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The purpose of this work is to rewrite the generating functional of �4 theory for the n ¼ 0 and

n ¼ 4 correlation functions as the inner product of a state with an observable, as we did in a previous

work, for the two-points correlation function. The observables are defined through the external

sources and the states are defined through the correlation function itself. In this sense, the divergences

of Quantum Field Theory (QFT) appear in the reduced state by taking the partial trace of the state

with respect to the internal vertices that appear in the perturbation expansion. From this viewpoint,

the renormalization can be substituted by applying a projector on the internal quantum state. The

advantage of this new insight is that we can obtain finite contributions to the correlation funct-

ions without introducing counterterms in the Lagrangian or by manipulating complex divergent

quantities.
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I. INTRODUCTION

This paper, as its predecessor, develops the perturbation
expansion of any correlation function in terms of the mean
values of some observables, in particular, states as we did
in [1].1 In fact, our formalism produces unphysical infin-
ities in the form of ½�ð0Þ�k that will be represented in a
dimensional regularization scheme by the poles 1

�k
, where

� ¼ d� 4 and d is the space-time dimension.2 These
infinities arise because the quantum state associated to
the internal vertices of the perturbation expansion has a
diagonal part in the coordinate basis. In [1] we have shown
that we can simply disregard these unphysical infinities by
applying a projection operator on the quantum states. The
finite results found coincide with those of the usual renor-
malized QFT in several models (and we will present more
coincidences in this and forthcoming papers). In this sense,
it seems that throwing away the unphysical infinities due to
the short-distance behavior through the projector is, after
all, a good method. These ideas agree with those intro-
duced in [3] (vol. 1, page 499): QFT yields divergent
integrals ‘‘but these infinities cancel when we express all
the parameters of the theory in renormalized quantities,
such as the masses and the charges that we actually mea-
sure’’. Moreover, it also coincides with [4], since we
believe that the process of subtracting infinities is really a

matter of subtracting the irrelevant effect of the ’’perhaps
poorly understood physics at high energy or short scale to
obtain the meaningful physics at the scales actually studied
in the laboratory’’ ([4], page 254). In this sense, the con-
straining is done by neglecting the physics of high energy
or short scale.

A. List of sections

The paper is organized as follows: In Sec. II we will
explicitly show how to define the observables and states in
a general way and the projection procedure. In Sec. III we
will show how to describe the n ¼ 0 correlation function in
�4 theory using the observables and states. In Sec. IV we
show in a similar way how to handle the observable-state
model for the n ¼ 4 correlation function. In particular, we
show how the renormalization group of the coupling con-
stant arises. In Sec. V we show how to obtain the renormal-
ization group equations for the mass and the coupling
constant using the finite contribution of the correlation
function obtained by application of the projector on the
quantum state. In Sec. VI we briefly discuss the conceptual
meaning of the reduced state and partial traces and its
relation with the nonphysical virtual particles and we intro-
duce some general ideas of the observable-state model.
In Sec. VII we present the conclusions. The Appendix A
shows the relation between the Dirac delta and the pole
parameter representation of the dimensional regularization.
The appendix B shows how to obtain the relation between
the vacuum energy and the space volume. Finally, in
Appendix C we analyze the properties of the projector that
gives the finite contribution in each correlation function.

1This idea has been called ‘‘the observable-state model’’.
2The equivalence between �ð0Þ and 1

� can be found in Quantum
Field Theory textbooks, like [2], page 352, below eq. (11.55). In
Appendix Awe show how to obtain this equivalence in a formal
way.
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II. OBSERVABLES AND STATES IN QUANTUM
FIELD THEORY: THE MAIN IDEA

Let us recall the main idea of the observable-state model
of paper [1], that can be considered as the first part of this
paper, and that will be used in this section. The starting

point is some (symmetric) n-point functions �ðnÞðx1; . . . ; xnÞ
(like Feynman or Euclidean functions), and its corres-
ponding generating functional [[5], Eq. (II.2.21), [6],
Eq. (3.2.11)]. Then, the main equation reads

iZ½J� ¼ X1
n¼0

X1
p¼0

in

n!

ip

p!

�
Z
h�0jT�0ðx1Þ . . .�0ðxnÞL0

I ðy1Þ . . .L0
I ðypÞj�0i

� Jðx1Þ . . . JðxnÞ
Yn
i¼1

d4xi
Yp
i¼1

d4yi; (1)

where yi are the internal vertices of the perturbation expan-
sion and L0

I ðypÞ is the Lagrangian interaction density [see

Eq. (II.2.33) of [5]].
This last equation will be our starting point, wewill write

Z½J� as an mean value of an observable defined through the
JðxnÞ sources in a quantum state defined by the correlat-
ion function h�0jT�ðx1Þ . . .�ðxnÞL0

I ðy1Þ . . .L0
I ðypÞj�0i.3

This procedurewill be done for each correlation function of
n external points.

Using dimensional regularization (see [8]) we can write
the one-particle irreducible contribution to the correlation
function such that (see [9] for �4 theory):

Z
h�0jT�ðx1Þ . . .�ðxnÞL0

I ðy1Þ . . .L0
I ðypÞj�0i

Yp
i¼1

d4yi

¼ fðnÞ0 ðx1; . . . ; xnÞ
Xþ1

l¼�Lðn;pÞ
�ðn;pÞ

l ðm2
0; �Þ�l ; (2)

where fðnÞ0 is some function of the external points,

�ðn;pÞ
l ðm2

0; �Þ are some coefficients of the dimensional

regularization that depends on the external momentum,
the mass factor � used to keep the coupling constant
dimensionless and the mass of the field m0. The parameter
� is � ¼ d� 4, where d is the dimension of space-time.
The sum in l starts at �Lðn; pÞ, where Lðn; pÞ is the
number of loops at order p in the correlation functions of
n external points (see Appendix A, Eq. A6 of [1]). The

functions fðnÞ0 and Lðn; pÞ are very simple in the case of�4

theory, for example,
(i) n ¼ 0

fð0Þ0 ¼ 1; Lð0; pÞ ¼ pþ 1 (3)

(ii) n ¼ 2

fð2Þ0 ¼
Z d4p

ð2�Þ4
e�ipðx1�x2Þ

ðp2�m2
0Þ2

; Lð2;pÞ¼p (4)

(iii) n ¼ 4

fð4Þ0 ¼
Z d4p

ð2�Þ4
e�ipðx1�x4Þ

p2�m2
0

Z d4q

ð2�Þ4
e�iqðx2�x4Þ

q2�m2
0

�
Z d4l

ð2�Þ4
e�ilðx3�x4Þ

ðl2�m2
0Þððpþqþ lÞ2�m2

0Þ
;

Lð4;pÞ¼p�1: (5)

In general

fðnÞ0 ¼ Yn
i¼1

Z d4pi

ð2�Þ4
e�ipixi

p2
i �m2

0

�

�Xn
j¼1

p2
j

�
;

Lðn; pÞ ¼ p� n

2
þ 1

(6)

Inserting Eq. (2) in Eq. (1) we obtain4

iZ½J� ¼ X1
n¼0

X1
p¼0

in

n!

ip

p!

X0
l¼�Lðn;pÞ

�ðn;pÞ
l �l

�
Z

fðnÞ0 ðx1; . . . ; xnÞJðx1Þ . . .JðxnÞ
Yn
i¼1

d4xi:

(7)

The observable-state model consist in the assump-
tion that the generating functional of the last equa-
tion can be rewritten as a mean value of the
following observable:

Oðn;pÞ ¼ OðnÞ
ext � IðpÞint ; (8)

in the following quantum state:

�ðn;pÞ ¼ �ðnÞ
ext � �ðn;pÞ

int ; (9)

where OðnÞ
ext is some observable that acts on the

external coordinates xi and IðpÞint is the identity op-

erator that acts on the internal vertices due to the

perturbation expansion. In a similar way, �ðnÞ
ext is the

quantum state of the external part and �ðn;pÞ
int is

the quantum state of the internal part.

