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Solutions to scalar theories with derivative self-couplings often have regions where nonlinearities are

important. Given a classical source, there is usually a region, demarcated by the Vainshtein radius, inside

of which the classical nonlinearities are dominant, while quantum effects are still negligible. If

perturbation theory is used to find such solutions, the expansion generally breaks down as the

Vainshtein radius is approached from the outside. Here we show that it is possible, by integrating in

certain auxiliary fields, to reformulate these theories in such a way that nonlinearities become small inside

the Vainshtein radius, and large outside it. This provides a complementary, or classically dual, description

of the same theory—one in which nonperturbative regions become accessible perturbatively. We consider

a few examples of classical solutions with various symmetries, and find that in all the cases the dual

formulation makes it rather simple to study regimes in which the original perturbation theory fails to work.

As an illustration, we reproduce by perturbative calculations some of the already known nonperturbative

results, for a pointlike source, cosmic string, and domain wall, and derive a new one. The dual formulation

may be useful for developing the parametrized post Newtonian formalism in the theories of modified

gravity that give rise to such scalar theories.
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I. INTRODUCTION AND SUMMARY

Perturbation theory is often the only analytic tool avail-
able to extract detailed information from interacting theo-
ries. The regime in which perturbation theory is valid is
usually limited. In certain cases, however, it is possible to
reformulate a theory in terms of new, dual, variables that
allow perturbative calculations in the regime where the
original formulation was nonperturbative.

In this note, we discuss certain special nonlinear
theories, and show that at the classical level they admit a
dual description. These are field theories of a scalar, �,
with purely derivative nonlinear terms, that nevertheless
give equations of motion with no more than two time
derivatives.

Our main motivation for considering such models, and
their classical duals, stems from the theories that modify
general relativity (GR) in the infrared—the five-
dimensional Dvali-Gabadadze-Porratti (DGP) model [1],
and four-dimensional ghost-free massive gravity [2,3]. The
four-dimensional scalar Lagrangians discussed here cap-
ture parts of the full gravitational theory, as shown in [4]
for DGP and [2] for massive gravity (for reviews and
experimental limits, see Ref. [5], and for a recent theoreti-
cal review of massive gravity see Ref. [6]).

Our analysis may have broader applications though:
derivatively self-coupled theories, in particular, the
Galileons [4,7,8], can also be obtained in the probe-brane
limit of higher dimensional constructions [9], and
their extensions [10–14], while their three-dimensional

counterparts are obtained in the context of three-
dimensional ‘‘newmassive gravity’’ [15], as shown in [16].
In the present work we shall focus on the so-called

cubic Galileon, �h�ð@�Þ2=�3, [4,7] by which the free
Lagrangian, �ð@�Þ2=2, is supplemented in four dimen-
sions. The state described by � can be thought of as a
Nambu-Goldstone boson, nonlinearly realizing (a limit of)
broken higher dimensional Poincaré or diffeomorphism
invariance

� ! �þ cþ c�x
�;

with c� denoting a constant vector. In parallel, we will

also consider—mainly as toy examples—theories of an
‘‘ordinary’’ Nambu-Goldstone (NG) boson with the self-
interaction terms, such as �ð@�Þ2n=�4n�4, n � 2.
The only physical scale in these models is �. Such

theories are usually regarded as effective field theories
valid at energies/momenta below �. One reason for this
is that scatterings of the �-quanta—when treated in con-
ventional perturbation theory—exhibit nonperturbative be-
havior at/above the scale �. On the other hand, the
Galileons do not seem to represent garden variety effective
field theories. They are special—for instance, they do not
get renormalized by quantum corrections [4,7,8,10]
(although, other higher-derivative terms may be gener-
ated). One may wonder then, if there may be some hidden
structure in the Galileon theories that would enable one to
deal in a controllable way with scales above �, by a
resummation of perturbative diagrams, or by a dual
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description. Although, in the present work, we will not
explore the above important question, we will make a step
in that direction.

What we shall show, instead, is that a dual description is
possible for these theories in the classical regime. To
enable a window in which the classical description is
meaningful, we introduce a minimal coupling of the scalar
� to the trace of an external classical stress-tensor T
(planets, stars, etc.)

� �

MPl

T; (1)

whereMPl is the Planck mass. Coupling to the stress-tensor
can be nonminimal in a more general context [2], with
certain interesting observational consequences [17]; our
analysis should straightforwardly apply to those cases too.

