðj2Þ,
and the corresponding equations of motion are obtained
with the help of an auxiliary field a� coupled to the current.

In such supersymmetric generalization, both the current j�

and the auxiliary field a� are embedded into two distinct

real superfields, V and A, whose lowest components are
two scalar fields. The function fðj2Þ is replaced by a
function FðVÞ of the real superfield V. Expanding the
action, we find that it cannot describe a generic fluid whose
dynamics is described by the function fðj2Þ, namely, it does
not reduce to any generic bosonic models, but only to
specific ones. On the other side, works [14–18] lead to
generic supersymmetric models in lower dimensions and
we have not been able to adapt them to our scopes. That
noncovariant approach in lower dimensions seems to be
suitable to study theAdS/condensedmatter correspondence.
In contrast to [12,13], we observed that the conserved

current can be better viewed as the middle component of a
real linear superfield J. The linearity of that superfield
implies the conservation of the current and it does not
contain auxiliary fields [19–22]. To overcome the problem
of describing a generic model reducing to any bosonic
Navier-Strokes system, we constructed a derived superfield
J � which is a linear, real vector superfield and a linear

function of J.
As mentioned above, the equations of motion of the

fluid, namely, the Navier-Stokes equations, are derived
with the help of an auxiliary field a�. However, in

[12,13], a� has been replaced with a Kähler potential

implementing the so-called Clebsch parametrization (see
also [18,23,24] for a complete discussion on the Clebsch
parametrization) in a very convenient way for supersym-
metric generalizations. We show in detail that the two
choices, namely, the conventional Clebsch parametrization
and the use of the Kähler potential, are indeed equivalent
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locally. The origin of that potential has to be traced out into
supergravity models as advocated in [25], and for a forth-
coming analysis in a generic supergravity background, we
adopt it in the present work. It is worth mentioning also the
discussion in [26]. Finally, in terms of J, of the derived
superfield J � we are able to provide a general action

whose bosonic truncation leads to any generic bosonic
fluid.

One important issue is the dependence of the Kähler
potential. We provide an argument showing that the choice
of the Kähler potential does not affect the physics, but we
are convinced that the implementation of local supersym-
metry invariance coupling it to supergravity might clarify
this issue.

We provide the complete Lagrangian by expanding the
superfields in components and integrating over the �’s.
Because of this expansion, the number of possible terms
increases and the Lagrangian is really cumbersome. In
order to grasp the meaning of it, we derive the superfield
equations of motion and we compute their bosonic sector.
The energy-momentum tensor for the Lagrangian re-
stricted to the physical field C (the lowest component of
the superfield J) is computed and some considerations are
proposed.

The plan of the paper is the following: in Sec. II, we
review the derivation of Navier-Stokes (NS) equations for
the purely bosonic model. In particular, in II A two differ-
ent methods to compute them are compared: the diver-
genceless condition on the energy-momentum tensor, and
the invariance of the action under certain isometries; in II B
Clebsch, parametrization of the vector field a� is consid-

ered. In Sec. III, the supersymmetric completion of the
previous model is taken into account, the action is con-
structed, and explicit results are given for the bosonic
sector. In III B, the supersymmetric generalization of the
Clebsch parametrization is built, and the coupling to the
linear multiplet J is written. In Sec. III E, we consider
the limit C ¼ 0 and we discuss the first two terms of the
expansion of the action in order to compare it with the
result of the fluid/gravity correspondence [11] where
the contributions of the fermionic bilinears to the NS
equations are computed. In III F, the issue of Kähler
potential and its appearance in the equations of motion is
discussed. Finally, in Appendix B the complete supersym-
metric Lagrangian is presented.

II. BOSONIC LAGRANGIAN

A. Action and equations of motion

We first discuss the bosonic Lagrangian and we derive the
equations of motion. The model is characterized by a diver-
genceless current j� and an auxiliary field a� coupled to a

world-volumemetricg��. Thegauge invariance undera� !
a� þ @�� is guaranteed by the conservation of j�. The

model is considered in four dimensions. There are two

ways to get the equations of motion: the first one is by
computing the energy-momentum tensor T�� and requiring
the vanishing of its divergence. The secondmethod is requir-
ing the invariance of the action under certain isometries.
Let the action be

L ¼ ffiffiffiffiffiffiffi�g
p ðj�a� þ fðj2ÞÞ; j2 ¼ j�j�g��: (2.1)

Note that the equation of motion obtained by taking the
functional derivative with respect to (w.r.t.) an uncon-
strained a� yields j� ¼ 0. The function f is completely

generic. Therefore, the correct equations of motion are
obtained as follows: varying w.r.t. j� and g�� leads to

a� ¼ �2f0ðj2Þj�;
T�� ¼ f0ðj2Þðj�j� � g��j2Þ þ 1

2fðj2Þg��; (2.2)

and the vanishing of the divergence of energy-momentum
tensor implies

@�T�� ¼ 0 ! j�½f00ðj2Þðj�@�j2 � j�@�j
2Þ

þ f0ðj2Þð@�j� � @�j�Þ�
¼ 0: (2.3)

These are the usual NS equations which, together with the
conservation of the current j�, yield the complete infor-
mation on the fluid dynamics.
Since we are primarily interested in AdS/CFT corre-

spondence, we recall that the fluid on the dual side must
be a conformal one. That forces fðj2Þ to be equal to

Cðj2Þ2=3, where C is a constant. This can be obtained by
imposing the tracelessness of T�� or by studying the
dilatation properties of the action, assuming that j� has
dimension 3 in four dimensions.
Notice that Eq. (2.3) can also be obtained in the follow-

ing way: consider the field-strength associated to the
Abelian vector a�, F�� ¼ ð@�a� � @�a�Þ; using the first

of (2.2) into F and upon contraction with j�, we get

j�F�� ¼ @�T�� ¼ 0: (2.4)

It should be noticed that, in both ways, the auxiliary field
a� drops off the equations.