Then, the mean value of Oðn;pÞ in �ðn;pÞ reads

Tr ð�ðn;pÞOðn;pÞÞ ¼ Trð�ðnÞ
extO

ðnÞ
extÞTrð�ðn;pÞ

int Þ: (10)

3In some sense, these observables will be the particle detector
[see [7], page 6, below Eq. (2.6)].

4The infinite sum in the l index in Eq. (2) can be truncated in
l ¼ 0, because the remaining terms are proportional to �l and the
final result must be computed by taking the � ! 0 limit. In this
sense, what concern us is the principal part plus the constant
term of the Laurent series with poles d� 4.
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Using the last equation, the generating functional of Eq. (7)
can be written as

iZ½J� ¼ X1
n¼0

X1
p¼0

in

n!

ip

p!
Trð�ðn;pÞOðn;pÞÞ

¼ X1
n¼0

X1
p¼0

in

n!

ip

p!
Trð�ðn;pÞ

int ÞTrð�ðnÞ
extO

ðnÞ
extÞ; (11)

where

�ðnÞ
ext¼

Z
fðnÞ0 ðx1;...;xnÞjx1;...;xðn=2Þihxðn=2Þþ1;...;xnj

Yn
i¼1

d4xi

(12)

and

OðnÞ
ext¼

Z
Jðx1Þ...JðxnÞjx1;...;xðn=2Þihxðn=2Þþ1;...;xnj

Yn
i¼1

d4xi:

(13)

In turn

Tr ð�ðn;pÞ
int Þ ¼ Xþ1

l¼�Lðn;pÞ
�ðn;pÞ

l �l (14)

which implies that the divergences of the quantum field
theory are the consequence of taking the trace of the

internal quantum state �ðn;pÞ
int . This point is relevant; be-

cause the trace of an operator is an invariant quantity, this
means that it is the same in different bases. This implies

that if we want to obtain a finite contribution �ðn;pÞ
0 , we

must apply a nonunitary transformation on �ðn;pÞ
int that

changes its trace, i.e., we must project to another �int.

A. Internal quantum state

To define the internal quantum state we will just recall
some considerations (see Sec. 6 in [1]): the algebra of
observables O is represented by *-algebra A of self-
adjoint elements and states are represented by functionals
onO, that is, by elements of the dual spaceO0, � 2 O0. We
will construct a C�-algebra of operators defined in terms of
elements with the property TrðA�AÞ<1. As is well
known, a C�-algebra can be represented in a Hilbert space
H (GNS theorem)5 and, in this particular case O ¼ O0;
therefore O and O0 are represented by H �H that will
be called N , the Liouville space.

As we are interested in the diagonal and nondiagonal
elements of a matrix state we can define a subalgebra of
N , that can be called a van Hove algebra [11] since such a
structure appears in his work as

N vh¼ N S �N R � N ; (15)

where the vector space N R is the space of operators
with OðxÞ ¼ 0 and Oðx; x0Þ is a regular function.
MoreoverO ¼ N vhS is the space of self-adjoint operators

of N vh, which can be constructed in such a way it could
be dense in N S (because any distribution can be approxi-
mated by regular functions) (for the details see [1],
Sec. II.B and Sec. VI). Therefore essentially the introduced
restriction is the minimal possible coarse-graining. Now
the � is a direct sum because N S contains the factor
�ðx� x0Þ and N R contains just regular functions and a
kernel cannot be both a � and a regular function. Moreover,
as our observables must be self-adjoint, the space of
observables must be

O ¼ N vhS¼ N S �N R � N : (16)

The states must be considered as linear functionals over
the space O (O0 the dual of space O),

O 0 ¼ N 0
vhS ¼ N 0

S �N 0
R � N 0 (17)

The set of these generalized states is the convex set
S � O0.
Having this in mind, we can define the internal quantum

state in the following way:

�ðn;pÞ
int ¼

Z YLðn;pÞ
i¼1

ð�ðn;p;iÞ
D ðyiÞ�ðyi � wiÞ þ �ðn;p;iÞ

ND ðyi; wiÞÞ

� jy1; . . . ; yLðn;pÞihw1; . . . ; wLðn;pÞj
YLðn;pÞ
i¼1

d4yid
4wi:

(18)

The trace reads [see Appendix B, Eq. (A7)]

Tr ð�ðn;pÞ
int Þ ¼ YLðn;pÞ

i¼1

�
�ðn;p;iÞ
D

��
þ �ðn;p;iÞ

ND

�
; (19)

where

�ðn;p;iÞ
D ¼

Z
�ðn;p;iÞ
D ðyiÞd4yi

�ðn;p;iÞ
ND ¼

Z
�ðn;p;iÞ
ND ðyi; yiÞd4yi:

(20)

We can see from the last equation that �ðn;p;iÞ
D and �ðn;p;iÞ

ND are
merely normalization factors. Equation (19) can be
written as

Tr ð�ðn;pÞ
int Þ ¼ X0

l¼�Lðn;pÞ
	ðn;pÞ
l �l; (21)

where

	ðn;pÞ
0 ¼ YLðn;pÞ

i¼1

�ðn;p;iÞ
ND ; . . . ;

	ðn;pÞ
Lðn;pÞ ¼

1

�Lðn;pÞ
YLðn;pÞ
i¼1

�ðn;p;iÞ
D :

(22)

5Gelfand, Naimark, and Segal [10].
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All the terms 	ðn;pÞ
l with l > 0 that are multiplied by �l

contain at least one �ðn;p;iÞ
D , that is, the diagonal part of the

state of the _i-internal quantum system. In particular, we can
make the following equality:

�ðn;pÞ
l ¼ 	ðn;pÞ

l : (23)

In this sense, the coefficients obtained by the dimen-
sional regularization can be associated with the products of
the diagonal and nondiagonal parts of the internal quantum

state. In particular, the coefficient that is not multiplied by

a � is 	ðn;pÞ
0 which depends exclusively on the nondiagonal

quantum state.

B. Projection over the finite contribution

As we saw in Eqs. (21) and (22), the finite result
exclusively depends on the nondiagonal quantum state,
so we can construct a projector that projects over the non-
diagonal quantum state. This projector reads6

�pð�ðn;pÞ
int Þ ¼ �ðn;pÞ

int �
Z

�ðn;p;1Þ
D ðy1Þ�ðn;p;2Þ

D ðy2Þ . . .�ðn;p;Lðn;pÞÞ
D ðyLðn;pÞÞjy1; . . . ; yLðn;pÞihy1; . . . ; yLðn;pÞj

YLðn;pÞ
i¼1

d4yi

þ
Z

�ðn;p;1Þ
D ðy1Þ�ðn;p;2Þ

D ðy2Þ . . .�ðn;p;Lðn;pÞ�1Þ
D ðyLðn;pÞ�1Þ�ðn;p;Lðn;pÞÞ

ND ðyLðn;pÞ; wLðn;pÞÞ

� jy1; . . . ; yLðn;pÞihy1; . . . ; wLðn;pÞjd4wLðn;pÞ
YLðn;pÞ�1

i¼1

d4yi þ . . .þ
Z

�ðn;p;1Þ
D ðy1Þ�ðn;p;2Þ

ND ðy2; w2Þ . . .�ðn;p;Lðn;pÞÞ
ND

� ðyLðn;pÞ; wLðn;pÞÞjy1; . . . ; yLðn;pÞihy1; . . . ; wLðn;pÞjd4y1
YLðn;pÞ
i¼2

d4yid
4wiÞ: (24)

The projection procedure consists in the subtraction of the
part of the state that contains at least one internal diagonal
quantum state. This projector acting on the state �ðn;pÞ
yields

�pð�ðn;pÞ
int Þ ¼

Z YLðn;pÞ
i¼1

�ðn;p;iÞ
ND ðyi; wiÞjy1; . . . ; yLðn;pÞi

� hw1; . . . ; wLðn;pÞj
YLðn;pÞ
i¼1

d4yid
4wi: (25)

Then, using the equivalence of Eq. (23), the mean value of
Oðn;pÞ in the state �pð�ðn;pÞÞ reads

Trð�pð�ðn;pÞOðn;pÞÞ

¼�ðn;pÞ
0

Z
fðnÞ0 ðx1; . . . ;xnÞOðnÞ

extðx1; . . . ;xnÞ
Yn
i¼1

d4xi; (26)

where OðnÞ
extðx1; . . . ; xnÞ ¼ Jðx1Þ . . . JðxnÞ [see Eq. (13)].