The presence of the Planck mass, in addition to �,
gives rise to a new derived scale, referred to as the
Vainshtein scale [18]. For a static spherically symmetric

classical source of mass M, r� ���1ðM=MPlÞ1=3 [19].
This scale is much greater than ��1. The conventional
perturbative expansion can be used to compute the field
configuration outside the Vainshtein radius, r � r�. Inside
the radius, r � r�, classical nonlinearities in � are domi-
nant, and the perturbative expansion breaks down. More
formally speaking, external classical sources introduce a
new expansion parameter, �cl, that captures the strength of
classical nonlinearities; for the Galileon, �cl ¼ @2�=�3,
while for the NG-type theories, �cl ¼ ð@�Þ2=�4. The
parameter �cl is source dependent, and for theories con-
sidered here, there is generically a broad region in space
where �cl � 1, while energies and momenta are still well
below �. Therefore, the classical field enters a highly
nonlinear regime, while the quantum corrections are still
negligible, as long as we stay at the distance scales greater
than ��1.

We show how these theories can be dualized by integrat-
ing in certain auxiliary variables. The dual theory is clas-
sically equivalent to the original one, however, it no longer
has any higher-dimensional derivatively coupled terms.
Instead, the dual theory is nonlocal, in the sense that it
contains lower dimensional nonderivative terms with frac-
tional classical dimensions.

Perturbation theory in the dual version has a regime of
validity opposite to the original one: there is still a
Vainshtein radius, but now nonlinearities are small inside
the Vainshtein radius, and large outside of it. Hence, the
nonperturbative regime in the original variables is pertur-
bative in the dual picture, and vice versa.

We point out that, whether in the dual description or the
original description, in both the perturbative and nonper-
turbative regimes the classical fields are weak in Planckian
units,�cl � MPl. This should be compared to the case of a
black hole in GR, where nonlinearities near the
Schwarzschild radius, rg, are due to classical fields that

are not small in Planckian units. These nonlinearities can
be resummed into the Schwarzschild solution.1

Wewould like to make a few important comments on the
literature. First, our dual description is what captures the
properties of the small-mass expansion used by Vainshtein
[18] in massive gravity. The latter expansion is replaced
here by a series governed by positive powers of �. This
parameter, in the context of massive gravity, is derived
from the graviton mass and Planck scale. Second, the
derivatively coupled theory of a � field containing a non-
linear ghost (for instance the Lagrangian �ðh�Þ3=�5

5

describing the longitudinal mode of earlier, ghostly mas-
sive gravity theories), was decomposed by Deffayet and
Rombouts [20] by means of the Ostrogradskii method to
manifestly exhibit the ghost in the linear theory. Our
construction is similar, but not identical, since we are
dealing with the theories without ghosts; this essential
distinction gives rise to significant differences in the two
cases, as will be seen below. In spite of the differences, we
have been inspired by both [18,20].
The work is organized as follows: In Sec. II we consider

the simplest NG-type model. We discuss its classical dual
and perform calculations for sources with spherical and
cylindrical symmetry. This serves demonstrational pur-
poses, as the main focus of the present work is on
Galileons which are relevant to the theories of IR modified
gravity. In Sec. III we study the cubic Galileon. Again, we
present the dual theory, and use it for perturbative calcu-
lations with spherical, cylindrical, and planar symmetries.
Section IV contains conclusions and outlook. In the
Appendix we discuss more general NG-type theories.

II. NAMBU-GOLDSTONE TYPE THEORIES

As mentioned before, the Galileons [4,8], are perhaps
the most remarkable derivatively self-coupled scalar field
theories: their special structure guarantees a good Cauchy
formulation, as well as nonrenormalization of these terms
[4,8] in the quantum theory with no additional fields.
Quantum effects may generate other derivative terms,
such as ðh�Þk, k � 2, however, the effects of the latter
are suppressed in the classical regime considered here.
Therefore, our restriction to a single cubic Galileon term
in the next section can be justified even in the full quantum
theory.
On the other hand, there is no similar argument for the

NG-like theories. Also, there is no known principle which
would lead to the resummation of the ð@�Þ2n-type NG
interactions, except in the case leading to the Dirac-
Born-Infeld action. Dirac-Born-Infeld, however, has no
well-behaved static solutions [21], and wewill not consider
it here. Therefore, restricting only to the NG-type term
with n ¼ 2, as it will be done in this section, is not justified

1It may be interesting to attempt to dualize GR along the lines
discussed here.
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in the full quantum theory. Nevertheless, we consider this
example as a starting point in this section and regard it as a
toy model where calculations are easier, keeping in mind
that generically one should be retaining terms with all
possible integer values for n (other values of n are consid-
ered in the Appendix).