Equation (2.4) calls for an explanation. First of all, we
observe that, j� being a divergenceless current, action (2.1)
is invariant under the gauge symmetry �a� ¼ @��. Let us

perform an isometry transformation leaving the current j�

invariant. In the form language, given A ¼ a�dx
�, J ¼

j�@�, and X ¼ X�@�, we have

LXðAÞ ¼ �XdAþ dð�XAÞ;
LXðJ Þ ¼ ½X;J � ¼ 0;

LXðgÞ ¼ ðr�X� þr�X�Þdxm � dx�; (2.5)

and in components
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�a� ¼ �F��X
� þ @�ða�X�Þ; �j� ¼ 0;

�g�� ¼ g��@�X
� þ g��@�X

� þ X�@�g�� ¼ 0; (2.6)

where X� are the components of the Killing vector gen-
erating the isometry commuting with the current J .
Requiring the invariance of the action under such an
isometry, one gets Eq. (2.4).

The condition �j� ¼ 0 (if g�� ¼ ���) can be reformu-

lated as follows: given the vector field X ¼ X�@�, the

infinitesimal variation of j� can be expressed as

�j� ¼ X�@�j
� � j�@�X

�; (2.7)

where the first term is a translation parametrized by the
coefficients X� and the second term is a rotation with the
parameter ��� ¼ 1

2 ð@�X� � @�X�Þ due to Killing equa-

tion in (2.6). Condition (2.7) can be rewritten as follows:

�Xj
� � X�@�j

� ¼ �
�
� j�; (2.8)

which implies that the translation of the current j� is
compensated by a rotation. In the same way, the variation
of a� can be cast in the form

�a� ¼ �Xa� þ R�
�a� � X�@�a� þ��

�a�: (2.9)

Then, computing the variation of the action under a trans-
lation, we have

�XS ¼
Z
ð�Xj

�a� þ j��Xa� þ�Xfðj2ÞÞ

¼
Z
ð��

�j�a� þ j�X�@�a�Þ ¼
Z
ðj��a�Þ

¼
Z
ðj�ð�F��X

� þ @�ða�X�ÞÞÞ: (2.10)

In the first line, we have used Eq. (2.8) and the Lorentz
invariance of fðj2Þ. From the second line to the third line,
we have used the definition of the variation of the gauge
potential a� under isometry (2.6) combined with a gauge

variation. Thus, the second term vanishes because j� is
divergenceless and from the first term, comparing with the
definition of the energy-momentum tensor obtained by the
Nöther theorem �XS ¼ R

X�@�T��, it yields

j�F�� ¼ @�T�� ¼ 0: (2.11)

As a consistency condition, we must have j�@�T�� ¼ 0,

which can be easily verified using its explicit form (2.3).

B. Clebsch parametrization of a�

One may wonder why we adopt the above derivation of
NS equations instead of computing directly the equations
of motion by functional derivatives. Actually, it is possible
to obtain them by means of variational principles, consid-
ering the auxiliary field a� as parametrized by a set of

potentials. Moreover, since a� is an auxiliary field we have

to avoid any nontrivial solution for it, then we impose the
constraint

F ^ F ¼ 0; (2.12)

where F ¼ dA (A � a�dx
�) which, in components,

becomes 	���
F��F�
 ¼ 0. This constraint is equivalent

to A ^ F ¼ d� where � is a generic 2-form. It can be
easily shown [23] that the most general solution in four
dimensions to (2.12) is

A ¼ d�þ �d�; (2.13)

where �, �, and � are zero forms. This implies that F ¼
d� ^ d� and the constraint (2.12) follows immediately.
This means that out of the four components of a� only 3 of

them survive the constraint and inserting them in the
Lagrangian (2.1) we get

L ¼ ðj�ð@��þ �@��Þ þ fðj2ÞÞ: (2.14)

The equations of motion are

@�j
� ¼ 0; j�@�� ¼ 0; j�@�� ¼ 0;

@��þ �@��þ 2j�f
0ðj2Þ ¼ 0: (2.15)

With simple algebraic manipulations, one derives NS
Eq. (2.4).
There is another way to parametrize the solution of

(2.12). Introducing one complex field
 and a real function
Kð
; �
Þ, consequently a� becomes

a� ¼ @��þ ið@K@�
� �@K@� �
Þ: (2.16)

If K is identified with a Kähler potential for the complex
manifold spanned by 
, the second term in a� is the

Kähler connection. Computing the field strength F, we get

F ¼ �2i@ �@Kd
 ^ d �
: (2.17)

Namely, the manifold is a Hodge manifold where the Uð1Þ
connection is related to the canonical 2-form of the
complex manifold. By the Bianchi identity, it follows
that the canonical 2-form 2i@ �@Kd
 ^ d �
 must be closed
and therefore the space is Kähler. Notice that for a one-
dimensional complex manifold, no constraint on K is due
to its closure.
The two parametrizations (2.13) and (2.16) are equiva-

lent. This can be verified by assuming that � and � are real
functions of 
 and �
. It yields

�@� ¼ i@K; � �@� ¼ �i �@K: (2.18)

By dividing both equations by � and by computing the
derivative, we get

2@ �@K ¼ ð@K �@þ �@K@Þ ln�: (2.19)

This equation can be brought to quadrature. For example,
assuming that � and K are functions of the modulus j
j2,
one can easily bring the above equation to an integral form.
If Kð
; �
Þ ¼ j
j2, then we get � ¼ j
j2 and � ¼
i lnð
= �
Þ. On the other hand, if Kð
; �
Þ ¼ lnð1þ j
j2Þ,
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then we get � ¼ j
j2=ð1þ j
j2Þ and � ¼ i lnð
= �
Þ. See
also [18] for a discussion on this point.