Multiplying by ip

p! and summing in p we obtain7

Trð�ðnÞOðnÞ
extÞ¼

Xþ1

p¼0

ip

p!
Trð�pð�ðn;pÞÞOðn;pÞÞ

¼ Xþ1

p¼0

ip

p!
�ðn;pÞ

0

Z
fðnÞ0 ðx1; . . . ;xnÞOðnÞ

extðx1; . . . ;xnÞ

�Yn
i¼1

d4xi; (27)

where

�ðnÞ ¼
�Xþ1

p¼0

ip

p!
�ðn;pÞ

0

�
�ðnÞ
ext; (28)

where ip

p!�
ðn;pÞ
0 is the coefficient of the quantum state �ðnÞ

ext.
In this way, we can eliminate all the divergences of the

observable-state model by the application of the projector
over a well-defined Hilbert subspace. This formalism has
been applied to the two-point correlation function for �4

theory (see [1]) and the idea of this work is to apply it to
n ¼ 0 and n ¼ 4 correlation function of external points. In
Appendix C we briefly show the relation between the
projector and the R-operation of the BPHZ subtraction
method in QFT.

III. EXAMPLES: �4 THEORY, n¼0

In this section we will briefly study the vacuum ampli-
tude for the �4 theory. When there are interactions, the
vacuum amplitude reads (see [12], page 87):

6Is not difficult to show that it is a projector: linearity implies
that �ðaþ bÞ ¼ �ðaÞ þ�ðbÞ, then, if �ðaÞ ¼ a� G, then,
�2ðaÞ ¼ �ða�GÞ ¼ �ðaÞ ��ðGÞ, but �ðGÞ ¼ G�G ¼ 0,
then �2ðaÞ ¼ �ðaÞ.

7The factor ip

p! is introduced for later convenience, but its
meaning could be that in the observable-state model, the quan-
tum state is invariant under an exchange of internal vertices.
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h�j�i ¼ ðjh�0j�ij2e�iE02TÞ�1

�
�
�0

��������exp
�
�i

Z T

�T
dtHIðtÞ

����������0

�
; (29)

where j�i is the vacuum vector for the interacting theory,
j�0i is the vacuum vector for the free theory, E0 ¼
h�jHj�i is the energy of the vacuum state of the interacting
theory, H is the full Hamiltonian H ¼ H0 þHI, where HI

is the interacting Hamiltonian, and 2T is the time interval
where the process occurs. The brackets in Eq. (29) can be
written in terms of the perturbation expansion in the cou-
pling constant 
0:

�
�0

��������exp
�
�i

Z T

�T
dtHIðtÞ

����������0

�

¼1þð�i
0Þ
Z
d4y1h�0j�4ðy1Þj�0iþð�i
0Þ2

�
Z
d4y1d

4y2h�0j�4ðy1Þ�4ðy2Þj�0iþ . . .þð�i
0Þp

�
Z
d4y1 .. .d

4yph�0j�4ðy1Þ . . .�4ðypÞj�0iþ . . . :

(30)

The structure of the vacuum amplitude in terms of the
perturbation expansion can be obtained, to do so we will
consider the first order in the perturbation expansion. We
just recall that wewill compute the connected diagrams and
not the products of them.

The first order p ¼ 1 reads

ð�i
0Þ
Z

d4y1h�0j�4ðy1Þj�0i ¼ i
0½�ð0Þ�2
Z

d4y1

¼ i
0½�ð0Þ�22TV; (31)

where V is the volume of space and �ð0Þ is the Feynman
propagator of a scalar field. Using dimensional regulariza-
tion, Eq. (31) reads

ð�i
0Þ
Z

d4y1h�0j�4ðy1Þj�0i

¼ i
02TV

�
�ð0;1Þ

2

�2
þ �ð0;1Þ

1

�
þ �ð0;1Þ

0

�
; (32)

where the coefficients �ð0;1Þ
i are some constants that

can be obtained from the regularized propagator �ð0Þ
and depend on a mass factor � that is introduced to
keep the coupling constant dimensionless, this is, we

must replace 
0 by 
0ð���Þ.8 The first superscript 0 in �
refers to the number of external points and the second
superscript 1 refers to the order in the perturbation expan-
sion. The subscript refers to the power of the � ¼ d� 4
factor, where d is the dimension of space-time. Using
Eq. (A.44) of Appendix A.4 of [12], page 807, the coef-

ficients �ð0;1Þ
k read

�ð0;1Þ
2 ¼ m4

0

64�4

�ð0;1Þ
1 ¼ m4

0

64�4

�
	� 1þ ln

�
m2

0

4��

��

�ð0;1Þ
0 ¼ m4

0

24 � 64�4

�
18� 24	þ 12	2 þ�2

þ 12ðln2ðm2
0Þ � ln2ð4�Þ þ ln2ð�ÞÞ

þ 24ð1� 	þ lnð4�ÞÞ ln
�
4��

m2
0

��
: (33)

The second order p ¼ 2 in the perturbation expansion has
three terms, where two of them are connected,

ð�i
0Þ2
Z

d4y1d
4y2h�0j�4ðy1Þ�4ðy2Þj�0i

¼ ð�i
0Þ2½�ð0Þ�2
Z

d4y1d
4y2½�ðy1 � y2Þ�2

þ ð�i
0Þ2
Z

d4y1d
4y2½�ðy1 � y2�4: (34)

It can be shown that the following orders for the con-
nected Feynman diagrams in the perturbation expansion
can be accommodated following Eq. (32)9:

ð�i
0Þp
Z

d4y1 . . . d
4yph�0j�4ðy1Þ . . .�4ðypÞj�0i

¼ Xpþ1

j¼0

ð�i
0Þpi2pð2TVÞ
�ð0;pÞ

j

�j
; (35)

where i2p comes from 2p propagators that can be obtained
from the vacuum expectation values of the 4p quantum
fields. If we want to compute Eq. (29) we must consider the
nonconnected Feynman diagrams that can be constructed
by multiplying the connected ones. For example, for the
second order p ¼ 2 we can obtain the nonconnected
Feynman diagram by multiplying by itself the first order

8Is not difficult to show that the coupling constant has dimen-
sion ½
0� ¼ ½mass�4�d where d is the dimension of space-time
(see [12], page 322). Then, the mass factor ��ð4�dÞ multiplied to

0 maintains the new coupling constant dimensionless. A di-
mensionless coupling constant is necessary because it is the
parameter we use to apply the perturbation expansion.

9The general solution showed in Eq. (35) can be traced to
general results which appear in the dimensional regularization
scheme (see [9], pages 103–130 and [13], page 686).
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p ¼ 1. This procedure can be done for all the orders, in
particular, to obtain the nonconnected Feynman diagrams
at order p we must multiply all the lowest orders where the
sum of them gives p. If we call the result of Eq. (35) as
fðpÞ, then, the sum of the connected diagrams and the
nonconnected diagrams reads

Xþ1

k¼0

1

k!

�Xþ1

p¼1

fðpÞ
�
k

¼fð1Þþfð2Þþ . . .þfðpÞþ . . .

þ 1

2!
ðfð1Þþfð2Þþ . . .Þðfð1Þþfð2Þþ . . .Þþ . . . ; (36)

the factor 1
k! is introduced to avoid double counting, for

example, fðiÞfðjÞ and fðjÞfðiÞ. With this result, we can
proceed to evaluate Eq. (29),

jh�0j�ij2e�iE02T¼Xþ1

k¼0

1

k!

�Xþ1

p¼1

Xpþ1

j¼0

ð�i
0Þpi2pð2TVÞ
�ð0;pÞ

j

�j

�
k
;

(37)

where we have put h�j�i ¼ 1 and we have introduced the
result of Eq. (35) in fðpÞ. The projection procedure will be
given by only keeping the j ¼ 0 term in Eq. (37) as we will
show in the following section. We then have

jh�0j�ij2e�iE02T ¼Xþ1

k¼0

ð2TVÞk
k!