Thus, we consider a theory of a scalar field � with
a NG-type derivative quartic self-interaction

L 1 ¼ � 1

2
ð@�Þ2 � 1

4�4
ð@�Þ4 þ 1

MP

�T: (2)

Around the trivial background, T ¼ 0,� ¼ 0, perturbation
theory for the amplitudes of the �-quanta starts to fail as
energies reach the scale �. We now turn to nontrivial
classical backgrounds with nonzero T.2

The equation of motion reads

h�þ 1

�4
@�½ð@�Þ2@��� ¼ � T

MP

: (4)

For a static pointlike source, T ¼ �M�3ðxÞ, the solution
for � is spherically symmetric and static, and the equation
of motion reduces to

~r �
�
~r�þ 1

�4
ð ~r�Þ2 ~r�

�
¼ M

MP

�3ðxÞ; (5)

which can readily be integrated once to obtain a cubic
algebraic equation for the radial derivative �0,

�0 þ 1

�4
ð�0Þ3 ¼ M

4�MP

1

r2
: (6)

This can be solved exactly. The exact solution has two
regimes, depending on which of the two terms on the left
hand side of (6) dominates. The scale that separates the two
regimes is denoted r�, this being the distance at which the
two terms become comparable,

r� �
�
M

MP

�
1=2 1

�
: (7)

At scales larger than r�, the linear term on the left-hand
side dominates, leading to the usual Newtonian potential
for the scalar

� ’ � M

4�MP

1

r
; r � r�: (8)

Note that the value of the classical field is small in

Planckian units: �
MPl

� rg
r � 1, for r > r�. At distances

shorter than r� on the other hand, the nonlinear term is
more important, and the solution reads

� ’ 3

�
M

4�MP

�
1=3

�4=3r1=3 þ const; r � r�: (9)

It is straightforward to check that even in this regime

the value of the classical field (9) is sub-Planckian, �
MPl

�
rg
r�
ð rr�Þ1=3 � 1, and decreases with decreasing r.

If the exact solution were not known, and we wanted to
set up a perturbation theory to find it, we could perform an
expansion in powers of the interaction. We could do this
by expanding the field into powers of the nonlinear
interaction,

� ¼ �0 þ�1 þ�2 þ � � � : (10)

Plugging this expansion into the equation of motion (4) and
equating powers of 1

� , one generates a series of equations

h�0 ¼ � T

MP

; (11)

h�1 þ 1

�4
@�½ð@�0Þ2@��0� ¼ 0; (12)

..

.
(13)

For the static pointlike source T ¼ �M�3ðxÞ, the leading
order solution is �0 ¼ � M

4�MP

1
r . By simple power count-

ing one can see that the series is nothing but an expansion
in powers of the parameter�

r�
r

�
4
; (14)

where r� is the Vainshtein radius (7). The expansion is
good for large radii, and starts to fail as we approach the
Vainshtein radius from the outside.

A. Dual formulation

The theory in the form given above naturally yields
a perturbative expansion which is valid in the IR but
breaks down in the UV. As discussed above, the region

2Note that we consider this model with a ‘‘wrong sign’’ in
front of the nonlinear term—the sign that does not admit a
conventional UV completion [22], while it exhibits the
Vainshtein mechanism [23]. We thank Lasha Berezhiani for
pointing out that the ‘‘right-sign’’ nonlinear term for the NG,
þð@�Þ4=�4, does not admit the Vainshtein mechanism.
The theory (3) with T ¼ 0 can be regarded as the decoupling
limit of a massive Abelian vector field with a quartic interaction
[24],

L ¼ � 1

4
F��F�� � 1

2
m2

AA
�A� � g4

4
ðA�A�Þ2: (3)

At energies parametrically above mA, � describes the helicity-0
component of A�, extracted through the Stükelberg replacement,
A� ! ~A� � 1

mA
@��, and the decoupling limit is defined as

follows: mA ! 0, g ! 0, � 	 mA

g fixed The effective theory
(2) is valid at distance scales ��1 � r � m�1

A .
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of transition between the classically perturbative and non-
perturbative regimes lies around the Vainshtein radius.3

We would like to rewrite the theory in a form that makes
it possible to perform a perturbative expansion which is
valid in the UV, rather than in the IR. It is straightforward
to check that the following Lagrangian written in terms of
the original scalar �, and an auxiliary vector field c �:

L ¼ � 1

2
ð@�Þ2 þ 3

4
�4=3ðc 2

�Þ2=3 � c �@��þ 1

MP

�T;

(15)

recovers back the original theory (2) upon integrating
out c �.