III. SUPERSYMMETRIC LAGRANGIAN

A. Superfields, action, and superfield expansion

We are now ready for the supersymmetrized version of
the Lagrangian. We first construct the action reproducing
the usual bosonic action (2.1) in the limit in which the
fermions and the additional bosonic field are set to zero. A
conserved current is a component of a linear multiplet in
four dimensions and therefore we introduce a superfield J
for it. The auxiliary field a� is a component of the vector

multiplet and we introduce a real superfield A. Again, we
face with the problem of deriving the equations of motion
since the superfield A is constrained and, for that, we adopt
a Clebsch parametrization. In the present case, it becomes
natural to identify the Abelian real superfield A with a
Kähler potential [12] which is a real function of a chiral
superfield 
.

J and A are defined as follows:1

�DDJ ¼ 0; �A ¼ A; (3.1)

where D ¼ � @
@ ��
� ð���Þ@� and �D ¼ @

@� þ ð�� ��Þ@� are

the superderivatives. Using a linear superfield J, we auto-
matically implement the conservation of the current j�

which is its �2 component. The component expansion is
given by

J ¼ C� i ���5!þ i

2
���5���j

� þ i

2
���5� ����@�!

þ 1

8
ð ���5�Þ2hC; (3.2)

and for the real superfield in the Wess-Zumino gauge

A ¼ i

2
���5�

��a� � i ���5� ���� 1

4
ð ���5�Þ2D: (3.3)

The linear superfield contains one constrained vector j�,
one scalar field C, and one Majorana spinor !. The vector
can be dualized as j� ¼ 	���
H��
 where H��� is the

field strength of a 2-form potential B��. The latter can be

further dualized into a scalar and therefore the linear
multiplet has the same degree of freedom of an on-shell
Wess-Zumino multiplet.

Supersymmetry transformations are given by �� ¼
��Q� or, in component,

�j� ¼ � �����@�!; �a� ¼ �����;

�! ¼ ð�i�5�
�@�Cþ ��j

�Þ�;
�� ¼ �ðiD�5 þ F���

��Þ�; �C ¼ i ���5!;

�D ¼ i ���5�
�@��:

Using the properties listed in Appendix A, it is possible
to show that

Z
d4x

Z
d4�½�JA� ¼

Z
d4x½j�a� þ �!�� CD�; (3.4)

which is the supersymmetric generalization of (2.1). In
order to reproduce also the second term in (2.1), we need
to introduce a new superfield defined as

J � ¼ 1

4i
ð �D�5��DÞJ; (3.5)

which contains j� as the first component and its expansion
is

J � ¼ 1

4i
ð �D�5��DÞJ

¼ j� þ �����@
�!� i

2
���5�

��ð@�@�C� g��hCÞ

� 1

2
���5� ���5�

�ðg��h!� @�@�!Þ

þ 1

8
ð ���5�Þ2hj�: (3.6)

It should be noted that all the terms in the above expansion
are divergenceless. This can also be proven directly by the
D-algebra and because of the linearity of the superfield J.
Moreover, the new superfield J � is itself a linear super-

field. This can be seen by observing that each component
of the superfield J � is in the same relation with higher

terms of the expansion as the components of the superfield
J, or it can be checked by direct use of superderivatives.
Therefore, the complete supersymmetric action is

given by

S ¼
Z

d4x
Z

d4�ð�JAþ FðJ �J �ÞJ2Þ: (3.7)

The minus sign in front of the first term is chosen to
reproduce the normalization of the bosonic Lagrangian.
The coefficients are chosen in order that Eq. (3.7) coincides
with the normalization of the bosonic Lagrangian where
fðj2Þ ¼ Fðj2Þj2. The argument of F, namely, J �J �, is a

dimensionful superfield and therefore it would be conve-
nient to rescale it by a dimensionful parameter. In the
following, we will discard that parameter and we set it to 1.
As discussed above, we would like to deal with super-

conformal fluid. For that, we require the theory to be
conformal and supersymmetric, thus superconformal in-
variance follows. In particular, we first impose the dilata-

tion properties of F and it turns out that FðxÞ ¼ Cx�1=3.

1In the following, we use Weinberg notation [22].
Nevertheless, we recall that in the language of [27] a linear
superfield is defined as D2J ¼ 0 and �D2 �J ¼ 0. If J is a real
linear superfield, �J ¼ J, then the second condition follows from
the first one.
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That guarantees the conformal invariance of the action. The superconformal transformation rules for J are deduced by its
geometrical properties.