�Xþ1

p¼1

ð�i
0Þpi2p�ð0;pÞ
0

�
k
:

(38)

In Appendix A we show how to obtain the relation be-
tween the vacuum energy E0 and the volume of space V in a
formal way. This result has no direct relation with the aim of
thiswork, but is a contribution to the observable-statemodel.

A. The observable-state model for n¼0 in �4

Now we can apply this mathematical structure to the
case of vacuum bubbles in �4 theory, where we can use
Eq. (18) in the case n ¼ 0, then,

�ð0;pÞ ¼�ð0;pÞ
int

¼
Z Ypþ1

i¼1

ð�ð0;p;iÞ
D ðyiÞ�ðyi�wiÞþ�ð0;p;iÞ

ND ðyi;wiÞÞ

�jy1; . . . ;ypþ1ihw1; . . . ;wpþ1j
Ypþ1

i¼1

d4yid
4wi ; (39)

where �ð0;p;iÞ
D and �ð0;p;iÞ

ND are some regular functions. The

trace Trð�ð0;pÞ
int Þ reads

Tr ð�ð0;pÞ
int Þ ¼ X0

l¼�ðpþ1Þ
	ð0;pÞ
l �l; (40)

where in particular,

	ð0;pÞ
0 ¼Ypþ1

i¼1

�ð0;p;iÞ
ND ; . . . ; 	ð0;pÞ

pþ1 ¼
1

�pþ1

Ypþ1

i¼1

�ð0;p;iÞ
D ; (41)

and the remaining coefficients 	ð0;pÞ
l with pþ 1> l > 1

contains at least one �D.
Comparing Eq. (41) with Eq. (35) we can see that the

coefficients 	ð0;pÞ
l read

	ð0;pÞ
l ¼ ð�i
0Þpi2pð2TVÞ�ð0;pÞ

l : (42)

In the first order in the perturbation expansion, using
Eq. (40) and (41) we have

X2
l¼0

	ð0;2Þ
l ��l ¼ 	ð0;2Þ

0 þ 	ð0;2Þ
1 ��1 þ 	ð0;2Þ

2 ��2

¼ �ð0;2;1Þ
ND �ð0;2;2Þ

ND

þ ð�ð0;2;1Þ
D �ð0;2;2Þ

ND þ �ð0;2;2Þ
D �ð0;2;1Þ

ND Þ��1

þ �ð0;2;1Þ
D �ð0;2;2Þ

D ��2: (43)

Using Eq. (33) and (42) we have that

�ð0;2;1Þ
D �ð0;2;2Þ

D ¼ i
02TVm
4
0

64�4

�ð0;2;1Þ
D �ð0;2;2Þ

ND þ �ð0;2;2Þ
D �ð0;2;1Þ

ND ¼ i
02TVm
4
0

64�4

�
�1þ 	þ ln

�
m2

0

4��

��

�ð0;2;1Þ
ND �ð0;2;2Þ

ND ¼ i
02TVm
4
0

24 � 64�4

�
18� 24	þ 12	2 þ�2 þ 12ðln2ðm2

0Þ � ln2ð4�Þ þ ln2ð�ÞÞ

þ 24ð1� 	þ lnð4�ÞÞ ln
�
4��

m2
0

��
: (44)

This implies that the diagonal and nondiagonal quantum
states are not well determined. In this case, we have four
unknown quantities and three equations. As we saw in
Sec. II, the finite contribution for the correlation function

comes from the nondiagonal quantum states, so the inde-
termination can be translate to an arbitrary election of one
of the nondiagonal quantum states. The indetermination
will grow up with the order of the perturbation expansion;
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in fact, at order p we will have p diagonal states and p
nondiagonal states, so we have 2p unknown quantities, but
we have pþ 1 equations, so the indetermination grows
like 2p� p� 1 ¼ p� 1. In general, for the correlation
function of n external points we will have 2Lðn; pÞ

unknown quantities and Lþ 1 equations, so the indetermi-
nation will grow as 2L� L� 1 ¼ L� 1.
The finite contribution of Eq. (40) can be obtained by

the application of the projector on the quantum state of
Eq. (39)

�pð�ð0;pÞ
int Þ¼�ð0;pÞ

int �
Z
�ð0;p;1Þ
D ðy1Þ�ð0;p;2Þ

D ðy2Þ . . .�ð0;p;pþ1Þ
D ðypþ1Þjy1; . . . ;ypþ1ihy1; . . . ;ypþ1j

Ypþ1

i¼1

d4yi

þ
Z
�ð0;p;1Þ
D ðy1Þ�ð0;p;2Þ

D ðy2Þ . . .�ð0;p;pþ1Þ
ND ðypþ1;wpþ1Þjy1; . . . ;ypþ1ihy1; . . . ;wpþ1jd4wpþ1

Yp
i¼1

d4yiþ . . .

þ
Z
�ð0;p;1Þ
D ðy1Þ�ð0;p;2Þ

ND ðy2;w2Þ . . .�ð0;p;pþ1Þ
ND ðypþ1;wpþ1Þjy1; . . . ;ypþ1ihy1; . . . ;wpþ1jd4y1

Ypþ1

i¼2

d4yid
4wi : (45)

This projector eliminates all the diagonal parts of the
quantum state. Then, the trace with the projected state
reads

Tr ð�pð�ð0;pÞ
int ÞÞ ¼ �ð0;pÞ

0 : (46)

Adding all the orders in the perturbation expansion we
finally obtain

Tr ð�ð�ð0Þ
int ÞÞ ¼ 1þ Xþ1

p¼1

ð�i
0Þpi2pð2TVÞ�ð0;pÞ
0 : (47)

Then, multiplying the nonconnected Feynman diagrams,
we obtain Eq. (38).

In the case of no external points, the renormalization is a
normalization of the quantum state itself. In the
observable-state model, this normalization is explicit, be-
cause the projection changes the trace of the quantum state
[see Eqs. (40) and (46)]. From this point of view, the
renormalization is a change of the norm of the quantum
state by a projection, in a similar manner in which the
projection postulate occurs in nonrelativistic quantum
mechanics.

IV. EXAMPLE: �4 THEORY, n ¼ 4

The four-point correlation function, when there are in-
teractions, reads

h�j�ðx1Þ�ðx2Þ�ðx3Þ�ðx4Þj�i ¼ h�0j�ðx1Þ�ðx2Þ�ðx3Þ�ðx4Þj�0i
þ ð�i
0Þ

Z
h�0j�ðx1Þ�ðx2Þ�ðx3Þ�ðx4Þ�4ðy1Þj�0id4y1

þ ð�i
0Þ2
Z
h�0j�ðx1Þ�ðx2Þ�ðx3Þ�ðx4Þ�4ðy1Þ�4ðy2Þj�0id4y1d4y2 þ . . .

þ ð�i
0Þp
Z
h�0j�ðx1Þ�ðx2Þ�ðx3Þ�ðx4Þ�4ðy1Þ . . .�4ðypÞj�0i

Yp
i¼1

d4yi : (48)

The first term of the last equation reads

h�0j�ðx1Þ�ðx2Þ�ðx3Þ�ðx4Þj�0i ¼ �ðx1 � x2Þ�ðx3 � x4Þ þ �ðx1 � x3Þ�ðx2 � x4Þ þ �ðx1 � x4Þ�ðx2 � x3Þ (49)

where �ðx� yÞ is the scalar propagator. This term does not contribute to the scattering amplitude because it describes a
trivial process where the initial and final states are identical.