By simply introducing a new variable, c �, we seem to

have arrived at an equivalent action in which none of the
coupling constants (never mind Planck’s mass) are of
negative mass dimension, naively pointing towards the
possibility of a perturbative expansion which is good in
the UV. Note however that there is now a potential term for
c � with a fractional power, and that this fraction is less

than two (in the Appendix, we show that more general
interactions also lead to such terms and that the fractional
power is always less than two).

In the limit � ! 0, MPl ! 1, the theory (15) reduces
to the one governed by the nondynamical equations,
@�� ¼ 0, @�c � ¼ 0.

Note that the second term in (15), if regarded as a
potential, has a ‘‘tachyonic’’ sign. This is a consequence
of the minus sign in front of the nonlinear term in (2), and
is a cause of the existence of superluminal modes
[8,21,22,25] in the theory (2). Thus, in the dual version
the superluminality is related to the tachyonic instability of
the nonanalytic potential. The latter could be stabilized,
e.g., by supplementing (15) with carefully chosen higher
powers of c 2

�. However, we will not pursue this comple-

tion here, since we just use the theory (2) as a toy example
to demonstrate the trick of dualization in an easier setup.

The equations of motion that follow from (15) are

h�þ @�c
� ¼ � 1

MP

T;

�4=3ððc �Þ2Þ�ð1=3Þc � � @�� ¼ 0: (16)

At this point we choose to make the field decomposition

c 0 ¼ �; c i ¼ c T
i þ @ic ; � ¼ �þ c ; (17)

under which the equations become

h�þ@20c�@0�¼� 1

MP

T;

�4=3ð��2þðc T
i þ@ic Þ2Þ�ð1=3Þ�þ@0c¼@0�;

�4=3ð��2þðc T
i þ@ic Þ2Þ�ð1=3Þðc T

i þ@ic Þþ@ic¼@i�:

(18)

One can see that the vanishing transverse component of c ,
c T

i ¼ 0, is a consistent ansatz for the solution. Moreover,
for static field configurations, � ¼ 0 and � obeys a linear
equation sourced by T, while � in turn determines c .
Instead of the irrelevant operator of the original theory
(2), we have only the self-interaction of the field c which
looks like a relevant operator, and we could expect it to be
subdominant in the UV. In the IR, on the other hand, things
are ill-defined because the interactions above the trivial
ground state are nonanalytic.4

For the static point source T ¼ �M�3ðxÞ, the only
excited degrees of freedom are � and the longitudinal
component of c i. The first equation in (18) tells us that
the exact value of � is its linear Newtonian value, � ¼
� M

4�MP

1
r , while the equation for c reduces to the follow-

ing one:

c 0 þ�4=3ðc 0Þ1=3 ¼ M

4�MP

1

r2
: (19)

If we ignore the nonlinear interaction by setting � ¼ 0, c
will have the zeroth order linear solution, c 0 ¼ � M

4�MP

1
r .

The full solution for the original field �0 is then trivial,
since there is a cancellation �0 ¼ �� c 0 ¼ 0. It is easy
now to estimate the distance for which the nonlinear term
in (19) becomes important. We find that this scale is again
the Vainshtein radius r� (7). However, in contrast to the
original formulation of the theory, the self-interactions are
now important only at distances larger than the Vainshtein
radius, r * r�.
We can see this reversal in the region of strong coupling

more explicitly by solving the c equation perturbatively
using the dual formulation. We set up the expansion by

expanding in powers of the interaction coupling �4=3,

c ¼ c 0 þ c 1 þ c 2 þ � � � ; (20)

plugging into (19) and equating powers of �. The solution
to lowest nontrivial order is

c 0 þ c 1 ¼ � M

4�MP

1

r
� 3�4=3

�
M

4�MP

�
1=3

r1=3 þ const;

(21)3We mention again that quantum mechanically, we should
really be considering all operators of the form ð@�Þ2n, which
become of the same order as ð@�Þ2 once the Vainshtein radius is
approached from the outside. Since we are concerned here with a
mere illustration of how dual theories work (before a much more
stable analysis of Galileons in the next section), and for sim-
plicity, we choose to ignore these operators.

4All the above statements refer to the classical theory. We
point out, however, that noncovariant decomposition (17), which
does not introduce extra time derivatives, is likely to be a good
starting point for quantization of this theory.
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while � has the linear Newtonian 1=r profile to all orders.
Recalling the definition of the physical field �, we have,

� ¼ �� c ¼ 3�4=3

�
M

4�MP

�
1=3

r1=3 þ constþ � � � ;
(22)

this shows that the expansion is in powers�
r

r�

�
4=3

: (23)

This expansion is inverse to the expansions of the original
theory (14). As a result, the dual expansion breaks down as
we approach the Vainshtein radius from the inside.