To compute the component action, we need the expansion of J �J � and, using (3.6), we get

J �J � ¼ j2 þ 2 ��j��
��@�!þ ���ð�1

2@� �!���@�!� 3
4@� �!@�!Þ þ ð ���5�Þð�1

2@� �!�5�
��@�!� 3

4@� �!�5@
�!Þ

þ ���5�
��ðij�hC� ij � @@�Cþ @� �!�5 6@!� 1

4@
� �!�5��@�!Þ þ ð ���5�Þ ���5ðj � @6@!� j � �h!Þ

þ ���5� ��ð2i6@!hCþ i��@�!@�@�CÞ þ 1
4ð ���5�Þ2ðj�hj� þ @�@�C@

�@�Cþ 2hChCþ @� �!@�!

þ @� �!���@
�!� 2h �!6@!Þ; (3.8)

and similarly, for J2, we have

J2 ¼ C2 � 2iC ���5!þ 1
4ð ���Þ �!!þ 1

4ð ���5�Þ �!�5!

þ ���5���ðiCj� þ 1
4 �!�5�

�!Þ þ i ���5� ��6@!C

þ ���5��� ���5!j� þ 1
4ð ���5�Þ2ðChCþ j2 � �!6@!Þ:

(3.9)

Notice that the choice fðj2Þ ¼ Fðj2Þj2 does not spoil the
generality of (3.7) since it coincides with bosonic
Lagrangian if fðj2Þ is defined up to an unessential constant.
Action (3.7) is chosen such that, by setting C and! to zero,
it exactly reproduces the bosonic Lagrangian (2.1) and the
corresponding NS equations. The presence of two different
superfields, namely, J and J �, in the Lagrangian is needed

because of dimensional reasons or, equivalently, because
J’s lowest component is not j�.

In components, the supersymmetric Lagrangian turns
out to be

Z
d4x

�
j�a� þ �!�� CDþ

Z
d4�J2

X4
i¼0

1

i!
FðiÞðj2Þ

� ðJ �J � � j2Þi
�
; (3.10)

where we expanded the function F around the first bosonic
component of J �J �. The first term in the expansion

reproduces the bosonic Lagrangian, while the other terms
are classified according to their dimensions. Notice that the
computation of the component action is made unhandy by
the fact that there is a product of two or more superfields
ðJ �J � � j2ÞiJ2. After the � expansion is taken, one needs
to compute all Fierz identities to simplify the expressions
and, finally, the integration over the � variables can be
taken.
The first two terms in the expansion of FJ2 are

Z
d4�

Z
d4x½Fð0Þðj2ÞJ2 þ Fð1Þðj2ÞðJ �J � � j2ÞJ2�

¼
Z

d4x

�
½Fð0Þðj2ÞðChCþ j�j

� � �!��@
�!Þ� þ

�
Fð1Þðj2Þ

�
�C2½j�hj� þ ð@�@�C@�@�Cþ 2hChCÞ�

þ 4Cj�j�ð@�@� � ���hÞC� C2@� �!@� 6@!þ 2C2h �!6@!� 2iCj�@� �!�5 6@!� iCj�@� �!�5��@
�!

þ 4ChC �!6@!þ 2C@�@�C �!��@�!þ 2Cj�@� �!��@
!"���
 � 2iCj� �!�5@� 6@!þ 2iCj� �!�5��h!

þ 2j2 �!6@!� 2j�j� �!��@�!� ij�ð@�@� � ���hÞC �!�5�
�!� 3

4
�!!@� �!@�!� 1

2
�!!@� �!���@�!

þ 3

4
�!�5!@� �!�5@

�!þ 1

2
�!�5!@� �!�5�

��@�!� �!�5�
�!@� �!�5 6@!þ 1

4
�!�5��!@� �!�5�

�@�!

���
:

(3.11)

As can be seen from this expression, they contain the interaction between the current j� and the fields C and !. The part
proportional to Fð1Þ contains terms with four fields ! and therefore their self-interactions. In the forthcoming section, we
will discuss the implications of those terms. Even though the action might seem bulky, it is a good starting point for the
perturbation theory since the expansion is done in terms of higher-derivative terms.

Since the resulting action is rather cumbersome, we find it convenient also to provide its bosonic truncation

Z
d4x½j�a� � CDþ Fð0Þðj2ÞðChCþ j�j

�Þ� þ
Z

d4x½Fð1Þðj2Þð�C2j�hj� � C2ð@�@� � g��hÞCð@�@� � g��hÞC

þ 4Cj�j�ð@�@� � g��hÞCÞ� þ
Z

d4x½Fð2Þðj2Þð�4C2j�j�ð@�@� � g��hÞCð@�@� � �
�
�hÞCÞ�: (3.12)
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The bosonic action truncates at the second order in F, since
all other terms are purely fermionic. This is due to the fact
that in the expansion of the third power and of the fourth
power, only those terms with a single � contribute to the
expansion since we have decided to expand around j�.
This simplifies the derivation of the energy-momentum
tensor for the bosonic sector as we are going to discuss
in the forthcoming section. In Appendix B, all other terms
are given.