The first order in the perturbation expansion reads

ð�i
0Þ
Z
h�0j�ðx1Þ�ðx2Þ�ðx3Þ�ðx4Þ�4ðy1Þj�0id4y1

¼fð4Þ0 ðx1;x2;x3;x4Þ¼ ð�i
0Þ
Z d4p

ð2�Þ4
ie�ipðx1�x4Þ

p2�m2
0

Z d4q

ð2�Þ4
ie�iqðx2�x4Þ

q2�m2
0

Z d4l

ð2�Þ4
ie�ilðx3�x4Þ

ðl2�m2
0Þ

i

ððpþq� lÞ2�m2
0Þ
: (50)

In this case, the first order does not have any loops.
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The second order in the perturbation expansion reads

ð�i
0Þ2
Z
h�0j�ðx1Þ�ðx2Þ�ðx3Þ�ðx4Þ�4ðy1Þ�4ðy2Þj�0id4y1d4y2

¼ fð4Þ0 ðx1; x2; x3; x4Þ
2
0

Z d4r

ð2�Þ4
1

ðr2 �m2
0Þððpþ q� rÞ2 �m2

0Þ

¼ fð4Þ0 ðx1; x2; x3; x4Þ
2
0

�
�ð4;2Þ

1

�
þ �ð4;2Þ

0

�
; (51)

where �ð4;2Þ
1 and �ð4;2Þ

0 read [see [14], pages 120–122 or
Eq. (4.4.16)]

�ð4;2Þ
1 ¼ 1

32�2

�ð4;2Þ
0 ¼ 1

2

3

32�2

0
B@lnð�2Þ � 	þ 2þ ln

�
4��2

m2
0

�

� 1

3

X
z¼s;t;u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

0

z

s
ln

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

0

z

q
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4m2
0

z

q
� 1

1
CA
1
CA; (52)

where s, t, and u are Mandelstam variables s ¼
ðp1 þ p2Þ2, t ¼ ðp1 þ p3Þ2, and u ¼ ðp1 þ p4Þ2 and 1

2 is
the symmetry factor and the � factor appears by changing
the coupling constant 
0 to 
0�

��. Is not difficult to show
that the higher orders in the perturbation expansion obey
the following rule:

ð�i
0Þp
Z
h�0j�ðx1Þ�ðx2Þ�ðx3Þ�ðx4Þ�4ðy1Þ...�4ðypÞj�0i

�Yp
i¼1

d4yi¼fð4Þ0 ðx1;x2;x3;x4Þ
Xp�1

l¼0

ð�i
0Þpi2þ2p�ð4;pÞ
l

�l
;

(53)

where p� 1 is the number of loops in the case of �4

theory with four external points.
Following the idea of our work, we will apply the

observable-statemodel to the four-point correlation function.

A. The observable-state model for n¼4 in �4 theory

The state and the observable reads

�ð4;pÞ ¼
Z

fð4Þ0 ðx1; x2; x3; x4Þ
Yp�1

i¼1

ð�ð4;p;iÞ
D ðyiÞ�ðyi � wiÞ

þ �ð4;p;iÞ
ND ðyi; wiÞÞjx1; x2; y1 . . . ; yp�1i

� hx3; x4; w1; . . . ; wp�1j
Y4
i¼1

d4xi
Yp�1

i¼1

d4yid
4wi ;

(54)

Oð4;pÞ ¼
Z

Jðx1ÞJðx2ÞJðx3ÞJðx4Þ
Yp�1

i¼1

�ðyi � wiÞ

� jx1; x2; y1; . . . ; yp�1ihx3; x4; w1; . . . ; wp�1j

�Y4
i¼1

d4xi
Yp�1

i¼1

d4yid
4wi : (55)

Then, the trace reads

Trð�ð4;pÞOð4;pÞÞ

¼ Xp�1

l¼0

	ð4;pÞ
l

�l

Z
fð4Þ0 ðx1; x2; x3; x4ÞJðx1ÞJðx2ÞJðx3ÞJðx4Þ

�Y4
i¼1

d4xi ; (56)

where

	ð4;pÞ
l ¼ ð�i
0Þpi2þ2p�ð4;pÞ

l : (57)

In particular

	ð4;pÞ
0 ¼Yp�1

i¼1

�ð4;p;iÞ
ND ; . . . ; 	ð4;pÞ

p�1 ¼
1

�p�1

Yp�1

i¼1

�ð4;p;iÞ
D : (58)

For the order p ¼ 2, using Eqs. (52) and (57), the 	ð4;2;1Þ
l

coefficients read

	ð4;2Þ
1 ¼ �ð4;2;1Þ

D ¼ 
2
0

32�2

	ð4;2Þ
0 ¼ �ð4;2;1Þ

ND

¼ 
2
0

32�2

0
BBBB@�

1

2
lnð�Þ � 	þ 2þ ln

�
4��

m2
0

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

0

ðpþ qÞ2
s

ln

0
BBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

0

ðpþqÞ2
r

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

0

ðpþqÞ2
r

� 1

1
CCCCA

1
CCCCA:

(59)

The projector over the finite contribution reads
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�pð�ð4;pÞ
int Þ¼�ð4;pÞ

int �
Z
�ð4;p;1Þ
D ðy1Þ�ð4;p;2Þ

D ðy2Þ . . .�ð4;p;p�1Þ
D ðyp�1Þjy1; . . . ;yp�1ihy1; . . . ;yp�1j

Yp�1

i¼1

d4yi

þ
Z
�ð4;p;1Þ
D ðy1Þ�ð4;p;2Þ

D ðy2Þ . . .�ð4;p;p�1Þ
ND ðyp�1;wp�1Þjy1; . . . ;yp�1ihy1; . . . ;wp�1jd4wp�1

Yp�2

i¼1

d4yiþ . . .

þ
Z
�ð4;p;1Þ
D ðy1Þ�ð4;p;2Þ

ND ðy2;w2Þ . . .�ð4;p;p�1Þ
ND ðyp�1;wp�1Þjy1; . . . ;yp�1ihy1; . . . ;wp�1jd4y1

Yp�1

i¼2

d4yid
4wi: (60)

Then, the trace of the observable in the projected state
reads

Trð�p�
ð4;pÞOð4;pÞÞ

¼	ð4;pÞ
0

Z
�ð4;1Þ
ext ðx1;x2;x3;x4ÞJðx1ÞJðx2ÞJðx3ÞJðx4Þ

Y4
i¼1

d4xi

(61)

Summing all the perturbation expansion terms we obtain

Trð��ð4ÞOð4ÞÞ

¼
Z

fð4Þ0 ðx1; x2; x3; x4ÞJðx1ÞJðx2ÞJðx3ÞJðx4Þ
Y4
i¼1

d4xi

¼ Xþ1

p¼0

ð�i
0Þpi2þ2p�ð4;pÞ
0 ; (62)

where we have replaced 	ð4;pÞ
0 by ð�i
0Þpi2þ2p�ð4;pÞ

0 [see
Eq. (57)].

B. Renormalization of �

We can proceed by summing the perturbation expansion,
but without taking account the p ¼ 0 order, because it
describes a trivial process in which the initial and final
states are identical. Only fully connected diagrams con-
tribute to the scattering amplitude. Then

h�j�ðx1Þ�ðx2Þ�ðx3Þ�ðx4Þj�i

¼ fð4Þ0 ðx1; x2; x3; x4Þ
Xþ1

p¼1

Xp�1

l¼0

ð�i
0Þpi2þ2p�ð4;pÞ
l

�l
: (63)

We can then put x4 ¼ 0 and take the Fourier transform on
both sides of last equation,

Z
d4x1d

4x2d
4x3e

�ipx1e�iqx2e�ilx3

�h�j�ðx1Þ�ðx2Þ�ðx3Þ�ð0Þj�i
¼ 1

ðp2�m2
0Þ

1

ðq2�m2
0Þ

1

ðl2�m2
0Þ

1

ððpþq� lÞ2�m2
0Þ

�Xþ1

p¼1

Xp�1

l¼0

ð�i
0Þpi2þ2p�ð4;pÞ
l

�l
: (64)

If we remove the propagators of the external lines we

obtain the four-point proper vertex �ð4Þ. We can write

i�ð4Þð0Þ ¼ 
, this is, the renormalized coupling constant
is equal to the magnitude of the scattering amplitude at
zero momentum (see [12], page 325). But from dimen-
sional regularization we know that the coupling constant
depends on the mass factor �, so in the most general case,

i�ð4Þ ¼ 
ð�Þ, then

i
ð�Þ ¼ Xþ1

p¼1

ð�i
0Þpi2þ2p
Xp�1

l¼0

�ð4;pÞ
l

�l
; (65)

where �ð4;pÞ
l depends on � and the external momentum.