B. Profile of an infinite string

The use of the dual formulation is not restricted to
spherically symmetric static solutions. It should provide a
complementary description for any classical solution. For
illustrative purposes, we now consider a cylindrically sym-
metric solution sourced by a uniform string, with the mass-
per-unit-length denoted by 	

T ¼ �	
�ðrÞ
2�r

: (24)

The exact solution again has two regimes, separated by a
Vainshtein radius

r� � 	

MP�
2
: (25)

The leading behavior of � in the two regimes is,

� ¼

8>>><
>>>:

3
2

�
	

2�MP

�
1=3

�4=3r2=3 þ const; r � r�;



2�MP

ln

�
r
rs

�
; r � r�;

(26)

where rs is a UV regulator scale—the transverse width of
the string in this case. Using perturbation theory in the
original formulation, we recover the logarithmic profile for
r � r� as the leading term, and perturbation theory breaks
down as we approach the Vainshtein radius from the
outside.

On the other hand, the dual form of the equations of
motion, (18), yields the following expressions for the fields
� and c :

� ¼ 0; � ¼ 


2�MP

ln

�
r

rs

�
;

c ’ 


2�MP

ln

�
r

rs

�
� 3

2

�



2�MP

�
1=3

�4=3r2=3 þ const: (27)

The expression for � here is exact as above, while the
series for c breaks down in the IR, as the Vainshtein scale
r� is approached from the inside. Recalling the definition
� ¼ �� c , one again finds an agreement with the result
obtained in the original formulation of (26).

III. THE CUBIC GALILEON

We have illustrated how the simplest model of a single
Nambu-Goldstone scalar can be rewritten in a form for
which classical perturbation theory has a region of validity
opposite to that of the original formulation. The method
however is quite general. The essence of the method is to
introduce auxiliary fields in such a way as to replace the
nonrenormalizable derivative interactions with (generally
nonanalytic) nonderivative terms. We now consider the
cubic Galileon —an example of a scalar field theory that
is relevant for modifications of gravity,

L ¼ � 1

2
ð@�Þ2 � 1

�3
ð@�Þ2h�þ 1

MP

�T: (28)

As mentioned before, in the MPl ! 1 limit, the Galileon
term in the above action does not get renormalized in the
full quantum theory; also, no higher Galileons [8] will be
induced if they are not introduced to begin with. Moreover,
no NG-type terms, ð@�Þn, of the previous section will be
generated since the latter do not respect the ‘‘Galilean
symmetry’’ � ! �þ cþ c�x

�.

In spite of the presence of higher derivatives, the equa-
tions of motion that follow from the above action are
second-order, leading to a well-defined Cauchy problem,
and the absence of additional ghostly degrees of freedom,

h�� 2

�3
½ð@�@��Þ2 � ðh�Þ2� ¼ � T

MP

: (29)

Concentrating again on radial profiles for� sourced by a
pointlike source, T ¼ �M�3ðxÞ, the equation of motion
(29) reduces to the following:

~r�
�
~r�þ 1

�3
ð2 ~r� ~r2

�� ~rð ~r�Þ2Þ
�
¼ M

MP

�3ðxÞ: (30)

Integrating once, we obtain a quadratic equation for the
radial derivative of the Galileon field,

�0

r
þ 4

�3

�02

r2
¼ M

MP

1

4�r3
: (31)

Like in the model of the previous section, the exact solu-
tion has two regimes, separated by the Vainshtein radius r�,

�ðrÞ ¼

8>>><
>>>:

1
2
ffiffiffi
�

p �3r2�
�
r
r�

�
1=2

�
1þO

�
r3=2

r3=2�

��
þ const r� r�;

� M
MP

1
4�r

�
1þO

�
r3�
r3

��
r� r�;

(32)

where

r� 	
�
M

MP

�
1=3 1

�
: (33)
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The Vainshtein mechanism is therefore at work in the cubic
Galileon theory as well, screening the scalar potential
significantly within r�. As in the previous section, the
classical field is weak (sub-Planckian) in both the linear
and nonlinear regimes, ð�=MPlÞ � 1.