B. Clebsch parametrization for the
supersymmetric case

We discuss here the Clebsch parameterization for the
supersymmetric case. Here, the gauge field a� is replaced

by the real superfield A and therefore we have to parame-
trize it using a Clebsch parametrization as above. As
suggested in [26] and in [28], we identify

A ¼ �þ ��þ Kð
; �
Þ; (3.13)

where �, 
 and ��, �
 are chiral and antichiral fields,
respectively. Kð
; �
Þ is a Kähler potential represented by
a real function of the superfields 
 and �
. The condition
for the complex manifold spanned by
 and �
 to be Kähler
is dK ¼ 0, where K is the canonical 2-form. Since the

complex manifold is one dimensional, no interesting con-
dition emerges from this constraint.
The identification in (3.13) implies that the Fayet-

Ilioupoulos term induced by the Abelian gauge field A is
given by

SF�I ¼
Z

d4xd4�A ¼
Z

d4xd4�Kð
; �
Þ; (3.14)

and it generates the dynamical equations of motion for the
chiral fields (see, for example, [26]). In our case, however,
this term is replaced by

S ¼
Z

d4xd4�ð�JAþ . . .Þ

¼
Z

d4xd4�ð�JðKð
; �
Þ þ �þ ��Þ þ . . .Þ; (3.15)

so that a naive kinetic term for 
 and �
 is absent, being
replaced by the superfield expansion of JK. The chiral field
� and the antichiral field �� implement the linearity condi-
tion on J.
Let us now consider the first term of action (3.15) which,

after Berezin integration, reads

S ¼
Z

d4x
1

2
Kð’; �’ÞhC� @K

�
ij�@�’þ 1

2
Ch’� i

ffiffiffi
2

p
2

�c L 6@�þ i

ffiffiffi
2

p
2

��6@c L

�
þ c:c:

� 1

2
@2KðC@�’@�’� ffiffiffi

2
p

i@�’ �c L�
��Þ þ c:c:� @ �@K

�
2jPj2C� C@�’@

� �’þ ffiffiffi
2

p
iP �c R�� ffiffiffi

2
p

i �P �c L�

� C �c L 6@c R � C �c R 6@c L þ ij� �c L��c R þ
ffiffiffi
2

p
2

i@� �’ �c L�
���

ffiffiffi
2

p
2

i@�’ �c R�
��

�

� 1

3
@2 �@Kð�2C �P �c Lc L þ 2C@�’ �c L�

�c R � ffiffiffi
2

p
i �c Lc L

�c R�Þ þ c:c:� 1

2
@2 �@2KC �c Rc R

�c Lc L; (3.16)

where the chiral and antichiral superfields 
 (respectively
�
) are defined by conditions

1� �5

2
D
 ¼ 0;

1þ �5

2
D �
 ¼ 0; (3.17)

and their components include a left-chiral spinor field
c L ¼ ð1þ�5

2 Þc (respectively right-chiral c R) and two sca-
lar complex fields ’ and P (respectively �’ and �P). The
expression Q� � ið@K@�’� �@K@� �’Þ � i@ �@K �c L��c R

is known as the Kähler connection. Action (3.7) contains
a piece which depends upon the superfield A. Inserting the
above expressions into (3.10), we get an action which
depends upon the components ’, c L, and F of the super-
field 
 (and their conjugated). Differentiation w.r.t. those
fields leads to the equations of motion. Truncating the
action to its bosonic part, the first term in (3.7) reads

S¼
Z
d4x

�
1

2
KhC� ij�ð@K@�’� �@K@� �’Þ

�1

2
Cð@Kh’þ �@Kh �’Þ�1

2
Cð@2K@�’@�’

þ �@2K@� �’@� �’Þ�C@ �@Kð2jPj2�@�’@
� �’Þ

�
; (3.18)

where the Kähler potential K is evaluated on ’ and its
conjugate. Notice that, if we integrate by parts KhC, the
above expression considerably simplifies and becomes

S ¼
Z

d4x½ij�ð �@K@�’� @K@� �’Þ � 2C@ �@KðjPj2

� @�’@
� �’Þ�: (3.19)

The Lagrangian is diagonal in the auxiliary fields P, �P and
their equations of motion (at the lowest level) imply either
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C ¼ 0 (fluid dynamics approximation) or P ¼ �P ¼ 0
(which is the supersymmetric dynamics).

To compute the equations of motion, we recall the
expansion of F, given in (3.12). Varying w.r.t. ’, we get

2@ �@K@� �’ðij� � @�CÞ � 2C@ �@Kh �’� 2C@ �@K@� �’@� �’

¼ 0: (3.20)

Analogously, we can get the equation of motion for �’. The
one for j� reads

ið �@K@� �’� @K@�’Þ þ 2Fð1Þj�ðChCþ j2Þ
þ 2Fj� � 2Fð2ÞC2j�j�hj� �hðFð1ÞC2j�Þ
� Fð1ÞC2hj� þ 8Fð1Þj�ð@�@� � g��hÞC
� 8Fð3ÞC2j� � 4Fð2ÞC2j�ð@�@� � g��hÞ
� Cð@�@� � �

�
�hÞC ¼ 0; (3.21)

and finally, the one for C is

2@ �@K@�’@
� �’þ FhCþhFC� 2Fð1ÞCj�hj�

þ 2Fð1Þ@�@�C@�@�Cþ 2@�@�ðFð1ÞC2@�@�CÞ
þ 4Fð1ÞCðhCÞ2 þ 4hðFð1ÞC2hCÞ
þ 4Fð1Þj�j�ð@�@� � g��hÞCþ 4ð@�@� � g��hÞ
� ðFð1Þj�j�CÞ � 4Fð2ÞCj�j�ð@�@� � g��hÞ
� Cð@�@� � �

�
�hÞC� 4ð@�@� � g��hÞ

� ðFð2ÞC2j�j�ð@�@� � ��
�hÞCÞ ¼ 0: (3.22)

C. Superfield equations

Action (3.7) is written in terms of a linear superfield J
and a real superfield A. For those superfields, the usual
functional derivative cannot be used and therefore we
cannot obtain the equations of motion by usual means
(see [27] for a complete discussion). To overcome such a
problem, we add two auxiliary generic superfields Z, S�,
one chiral superfield �, and one antichiral superfield ��.