The last equation is identical to Eq. (2.3.b) of [15]. Once
renormalized, we must only keep the l ¼ 0 term, then

i
ð�Þ ¼ Xþ1

p¼1

ð�i
0Þpi2þ2p�ð4;pÞ
0 : (66)

In terms of the observable-state model, this reads (see
Eq. (57)):

i
ð�Þ ¼ Xþ1

p¼1

	ð4;pÞ
0 (67)

In this sense, the nondiagonal functions of the quantum
state of Eq. (54), that is, the renormalized coupling
constant.

V. THE RENORMALIZATION GROUP

In this last section we will see how the renormalization
group arises in the context of the observable-state model.
As we see in [1] and this paper, the n ¼ 2 and n ¼ 4
correlation functions give the mass and coupling constant
renormalization. Those equations read [see Eq. (B18) of
[1] and Eq. (66) of this paper]10

m2 ¼ m2
0 þ

Xþ1

p¼1

ð�i
0Þpi1þ2pℏp�ð2;pÞ
0 ðm2

0; �Þ

¼ m2
0 � 
0ℏ�

ð2;1Þ
0 ðm2

0; �Þ þ . . . ; (68)

10In the following equations we will restore the Planck constant
ℏ for later convenience.
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 ¼ 
0 þ
Xþ1

p¼2

ð�i
0Þpi2þ2pℏp�1�ð4;pÞ
0 ðm2

0; �Þ

¼ 
0 þ 
2
0ℏ�

ð4;2Þ
0 ðm2

0; �Þ þ . . . : (69)

In the other side, sincem2
0 and 
0 do not depend on� in the

absence of loop correction, we have

dm2
0

d�
¼ OðℏÞ; d
0

d�
¼ OðℏÞ: (70)

The renormalization group can be obtained by imposing
the fact that the dressed massesm2 and 
 do not depend on

�, this is, dm2

d� ¼ 0 and d

d� ¼ 0. Using the chain rule in

Eq. (68), we have for m2:

dm2

d�
¼ @m2

@m2
0

dm2
0

d�
þ @m2

@
0

d
0

d�
þ @m2

@�
¼ 0 (71)

using Eqs. (68) and (70), Eq. (71) reads at order ℏ:

dm2
0

d�
� 
0

@�ð2;1Þ
0

@�
¼ 0: (72)

From Eq. (82) of [1]

�ð2;1Þ
0 ¼ m2

0

16�2

�
1� 	þ 2 ln

�
4��2

m2
0

��
(73)

then

@�ð2;1Þ
0

@�
¼ m2

0

8�2

1

�
: (74)

Replacing Eq. (74) in Eq. (72) we obtain a differential
equation for m2

0 at order ℏ:

dm2
0

d�
¼ 
0

m2
0

8�2

1

�
: (75)

We can solve it and obtain

m2
0 ¼ m2

S

�
�

�S

�ð
0=8�
2Þ
; (76)

where m2
S is the value of the mass when � ¼ �S. This

result is in concordance with Eq. (4.6.20) and Eq. (4.6.22),
page 142 of [14] at order ℏ. In a similar way, we can obtain
the change of 
0 in terms of � at order ℏ. To do so, we
must impose that the dressed coupling constant does not
depend on �:

d


d�
¼ @


@m2
0

dm2
0

d�
þ @


@
0

d
0

d�
þ @


@�
¼ 0: (77)

Using Eqs. (69) and (70), the last equation reads at order ℏ:


2
0

@�ð4;2Þ
0

@�
� d
0

d�
¼ 0: (78)

Using the result of Eq. (52), the last equation reads

d
0

d�
þ 3

16�2


2
0

�
¼ 0: (79)

The last equation can be solved with the following result:


0 ¼ 
S

1� 3
S

16�2 ln

�
�
�S

� ; (80)

which is identical to Eq. (4.6.15), page 139 of [14]. This
last equation is the one-loop correction to the coupling
constant that arises from Eq. (78).11

Thus, we can see that the projection method not only
allows finite perturbation expansions, but also, finite values
that are consistent with the results shown in textbooks and
the renormalization group.

VI. DISCUSSION

The formalism introduced in Sec. I has a physical
content which can be traced to the decoherence formalism
(see [16–21]) and to systems with continuous spectrum
(see [17,18,22–25]). The trace of the internal quantum state
of Eq. (14) can be interpreted as a reduced state, since the
observable is an identity operator in the Hilbert space of
the internal vertices. This has a physical meaning. It is well
known that the reduction of a state decreases the informa-
tion available to the observer about the composite system.
In this case, the reduction is done over the internal vertices
where the interaction occurs due to the perturbation ex-
pansion. In QFT, the particles that are created in these
vertices are virtual particles because they are off-shell,
that is, they do obey the conservation laws, but the propa-
gators must be integrated out, which implies that the
momentum of the particle associated with each internal
propagator may not obey the mass-energy relation
p�p

� ¼ m2
0. In this sense, the conceptual meaning of the

partial trace of the internal degrees of freedom is to neglect
these virtual nonphysical particles. This is consistent with
the experiments of scattering because basically what is
seen are the in and out states. However, perturbation theory
introduces off-shell intermediate states whose existence
depends on the uncertainty principle �E�t 	 ℏ

2 . In turn,

these give us an interpretation of this integration as a
reduction of the degrees of freedom of the theory. In the
conventional interpretation of this integration The integral
d4z instructs us to sum over all points where this process
can occur. This is just the superposition principle of quan-
tum mechanics: when a process can happen in alternative
ways, we add the amplitudes for each possible way ([12],
page 94). In our case, the integration over the internal
vertices reflects the fact that we are neglecting the degrees

11The power of the Planck constant counts the number of loops,
so at order OðℏÞ, we obtain the one-loop correction (see [13],
page 623).
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of freedom of this virtual particles and what we finally
obtain is a reduced state which is divergent.

Summarizing, the main idea of this work is that in the p
order in the perturbation expansion of any quantum field
theory, we can define a quantum state as

�ðn;pÞ ¼ �ðnÞ
ext � �ðn;pÞ

int (81)

and an observable

Oðn;pÞ ¼ OðnÞ
ext � IðpÞint ; (82)

then the trace reads

Tr ð�ðn;pÞOðn;pÞÞ ¼ Trð�ðn;pÞ
int ÞTrð�ðnÞ

extO
ðnÞ
extÞ: (83)

The divergences of the quantum field theory occur in the

trace of the internal quantum state Trð�ðn;pÞ
int Þ. These diver-

gences appear because the internal quantum state contains
diagonal functions multiplied by Dirac deltas that cannot
be avoided unless we remove the diagonal functions by a
projection. This is the only available transformation that
can cure the divergences, because the trace is an invariant
quantity that does not depend on the basis in which the
state is written. The projector reads

�ðn;pÞ ¼ IðnÞext ��ðn;pÞ
int ¼ IðnÞext � ð�ðn;pÞ

int � �ðn;pÞ
D Þ; (84)

where �ðn;pÞ
D is the sum of all the states that has a diagonal

part of the quantum state �ðn;pÞ
int . Then, the trace of ��ðn;pÞ

reads

Trð�ðn;pÞ�ðn;pÞOðn;pÞÞ
¼ ðTrð�ðn;pÞ

int Þ � Trð�ðn;pÞ
D ÞÞTrð�ðnÞ

extO
ðnÞ
extÞ; (85)

which is our finite desired physical contribution. Basically,
the projection is a translation of the quantum state by
an amount given by the diagonal state. In this work, the

renormalization procedure is done by the projection
method, but without introducing counterterms, which in
principle is much more advantageous, because it can be
applied to nonrenormalizable theories, like �6 in four
space-time dimensions, or the quantum field theory of a
massless particle with spin 2, such as gravitation. These
two theories will be worked out in future works.