Perturbation theory in this formulation allows us to
compute the corrections to the 1=r solution for r � r�
via a 1=�3 expansion of Eq. (29). We thus write,

� ¼ �0 þ�1 þ�2 þ � � � ; (34)

so that after plugging into the equation of motion and
equating powers of 1=�, we find the series of equations

h�0 ¼ � T

MP

: (35)

h�1 � 2

�3
½ð@�@��0Þ2 � ðh�0Þ2� ¼ 0: (36)

..

.
(37)

This gives an expansion in powers of ðr�=rÞ3, which is
valid outside the Vainshtein radius and starts to fail as the
Vainshtein radius is approached from the outside.

A. The dual Galileon theory

We would now like to find a dual formulation of the
Galileon, one whose classical perturbative expansion is
valid inside the Vainshtein radius. Starting with the original
Lagrangian (28), we introduce two auxiliary scalar fields
b� and 
 and write an equivalent version of the theory as

follows:

L ¼�1

2
ð@�Þ2þ�3=2

ffiffiffiffiffiffiffiffiffi

b2�

q
�b�@���
h�þ 1

MP

�T:

(38)

Again, we have succeeded in representing the cubic
Galileon in a form in which all terms look relevant at the
expense of introducing fractional dimensions on fields.
This has a more complicated structure than the dual
Lagrangian of the previous section (15). However, there
are some similarities, such as that the nonanalytic potential
term in (38) also has a tachyonic sign, and the fact the �
field becomes trivial in both (15) and (38) in the limit
� ! 0, MPl ! 1. This, and the spectrum of the theory,
is best seen by using a noncovariant (i.e., a 3þ 1) decom-
position of the vector field b�, as given below.5

The equations for�, 
 and b� that follow from the latter
Lagrangian are given as follows:

h�þ @�b
� �h
 ¼ � 1

MP

T;

�h�þ 1

2
�3=2

ffiffiffiffiffiffi
b2�



s
¼ 0;

�@��þ�3=2

ffiffiffiffiffiffi



b2�

s
b� ¼ 0:

(39)

Resorting again to the 3þ 1 decomposition of the vector
field, taking the divergence of the last of the equations of
motion (39),6 forming suitable linear combinations and (re)
defining fields as follows:

b0¼�; bi¼bTi þ@ib; 
¼ �
þb; �¼ ��þ �
; (40)

one can reduce (39) to the following system:

h ��� @0�þ @0b ¼ � 1

MP

T;

@0

�
@0 �
��3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�
þ b

b2�

s
�

�
� @i

�
@i �
��3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�
þ b

b2�

s
ðbTi þ @ibÞ

�
þ @20b� @0� ¼ � 1

MP

T;

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�
�
þ b

s
� @0

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
�
þ b

b2�

s
�

�
þ @i

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
�
þ b

b2�

s
ðbTi þ @ibÞ

�
¼ 0:

(41)

As in the example of the previous section, in the presence of a point source, T ¼ �M�3ðxÞ, the transverse component bTi as
well as � vanish; moreover, one combination of the fields, denoted by ��, is free and has a linear equation everywhere in
space, receiving an exact Newtonian profile

5As noted in the previous section, this decomposition, unlike the covariant one, does not introduce artificially extra time derivatives
which would have confused the counting of propagating modes already in the classical theory.

6For the static profiles at hand, retaining only the divergence of this equation is sufficient for obtaining the complete solution.
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�� ¼ � M

4�MP

1

r
: (42)

The last equation from the system (41) on the other hand
gives

b ¼ � �
� 1

4
r �
0; (43)

which, when plugged into the second of (41), gives an
equation for �
 after integrating once,7

� �
0 þ�3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

4
r �
0

s
¼ M

4�MP

1

r2
: (44)

We have now arrived at an equation which achieves the
goal of the dual formulation. The interaction term, propor-

tional to �3=2, becomes important only at distances larger
than the Vainshtein radius (33). We again set up perturba-

tion theory by expanding the �
 profile in powers of �3=2,

�
 ¼ �
0 þ �
1 þ �
2 þ � � � : (45)

Plugging the expansion into (44) and equating powers of
�, we obtain

�
 0¼ M

4�MP

1

r
; �
1¼�3=2

�
M

4�MP

�
1=2

r1=2þconst; ���
(46)

Finally, recalling the definition of the physical field �, we
have

� ¼ ��þ �
 ¼ 1

2
ffiffiffiffi
�

p �3r2�
�
r

r�

�
1=2 þ constþ � � � ; (47)

in complete agreement with the result (32) of the original
theory well within the Vainshtein radius. The perturbative
expansion in the dual formulation is an expansion in the ratio�

r

r�

�
3=2

; (48)

and so the expansion is valid inside the Vainshtein radius,
complementary to the expansion in the original formulation
which is valid outside r�.