The following action,

S ¼
Z

d4xd4�

�
�JðAþ �þ ��ÞÞ

þ F

��
1

4i
ð �D�5��DÞJ

�
2
�
J2
�

¼
Z

d4xd4�

�
�JðAþ �þ ��ÞÞ þ F½J 2�J2

þ S�
�
1

4i
ð �D�5��DÞJ � J �

��
; (3.23)

turns out to be equivalent to (3.7). The chiral and antichiral
superfields �, �� impose the linearity condition on the
superfield J.

As already discussed above, in order to get the correct
equations of motion, we replace the superfield A with the
Kähler potential. Then, we have

SK ¼
Z

d4xd4�

�
�JðKð
; �
Þ þ �þ ��Þ þ F½J 2�J2

þ S�
�
1

4i
ð �D�5��DÞJ � J �

��
; (3.24)

from which we can get the equations of motion by taking
the functional (unconstrained) derivatives with respect to
superfields J, 
, �
, S�, �, �� to get

�DDJ ¼ 0; J � � 1

4i
ð �D�5��DÞJ ¼ 0;

S� þ 2J �F0½J 2�J2 ¼ 0; �DD

�
J
@K

@


�
¼ 0;

�DD

�
J
@K

@ �


�
¼ 0;

Kð
; �
Þ þ �þ ��� 2JF½J 2� � 1

4i
ð �D�5��DÞS� ¼ 0:

(3.25)

To study the above equations, we proceed as follows.
The first equation in (3.25) implies the linearity of J [and
therefore its � expansion is given by (3.2)]. Then, we plug J
into the second equation f to compute the vector superfield
J �. Subsequently, we plug J � into the third equation to

evaluate S� and finally, using all those results, we can
express K in terms of the superfields 
 and �
. Given
that, equations (3.25) become the new NS equations, writ-
ten in terms of the linear superfield J which contains the
physical degrees of freedom of the superfluid.

D. Bosonic sector

In the present section, we study the model by setting to
zero the fermions. We first write the Lagrangian as a
function of the fields j� and C and then we provide a
new Lagrangian with new auxiliary fields which simplifies
the derivation of the energy-momentum tensor.
The bosonic part of the Lagrangian is (up to a factorffiffiffiffiffiffiffi�g

p
)

Lbos ¼ j�a� � CDþ Fð0Þðj2ÞðChCþ j�j
�Þ

þ Fð1Þðj2Þ½�C2j�hj� þ C2@�@�C@
�@�C

þ 2C2ðhCÞ2 þ 4j�j�Cð@�@� � g��hÞC�
þ 1

2F
ð2Þðj2Þ½�4C2j�j�ð@�@� � g��hÞC

� ð@�@� � ��
�hÞC�: (3.26)

We define the quadratic differential operator

M�� ¼ @�@� � g��h; @�M�� ¼ 0;

h ¼ �1
3g

��M��: (3.27)

and we rewrite (3.26) with the Lagrangian multiplier S��,
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Lbos ¼ j�a� � CDþ Fð0Þðj2Þ
�
�1

3g
��B��Cþ j�j

�

�

þ Fð1Þðj2Þ½�C2j�hj� þ C2B��B�
g
��g�


þ 4Cj�j�B��� þ 1
2F

ð2Þðj2Þ
� ½�4C2j�j�B��B�
g

�
� þ S��ðB�� �M��CÞ:
(3.28)

In this way, we restrict the covariantization of the differ-
ential operator M�� in a single term and the derivation of

the energy-momentum tensor is greatly simplified. We now
compute the equations of motion for C, B��, and j�,

respectively,

D ¼ �2Fð1ÞCþ 2Fð1ÞB��B
�� þ 4Fð1Þj�j�B��

� 4Fð2ÞCj�j�B��B�
g
�
 � 1

3F
ð0Þg��B��

�M��S
��; (3.29)

S�� ¼ �2Fð1ÞB��C2 � 4Cj�j� þ 4Fð2ÞC2j�j�B�
g
�


þ 1
3F

ð0ÞCg��; (3.30)

a� ¼ �Fð2Þj�N½0� þ Fð1ÞC2hj� þhðFð1ÞC2j�Þ
� 8Fð1ÞCB��j

� � Fð3ÞN½1� þ 4Fð2ÞC2B��B�
g
�
j�

� 2Fð1Þj�N½2� � 2Fð0Þj�; (3.31)

where N½0�, N½1�, and N½2� are the terms in (3.28) propor-

tional to Fð0Þ, Fð1Þ, and Fð2Þ, respectively.
In the case j� ¼ 0, the Lagrangian (3.28) coupled to

worldline metric is (we set Fð0Þ ¼ Fð1Þ ¼ 1)

Lbosjj¼0 ¼ ffiffiffiffiffiffiffi�g
p ½C2g��g�
B��B

�
 � CD

� 1
3Cg

��B�� þ S��ðB�� �M��CÞ�: (3.32)

The equations of motion for C and B�� are

D ¼ 2Cg��g�
B��B
�
 � 1

3g
��B�� �M��S

��; (3.33)

and

S�� ¼ �2C2B�� þ 1
3Cg

��: (3.34)