A. A general procedure

Suppose we define the following projector that acts on

the external quantum state �ðnÞ of Eq. (28):

�ðnÞ
0 ¼ I1 � I2 � . . . In�1 � j0ih0j; (86)

where j0i corresponds to xn ¼ 0. When we apply it to �ðnÞ
we obtain

�ðnÞ�ðnÞ
0 ¼ Xþ1

p¼0

ip

p!
�ðn;pÞ

0

Z
fðnÞ0 ðx1;x2; . . . ;xn�1;0Þ

�jx1; . . . ;xðn=2Þihxðn=2Þþ1; . . . ;xn�1;0j
Yn�1

i¼1

d4xi�1:

(87)

The trace with OðnÞ
ext reads

Trð�ðnÞ�ðnÞ
0 OðnÞ

extÞ¼
Xþ1

p¼0

ip

p!
�ðn;pÞ

0

Z
fðnÞ0 ðx1;x2; . . . ;xn�1;0Þ

�Jðx1Þ . . .Jðxn�1ÞJð0Þ
Yn�1

i¼1

d4xi�1: (88)

If we allow the currents to be plane waves12

JðxkÞ ¼ e�ipkxk ; (89)

then, the trace reads

Trð�ðnÞ�ðnÞ
0

~OðnÞ
extÞ¼

Xþ1

p¼0

ip

p!
�ðn;pÞ

0 F ½fðnÞ0 ðx1;x2; . . . ;xn�1;0Þ�ðk1; . . . ;kn�1Þ; (90)

where ~OðnÞ
ext is the plane wave observable and F ½f� is the

Fourier transform of the function f.
(i) The mass shift

In the case n ¼ 2,

fð2Þ0 ðx1; 0Þ ¼
Z d4p

ð2�Þ4
e�ipðx1�x2Þ

ðp2 �m2
0Þ2

; (91)

then

Trð�ð2Þ�ð2Þ
0

~Oð2Þ
extÞ ¼

1

ðp2 �m2
0Þ2

Xþ1

p¼1

ð�i
0Þp�ð2;pÞ
0

¼ M

ðp2 �m2
0Þ2

; (92)

where M ¼ Pþ1
p¼1ð�i
0Þp�ð2;pÞ

0 . Then, this equation

implies that

ðp2 �m2
0Þ2 Trð�ð2Þ�ð2Þ

0
~Oð2Þ
extÞ ¼ M: (93)

The mass renormalization is obtained by having in
mind that the last equation is the result of the one-
particle irreducible diagrams.13 The full contribution

12This idea is in concordance with [7], page 19, ‘‘For an
ingoing particle, we use a source function JðxÞ whose Fourier
components emit a positive amount of energy k0. For an out-
going particle the source emits a negative k0.’’
13A one-particle irreducible diagram is any diagram that cannot
be split in two by removing a single line.
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of the n ¼ 2 correlation function is equal to the
following geometric series [see [12], Eq. (10.27),
page 328]:

Z
h�j�ðx1Þ�ðx0Þj�ie�ipx1d4x1

¼ 1

p2 �m2
0

þ M

ðp2 �m2
0Þ2

þ M2

ðp2 �m2
0Þ3

þ . . .

¼ 1

p2 � ðm2
0 þMÞ : (94)

On the other side, [using Eq. (92)] we have

Z
h�j�ðx1Þ�ðx0Þj�ie�ipx1d4x1

¼ 1

p2 �m2
0 � ðp2 �m2

0Þ2Trð�ð2Þ�ð2Þ
0

~Oð2Þ
extÞ

;

(95)

which implies the mass shift reads

�m ¼ m2 �m2
0 ¼ M

¼ ðp2 �m2
0Þ2 Trð�ð2Þ�ð2Þ

0
~Oð2Þ
extÞ: (96)

(ii) The coupling constant
In the n ¼ 4 case

fð4Þ0 ðx1;x2;x3;0Þ

¼
Z d4p

ð2�Þ4
e�ipx1

p2�m2
0

Z d4q

ð2�Þ4
e�iqx2

q2�m2
0

�
Z d4l

ð2�Þ4
e�ilx3

ðl2�m2
0Þ

1

ððpþq� lÞ2�m2
0Þ

(97)

then

½ðl2�m2
0Þðp2�m2

0Þðq2�m2
0Þððpþq�lÞ2�m2

0Þ�

�Trð�ð4Þ�ð4Þ
0

~Oð4Þ
extÞ¼

Xþ1

p¼1

ð�i
0Þp�ð4;pÞ
0 ¼
; (98)

which has the same structure of Eq. (93).
In a general way we can write

Trð�ðnÞ�ðnÞ
0

~OðnÞ
extÞ

Z Yn
i¼1

ðp2
i �m2

0Þ�
�
pn�

Xn�1

i¼1

pi

�
d4pn

¼Cn ; (99)

where Cn is the renormalized quantity.
This last equation is important, because it can be applied

to nonrenormalizable theories. In [26], the renormalization
group has been generalized to Lagrangians of arbitrary
form, in particular, to nonrenormalizables theories. The
idea of this work and [1] follows the same line of thought
because the observable-state model treats on equal footing

the nonrenormalizable theories and the renormalizable
ones.

VII. CONCLUSIONS

The aim of this work was to extend the observable-state
model in �4 theory to the n ¼ 0 and n ¼ 4 external points
in the correlation function, showing how to build a projec-
tor that eliminates all the divergences that appear in the
perturbation expansion. This procedure allows us to renor-
malize the quantum field theory of �4 without introducing
counterterms in the Lagrangians. Besides this, we have
shown how the renormalization group arise in this context
obtaining the same results as the conventional renormal-
ized QFT.
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APPENDIX A: THE DIRAC DELTA AND THE
DIMENSIONAL REGULARIZATION POLES

To understand the relation between the Dirac delta and
the poles of the dimensional regularization we can use the
following representation of the Dirac delta (see [27],
page 35)14:

�ðxÞ ¼ lim
�!0

1

�

�

x2 þ �2
; (A1)

where � is some parameter that tends to zero. In particular,
we can assume that this parameter is the pole parameter of
the dimensional regularization, that is, � ¼ d� 4.
Consider now for simplicity, the following quantum

state:

� ¼
Z
½�DðxÞ�ðx� x0Þ þ �NDðx; x0Þ�jxihx0jdxdx0: (A2)

Replacing the representation of the Dirac delta of Eq. (A1)
in last equation we obtain

� ¼ 1

�
lim
�!0

Z
�DðxÞ �

ðx� x0Þ2 þ �2
jxihx0jdxdx0

þ
Z

�NDðx; x0Þjxihx0jdxdx0: (A3)

Taking the trace of � we obtain

14The relation between the Dirac delta and the dimensional
regularization pole in this appendix is introduced by formal
mathematical operations, but we must warm the reader that
this development is not mathematically rigorous.
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Trð�Þ ¼
Z
hx00j�jx00idx00

¼ 1

�
lim
�!0

Z
�DðxÞ �

ðx� x0Þ2 þ �2
�ðx0 � xÞdxdx0

þ
Z

�NDðx; x0Þ�ðx0 � xÞdxdx0: (A4)

We can proceed with the integral of the Dirac delta in both
terms, so finally we obtain

Tr ð�Þ ¼ lim
�!0

1

�

1

�
�D þ �ND; (A5)

where

�D¼
Z
�DðxÞdx �ND¼

Z
�NDðx;xÞdx: (A6)

In the case of the quantum state of Eq. (19) we will have
(we do not put the lim�!0 for simplicity)

Tr ð�ðn;pÞ
int Þ ¼ YLðn;pÞ

i¼1

�
�ðn;p;iÞ
D

��
þ �ðn;p;iÞ

ND

�
¼ X0

j¼�Lðn;pÞ
	ðn;pÞ
j �j;

(A7)

where in particular

	ðn;pÞ
0 ¼ YLðn;pÞ

i¼1

�ðn;p;iÞ
ND ; . . . ; 	ðn;pÞ

Lðn;pÞ ¼
1

�Lðn;pÞ
YLðn;pÞ
i¼1

�ðn;p;iÞ
D :

(A8)

In [1] we suggest the relation between the Dirac delta
valuated at zero and the pole of the dimensional regulari-
zation but we do not prove it.15

APPENDIX B: RELATION BETWEEN THE
VACUUM ENERGYAND THE SPACE VOLUME

To obtain the relation between the energy of the vacuum
and the space volume V we can recall the renormalized
result of Eq. (38),

jh�0j�ij2e�iE02T ¼Xþ1

k¼0

ð2TVÞk
k!