B. Domain wall and infinite string

Similarly to the case of the Nambu-Goldstone theory,
the dual formulation should be useful in reorganizing the
perturbation expansion for any classical solution. It is
interesting to see this on examples other than that of a
point source—such as a domain wall or a string.

It has been shown that domain walls do not possess a
Vainshtein scale in DGP and massive gravity [26] (this
scale is of the order of the wall width), so they give rise to a
fifth force at all distances. This fact should be captured by
the cubic Galileon theory (28) and therefore by its dualized
version, presented above. The absence of an r� distance
can be easily seen in the equations of motion of the original
theory (29). Indeed, in the presence of an infinite domain
wall in the x-y plane at z ¼ 0, the problem becomes one
dimensional, with � depending on a single coordinate z.
One can then easily see that all nonlinearities in the origi-
nal equations of motion vanish and one is left with the
Newtonian profile of a one-dimensional source for the
scalar. On the other hand, the last of the equations of
motion (41) that follow from the dual theory implies

 ¼ 0 for only z-dependent profiles. Recalling the defini-
tion of the original Galileon� in terms of the free scalar ��
of the dual theory and 
, � ¼ ��þ 
, one obtains agree-
ment between the two representations of the theory (as
must be the case since the representations are classically
equivalent). Both the original and dual formulations are
free of nonlinearities, and so there is no perturbative ex-
pansion to be done in either case.

Next consider an infinite string source, T ¼ �	 �ðrÞ
2�r . In

the original Galileon theory, the equation of motion can be
integrated to yield the following algebraic equation for the
radial derivative of the axially symmetric � profile:

�0 þ 2

�3

ð�0Þ2
r

¼ 	

2�MPr
: (49)

One can immediately read off the Vainshtein radius from
this equation,8

r� �
�

	

MP�
3

�
1=2

: (50)

Using perturbation theory, one can readily solve for� well
outside the Vainshtein radius to obtain the leading behavior
of the scalar profile,

� ’ 	

2�MP

ln

�
r

rs

�
; r � r�; (51)

where again rs is a cutoff scale the finite thickness of the
string. Well within the Vainshtein radius, the nonlinear
term in (49) dominates, leading to

� ’
�
	�3

4�MP

�
1=2

rþ const; r � r�: (52)

In the dual theory on the other hand, we can proceed
in complete analogy to the above analysis. The last
of the system (41) yields the following identity for such
profiles:

7One has to be careful with the square root at this point.
Jumping a bit ahead, we note that (in complete analogy to the
Goldstone-Stückelberg case considered above) the leading term
in the expression for �
 well within the Vainshtein radius is of the
form A=r, with A denoting some positive constant. This uniquely
fixes all signs in front of square roots, as well as makes theffiffiffiffiffiffiffiffiffiffiffiffiffi
�
þ b

p
expression in these equations well defined.

8Note that this decoupling-limit expression for the Vainshtein
radius coincideswith the onederived in the fullDGPmodel in [27].
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b ¼ � �
� 1
2r

�
0: (53)

Plugging this into the second of these equations and inte-
grating, one finds that the equation determining �
 is given
as follows:

� �
0 þ ð�Þ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�
þ b

p
¼ 	

2�MPr
: (54)

One can now solve this equation perturbatively, but per-
turbation theory now works well within the Vainshtein
radius,

�
 ¼ � 	

2�MP

ln

�
r

rs

�
þ�3=2

�
	

4�MP

�
1=2

rþ const; (55)

arriving at an expression for � which is valid in the UV,

� ¼ ��þ �
 ¼ �3=2

�
	

4�MP

�
1=2

rþ const: (56)

This is in complete agreement with the expression (52),
obtained from the original formulation.

IV. CONCLUSIONS

We have studied a few examples of classical dualization
for Nambu-Goldstone and Galileon theories, which allows
for a perturbative formulation of the regimes in which the
original theory becomes classically nonperturbative.
Quantum mechanically, such a formulation is only valid
in special cases, where certain symmetries make it possible
for classical nonlinearities to be strong, while keeping
quantum corrections under complete control.

Among scalar field theories, Galileons perhaps represent
the most remarkable examples of this, due to a powerful
nonrenormalization theorem [4,8,10] protecting the lead-
ing part of the Lagrangian from quantum corrections.
Hence, our results are justified for these theories.
Moreover, it should be possible to generalize our approach
to the higher Galileon terms.