Finally, for this simplified Lagrangian we derive the
energy-momentum tensor. We obtain

T�� ¼ �g��ChC� 1
2g

��@�C@�Cþ @�C@�C� 5
2g

��C2r�@
Cr�@
C� 7g��C2hChC� 2g��C@�C@
Cr�@
C

� 14g��C2@�C@
�hC� 3g��C3hhC� 8g��C@�C@

�ChC� C2hCr�@�Cþ 4C@�Cr�@ð�C@�ÞC

� 2C@�C@�Cr�@�Cþ 6C2@ð�Cr�ÞhC� C2r�r�@�C@�Cþ 8C@�C@�ChC: (3.35)

We prefer to analyze only the equations of motion with the
Clebsch parametrization and in the case ! ¼ 0. This gives
novel dynamical equations.

E. Comparison with fluid/gravity correspondence

In order to compare the action we have obtained so far
with the result obtained in a previous publication [11], we
consider a further limit: we set the scalar field C ¼ 0.
Indeed, in [11] no scalar deformation of the black hole in
AdS5 has been considered, but there are taken into account
the bosonic deformations which are interpreted as the fluid

degrees of freedom that are collectively described by the
current j� and the fermionic deformations which are col-
lected into bilinears. Therefore, to comparewith those results,
we need to reproduce the same settings. Here, we cannot
present a complete discussion since the result provided in
[11] are still valid at the linear level and they are easily
captured by the second term of the action below by setting
j ¼ 0. Nevertheless, it is instructive to see how the structures
analyzed in [11] emerge in the present effective analysis.
Furthermore, we can have a guideline for further corrections.
The first two terms in the expansion of FJ2 are

Z
d4�

Z
d4x½Fð0Þðj2ÞJ2 þ Fð1Þðj2ÞðJ �J � � j2ÞJ2�

¼
Z

d4x

�
½Fð0Þðj2Þðj�j� � �!��@

�!Þ� þ
�
Fð1Þðj2Þ

�
2j2 �!6@!� 2j�j� �!��@�!� 3

4
�!!@� �!@�!

� 1

2
�!!@� �!���@�!þ 3

4
�!�5!@� �!�5@

�!þ 1

2
�!�5!@� �!�5�

��@�!� �!�5�
�!@� �!�5 6@!

þ 1

4
�!�5��!@� �!�5�

�@�!

���
: (3.36)

Assuming that the fermions ! are factorized in a given black hole background (see in [11] for the derivation) as ! ¼
	 � �. Inserting them into the action, we can observe that from the first line we obtain the structures of the type
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�@iN
i; @�iN

i; (3.37)

where �i and Ni are the bilinears written in terms of the
fermion fields 	 and �. The index labels the different types
of bilinears that can be formed. From the second and the
third line, we infer that higher power in bilinears can
indeed emerge from the present action. Those terms are
not yet comparable with the fermionic corrections com-
puted in [11] since it requires the construction of the full
backreacted metric [29].

Note that already in the second line there are new
interaction terms between j� (the bosonic degrees of free-
dom of the fluid) and the fermionic bilinears

j2�@iN
i; j2@�iN

i: (3.38)

In order to reproduce them in the computation of fluid/
gravity correspondence, one has to compute the correlation
functions of the sources coupled to those operators and this
is at the moment not yet done. Nevertheless, we provide
here a systematical tool to describe the expected form of
the effective action.

F. Dependence on the Kähler potential

We have to discuss the dependence of the equations of
motion upon the Kähler potential. For that, we discuss only
the bosonic sector and we observe the following identity,

� j�F��þC@�D¼�4@�½@ �@KCð@� �’@�’þ@�’@� �’Þ�;
(3.39)

where the right-hand side can be also be written as
@�ðCG��Þ where G�� is the inverse of the Kähler metric.

It appears as a total derivative. However, we cannot discard
such term. The reason is that it does not follow directly
from the action, namely, it is not a total derivative term
derived from the action. Nevertheless, we can show that it
is harmless and, at least in the rigid case, can be discarded.

The left-hand side of (3.39) can be obtained by the same
method as in Sec. II A. Indeed, by requiring the invariance
under an isometry and using the same equations as above
we get a new equation of the form

Z
d4xX�ð�j�F�� þ C@�DÞ

¼ �4
Z

d4xX�@�½@ �@KCð@� �’@�’þ @�’@� �’Þ�:
(3.40)

Now, we can use the integration by parts in the right-hand
side and by using the fact that X� must be a Killing vector
for the flat metric we can easily conclude that the left-hand
side of (3.39) is effectively a total derivative and it can be
discarded. A complete proof of this statement would be
very interesting since it would show that the dynamical
equations of motion are independent of the parametrization
of the gauge field A.