�Xþ1

p¼1

ð�i
0Þp�ð0;pÞ
0

�
k
;

(B1)

then we can call

ð�iÞkRðkÞ ¼
�Xþ1

p¼1

ð�i
0Þp�ð0;pÞ
0

�
k
; (B2)

which implies that

RðkÞ ¼ ½Rð1Þ�k; (B3)

where

Rð1Þ ¼ Xþ1

p¼1

ð�i
0Þp�ð0;pÞ
0 ; (B4)

then, Eq. (B1) reads

jh�0j�ij2e�iE02T ¼ Xþ1

k¼0

1

k!
ð�i2TVRð1ÞÞk ¼ e�i2TVRð1Þ;

(B5)

then the vacuum energy reads

E0 ¼ VRð1Þ � i

2T
lnðjh�j�0ij2Þ; (B6)

in particular, for T ! 1
E0 
 V; (B7)

which is the desired result (see [12], page 98). This result is
valid if the Rð1Þ as a sum converges. In fact, the ratio test
applied to argument of the sum in Eq. (B4) implies that

lim
p!1

j�ð0;pþ1Þ
0 j

j�ð0;pÞ
0 j

<
1


0

: (B8)

This inequality can be tested on the l.h.s. step by step using
dimensional regularization. Is not the purpose of this work
to prove the convergence of the n ¼ 0 correlation function
of �4 theory, besides that it would be a long task.

APPENDIX C: THE PROJECTION
IN ALGEBRAIC TERMS

Let us remember the transformation of Eq. (24). For
simplicity we will describe it when there are only one
diagonal state and one nondiagonal state, in this case, the
transformation act in the following way:

�ð�Þ ¼ �� �D : (C1)

This transformation is linear

�ð�ð1Þ þ �ð2ÞÞ ¼ �ð1Þ þ �ð2Þ � ð�ð1Þ
D þ �ð2Þ

D Þ
¼ �ð1Þ � �ð1Þ

D þ �ð2Þ � �ð2Þ
D

¼ �ð�ð1ÞÞ þ�ð�ð2ÞÞ: (C2)

Then it is a projector because

�2ð�Þ ¼ �ð�ð�ÞÞ ¼ �ð�� �DÞ ¼ �ð�Þ ��ð�DÞ
¼ �� �D � ð�D � �DÞ ¼ �ð�Þ (C3)

or by using that the diagonal part of the transformed state
�ð�ÞD is zero

�ð�ð�ÞÞ¼�ð�Þ��ð�ÞD¼���D��ð�ÞD¼�ð�Þ:
(C4)

15From a different point of view, if we expand in Taylor series
the representation of the Dirac delta of Eq. (A1) we obtain
�ðxÞ ¼ lim�!0

1
� ð1� � x2

�3
þ x4

�5
þ . . .Þ. Taking the trace of the quan-

tum state implies to replace x ¼ 0 in the representation of the
Dirac delta.
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In this sense, the projector can be written as

� ¼ I �Q; (C5)

where

Qð�Þ ¼ �� �ND (C6)

then, Eq. (C5) is the relation of orthogonal projections. In
fact

Q�ð�Þ ¼ Qð�� �DÞ ¼ Qð�Þ �Qð�DÞ
¼ �D þ �ND � �ND � �D ¼ 0 (C7)

which implies that �ð�Þ is the null space of Q.
What the projector does is to subtract from � its diagonal

part, which gives a divergent structure when we compute
the trace with the observable. In this sense, to subtract the
��l terms via a projection is similar to the minimal sub-
traction, where an operatorK is defined to pick out the pure
poles terms of the dimensional regularization [see [9],
Eq. 9.76)]:

K

� Xþ1

n¼�k

An�
n

�
¼ X�1

n¼�k

An�
n (C8)

then

ðI � KÞ
� Xþ1

n¼�k

An�
n

�
¼ Xþ1

n¼0

An�
n ¼ A0 þ A1�þ . . . :

(C9)

In fact, K2 ¼ K, then K is a projector. The main difference
is that our projector acts on a quantum state and not over a
Laurent series. It will be source of future works to study the
relationship between the projection procedure and the
BPHZ subtraction method [28].

Finally, we can rewrite the projector that acts on the
whole Liouville space in algebraic language. For this, in
the order p of the perturbation expansion we have the
following Hilbert spaces:

H ðn;pÞ ¼ H ext �Lðn;pÞ
i¼0 H ðiÞ: (C10)

The total Hilbert space to all orders in the perturbation
theory reads

H ¼H ðn;0Þ �H ðn;1Þ � . . .�H ðn;pÞ ¼�p
i¼0H

ðn;iÞ: (C11)

The observables are defined in the Liouville space N :

N ¼H �H ¼ð�p
i¼0H

ðn;iÞÞ�ð�p
i¼0H

ðn;iÞÞ¼�p
i¼0N

ðiÞ:

(C12)

We can decompose as [see Eq. (C13)],

N vh¼ N S �N R � N : (C13)

Then, the relevant Liouville space will read

N vh ¼ �p
i¼0ðN ðiÞ

S �N ðiÞ
R Þ: (C14)

Because the states must be considered as linear functionals
over the space N vh (N 0

vh the dual of space N vh),

N 0
vh ¼ �p

i¼0ðN 0ðiÞ
S �N 0ðiÞ

R Þ; (C15)

then, the projector will be a map from N 0
vh to N 0

R,

� ¼ �ð0Þ � . . . ��ðpÞ:N 0
vhS ! N 0

R: (C16)

This is the simple trick that allows us to neglect the
singularities [i.e. the �ðx� x0Þ] in a rigorous mathemati-
cal way and to obtain correct physical results. Essentially
we have defined a new dual space N 0

vh (that contains the

states � without divergences) that are adapted to solve our
problem.
So, essentially we have substituted an ad hoc counter-

term procedure (or an ad hoc subtraction procedure [28])
with a clear physical motivated theory. These are the
essential features of the proposed formalism, where the
deltas are absent.
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JUAN SEBASTIÁN ARDENGHI AND MARIO CASTAGNINO PHYSICAL REVIEW D 85, 125008 (2012)

125008-14

http://dx.doi.org/10.1103/PhysRevD.85.025002
http://dx.doi.org/10.1103/PhysRevD.85.025002
http://dx.doi.org/10.1016/0550-3213(72)90279-9
http://dx.doi.org/10.1016/0550-3213(72)90279-9
http://dx.doi.org/10.1016/S0031-8914(55)92832-9
http://dx.doi.org/10.1016/S0031-8914(56)80046-3
http://dx.doi.org/10.1016/S0031-8914(56)80046-3
http://dx.doi.org/10.1016/S0031-8914(57)92891-4
http://dx.doi.org/10.1016/S0031-8914(57)92891-4
http://dx.doi.org/10.1016/S0031-8914(59)93062-9
http://dx.doi.org/10.1016/S0031-8914(59)93062-9


[12] M. E. Peskin and D.V. Schroeder, An Introduction
to Quantum Field Theory (Perseus Books, Reading, 1995).

[13] A. Das, Lectures on Quantum Field Theory (World
Scientific, University of Rochester, 2008).

[14] P. Ramond, Fields Theory, a Modern Primer (Benjamin,
London, 1981).

[15] G. T’hooft, Nucl. Phys. B61, 455 (1973).
[16] J. P. Paz and W. Zurek, arXiv:quant-ph/0010011.
[17] M. Castagnino and R. Laura, Phys. Rev. A 62, 022107

(2000).
[18] M. Castagnino, M. Gadella, R. Laura, and R. Id Betan,

Phys. Lett. A 282, 245 (2001); J. Phys. A 34, 10067
(2001); M. Castagnino, R. Laura, R. Id Betan, and R.
Liotta, J. Phys. A 35, 6055 (2002).

[19] M. Castagnino and A. Ordoñez, Int. J. Theor. Phys. 43,
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