In addition to capturing many features of the DGP
model, Galileons have emerged as an essential ingredient
in the recently formulated ghost-free massive gravity mod-
els [2,3]. The decoupling limit of these theories represents
a certain (scalar-tensor) extension of the Galileon with a
more general structure, which however retains all the nice
properties of the Galileons, such as the presence of the
Vainshtein mechanism and the nonrenormalization theo-
rems (for studies of cosmological and spherically symmet-
ric solutions in the decoupling limit and beyond in ghost-
free massive gravity, see [28–40] and references therein).
Our method should have a straightforward algorithmic
generalization to those more general Lagrangians obtained
in [2], and should be useful for the development of the
analog of the parametrized post Newtonian formalism in
massive gravity [3] (or for generic modified gravity models
with extra scalar fields, such as the recently proposed fab
four theory, [41]) and for systematically determining the

observational consequences of the Vainshtein mechanism
[42,43].
The method presented above might as well be useful in

studies of the proposal of Ref. [23] (see [44] for treatment
of the scattering problem in this context for the theories
considered above).
Finally, it remains to be seen if quantization of the

classical duals considered in the present work can lead to
duals of the full quantum theory. Given the nonanalytic
nature of the dual theories that we obtained, quantization
seems to be a nontrivial task. We expect the noncovariant
decomposition of the auxiliary fields used in Secs. II and
III to be a good starting point for bookkeeping of the
degrees of freedom. The quantization procedure, may or
may not force us to introduce additional dynamical degrees
of freedom at the scale �.
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APPENDIX: MORE GENERAL INTERACTIONS

In this appendix we study a more general derivative self-
interaction which is an arbitrary power of the field �, in
order to show that the dual formulation always has non-
analytic self-interactions with fractional powers of the
fields, and that this fractional power is always less than
2, i.e., less than that of a mass term.
Consider a (ghost-free) Goldstone–Stückelberg-type

theory with a shift symmetry and a Z2 symmetry. A general
interaction term containing only one derivative per field is
given by the following:

L ¼ � 1

2
ð@�Þ2 � ðð@�Þ2Þn

2n�4n�4
þ 1

MP

�T: (A1)

The theory can be equivalently rewritten by integrating
in the vector field c �,

L¼�1

2
ð@�Þ2�c �@��

þ
�
1� 1

2n

�
�4n�4=2n�1ððc �Þ2Þn=2n�1þ 1

MP

�T: (A2)

Integrating out c � recovers (A1). Note that the power of

c � in the interaction term is always <2.

The equations of motion that follow from (A2) can be
reduced to a form similar to the system (19). Using
the same decomposition of the vector field as before,
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c � ! ð�; c T
i þ @ic Þ, one finds that � ¼ c T

i ¼ 0. One

combination of the fields, � ¼ �þ c , in the presence of a
pointlike external source has the usual 1=r profile at all
distances, whereas c has a crossover Vainshtein scale due
to nonlinearities. Moreover, the form of the dual action
suggests that at small distances, nonlinearities in c should
be subdominant, providing a small perturbation over the
1=r potential. This can be checked explicitly by perturba-
tively solving the static equation of motion for c ,

� ~r�
�
~rc þ�4n�4=2n�1 ~rc ðð ~rc Þ2Þ�ðn�1=2n�1Þ

�
¼ 1

MP

T:

(A3)

For a static pointlike source T ¼ �M�3ðxÞ, this reduces to

c 0 þ�4n�4=2n�1ðc 0Þ1=2n�1 ¼ M

4�MPr
2
: (A4)

Expanding c into contributions of different order in
powers of the nonlinear interaction,

c ¼ c 0 þ c 1 þ . . . ; (A5)

with c 0 ¼ � M
4�MPr

, one finds that the first perturbation

should satisfy the following equation:9

c 0
1 ¼ ��4n�4=2n�1

�
M

4�MPr
2

�
1=2n�1

; (A6)

which is solved by the following expression:

c 1¼�ð2n�1Þ
ð2n�3Þ�

4n�4=2n�1

�
M

4�MP

�
1=2n�1

r2n�3=2n�1:

(A7)

One can estimate the crossover distance r� for the c profile
as the one for which the perturbation theory breaks
down,

r� �
�
M

MP

�
1=2 1

�
: (A8)

This scale is of the same order for any n, up to an weakly
n-dependent multiplicative factor of order one. The ex-
pression for the physical field � inside the Vainshtein
radius is

�¼��c ¼�c 1

¼ð2n�1Þ
ð2n�3Þ�

4n�4=2n�1

�
M

4�MP

�
1=2n�1

r2n�3=2n�1: (A9)
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