IV. CONCLUSIONS

We propose a new supersymmetric action for the super-
symmetric fluid dynamics, discussing some of its aspects,
such as the new NS equations and their derivation. A
discussion on the Clebsch parametrization is proposed
and the derivation of the superfield equations is done in
that framework. There are several open issues: (1) What is
the dynamics described by the present action? (2) What is
the role of the boson C? (3) A fluid described only in
terms of fermionic field can be discussed by setting to
zero both j� and C. We believe that the study of the
present system in the context of supergravity might shed
some light on the coupling with the world-volume metric
and finally the supersymmetry partner of T�� can be
computed. We leave the discussion on supergravity to a
forthcoming publication.
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APPENDIX A: FIERZ IDENTITIES

We list here some of the properties of Majorana spinors
and some useful Fierz identities:

�s1Ms2 ¼ �s2Ms1 if M ¼ 1; �5; �5�
�;

�s1Ms2 ¼ ��s2Ms1 if M ¼ ��; ���: (A1)

The Fierz identities for 2 identical spinors read

� �� ¼ �1
4ð ���þ ���5��5 � ���5����5�

�Þ; (A2)

while those for 3 spinors are

�ð ���Þ ¼ ��5� ���5�; �ð ���5���Þ ¼ ���� ���5�:

(A3)

Using (A3), it is easy to show that the following identities
also hold:

ð ���Þ2 ¼ �ð ���5�Þ2;
ð ���5���Þð ���5���Þ ¼ ����ð ���5�Þ2;

ð ���Þð ���5�Þ ¼ ð ���Þð ���5���Þ ¼ ð ���5�Þð ���5���Þ ¼ 0:

(A4)

Finally, the integration measure for Grassmann variables is

Z
d4�ð ���5�Þ2 ¼ �4: (A5)
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APPENDIX B: COMPLETE LAGRANGIAN

Here, we present the complete expansion of the super-
symmetric Lagrangian (3.7). This can be rewritten as

L ¼
Z

d4x
Z

d4�

�
�JAþX4

i¼0

1

i!
FðiÞLi

�
; (B1)

where FðiÞ is the order i derivative of FðJ �J �Þ computed

at J �J � ¼ j�j
� and

Li ¼ ðJ �J � � j�j
�ÞiJ2: (B2)

In the following, we show the explicit form of the four Li.
To perform the computation, we developed a program
written in FORM language (see [30] and references therein)
which, given a set of superfields expanded in components,
returns as a result any desired combination of these fields,
integrated over d4�. The subroutine structure of the pro-
gram allows us to check every intermediate passage, or to
use each single procedure to perform different calculations
such as Fierz identities or gamma manipulations.
Notice that only L1 and L2 have purely bosonic terms

(B3a) and (B4a).

L1 ¼ �C2½j�hj� þ ð@�@�C@�@�Cþ 2hChCÞ� þ 4Cj�j�ð@�@� � ���hÞC (B3a)

� C2@� �!@� 6@!þ 2C2h �!6@!� 2iCj�@� �!�5 6@!� iCj�@� �!�5��@
�!þ 4ChC �!6@!þ 2C@�@�C �!��@�!

þ 2Cj�@� �!��@
!"���
 � 2iCj� �!�5@� 6@!þ 2iCj� �!�5��h!þ 2j2 �!6@!� 2j�j� �!��@�!

� ij�ð@�@� � ���hÞC �!�5�
�!� 3

4 �!!@� �!@�!� 1
2 �!!@� �!���@�!þ 3

4 �!�5!@� �!�5@
�!

þ 1
2 �!�5!@� �!�5�

��@�!� �!�5�
�!@� �!�5 6@!þ 1

4 �!�5��!@� �!�5�
�@�!; (B3b)

L2¼�4C2j�j�ð@�@�����hÞCð@�@���
�
�hÞC (B4a)

�2C2j�ð@�@�����hÞC½@� �!�
@�!"��
��6i@� �!�5 6@!þ i@� �!�5�
�@�!�

þ6C2hCj�½@� �!��@
!"���
þ2i@� �!�5 6@!�2i@� �!�5�
�@�!�þ2C2j�ð@�@�����hÞC@� �!��@
!"���


�4iC2ð@�@�����hÞCj�@� �!�5��@
�!þ 9

4C
2@� �!@�!@� �!@�!þ3C2@� �!@�!@� �!���@�!

� 9
4C

2@� �!�5@
�!@� �!�5@

�!�3C2@� �!�5@
�!@� �!�5�

��@�!�2C2@� �!�5�
�@�!@� �!�5 6@!

þ 1
4C

2@� �!�5�
�@�!@� �!�5��@

�!þ4C2@� �!�5 6@!@� �!�5 6@!þC2@� �!���@�!@� �!��
@
!

�C2@� �!�5�
��@�!@� �!�5�

�
@
!þ4C2j�j�@� �!��h!�4C2j�j�@�@� �!6@!�4C2j�j�@� �!��@�@�!

þ4C2j2h �!6@!þ4iC2j�j�@� �!�5��@�@
!"���
�4Cj2½j�@� �!�
@�!"���
�2ij�@� �!�5 6@!
þ2ij�@� �!�5��@

�!�þ4iCj�j�j�@� �!�5��@�!�8iCj2j�@� �!�5 6@!þ4iCj2j�@� �!�5��@
�!

�8Cj�j�ð@�@�����hÞC �!6@!þ8Cj�j�ð@�@�����hÞC �!��@
�!þ8iCj�j�ð@�@��g��hÞC �!�5��@
!"���


�8iCj� �!��@�!@� �!�5 6@!þ2iCj� �!��@�!@� �!�5�
�@�!þ8iCj� �!6@!@� �!�5 6@!�2iCj� �!6@!@� �!�5��@

�!

�2Cj� �!�5��@�!@� �!�5�
@
�!"���
þ8Cj� �!�5��@�!@
 �!�5@!"���
þ6iCj� �!���@�!@� �!�5@

�!

þ4iCj� �!���@�!@� �!�5�
�
@
!�6iCj� �!�5�

��@�!@� �!@�!�4iCj� �!�5�
��@�!@� �!��
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