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By application of the ‘‘geometric spectral inversion’’ technique, which we have recently generalized to

accommodate also singular interaction potentials, we construct from spectral data emerging from the

solution of the Minkowski-space formulation of the homogeneous Bethe–Salpeter equation describing

bound states of two spinless particles a Schrödinger approach to such states in terms of nonrelativistic

potential models. This spectrally equivalent modeling of bound states yields their qualitative features

(masses, form factors, etc.) without having to deal with the more involved Bethe–Salpeter formalism.
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I. INTRODUCTION: MOTIVATION
AND INCENTIVE

Within the framework of relativistic quantum field the-
ory, the appropriate tool for the description of bound states
is, in principle, the Bethe–Salpeter (BS) formalism [1–3].
In this approach, a bound state BðPÞ, of momentum P
and mass M, is described by its BS amplitude, which in
configuration-space representation is defined by the matrix
element of the time-ordered product of the field operators
of all bound-state constituents between vacuum j0i and
bound state jBðPÞi. In momentum-space representation,
the BS amplitude, upon splitting off the center-of-
momentum motion of the bound state and suppression of
all indices generically denoted by �ðp; PÞ, encodes the
distribution of the relative momenta p of the bound-state
constituents. It satisfies a formally exact BS equation in-
volving two kinds of dynamical ingredients, namely, for
bound states composed of n constituents, (a) the propaga-
tors SiðpiÞ (i ¼ 1; 2; . . . ; n) of the n constituents of respec-
tive individual momenta pi and (b) its BS interaction
kernel K, a fully truncated (2n)-point Green function of
the n bound-state constituents, perturbatively defined as
the sum (of the countable infinity) of all ‘‘BS-irreducible’’
Feynman graphs for n particle into n-particle scattering.
For two bound-state constituents, the BS equation is of the
generic form

�ðp; PÞ ¼ i

ð2�Þ4 S1ðp1Þ
Z

d4qKðp; q; PÞ�ðq; PÞS2ð�p2Þ:
(1)

Physical considerations provide a profound motivation
to formulate one’s BS framework inMinkowski space, with
the pseudo-Euclidean space-time metric tensor g�� ¼
diagðþ1;�1;�1;�1Þ. In the Minkowski-space formula-
tion, however, finding solutions to the BS equation may be

heavily impeded by the presence of singularities induced
by the propagators of the bound-state constituents or its BS
interaction kernel. As a remedy, by assuming that analytic
continuation of theMinkowski-space formalism is possible
and the Cauchy integral theorem is applicable, it has been
proposed to study the BS equation in Euclidean space, with
metric g�� ¼ ���, reached by a procedure misleadingly

labeled Wick ‘‘rotation’’ [4]. The Euclidean-space formu-
lation facilitates making contact with lattice field theory,
usually defined in Euclidean space. Solutions of the BS
equation provide the set of mass eigenvalues M and asso-
ciated BS amplitudes � of the bound states. The mass
eigenvalues arising in Minkowski-space and Euclidean-
space formulations of a given BS equation are identical.
For BS amplitudes, however, complicated analyticity
structures of the BS equation in the complex plane cause
troubles: The BS solutions derived in one formulation may
differ from those obtained in the other one. That is to say,
the analytic continuation to Minkowski space of some
solution to the BS equation in Euclidean space may bear
no resemblance to its counterpart found as solution to the
same BS equation in Minkowski space. Since the BS
amplitudes determine physical observables such as decay
constants and form factors, knowledge of the Minkowski-
space amplitudes is highly desirable.
This dilemma between, on the one hand, the compara-

tive ease of deriving solutions to a Euclidean-space BS
equation and, on the other hand, the need of physical
applications for BS amplitudes constituting solutions to a
Minkowski-space BS equation can be tentatively resolved
by developing—of course, only approximately equiva-
lent—Schrödinger models. This may be effected by fixing
the interaction potential entering in the Schrödinger
Hamiltonian by spectral inversion of the bound-state
mass eigenvalues M arising from the easier-to-accomplish
solution of the Euclidean-space BS equation. The wave
functions obtained as solutions of the resulting
Schrödinger equation allow us to compute decay constants
and form factors of bound states, provided we succeed in
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acquiring control of the uncertainties introduced by such
modeling. Obviously, we may estimate the accuracy of the
envisaged Schrödinger models by applying our proposal
for resolution of the dilemma to some known solutions of
the Minkowski-space BS equation in order to extract an
associated Schrödinger potential and comparing the out-
come of the corresponding Schrödinger equation with the
findings of the BS framework.

Recently, renewed attempts of solving the BS equation
for two-particle bound states in Minkowski-space formu-
lation have been undertaken [5–13]. The basic idea advo-
cated for in Ref. [5] is to remove the singularities of the BS
amplitudes by considering an equivalent integral transform
of the BS equation (1) obtained by projection onto the
light-front plane, and to take advantage of a particular
integral representation of the BS amplitude �ðp; PÞ pro-
posed by Nakanishi [14], in order to obtain a nonsingular
integral equation that is straightforward to solve numeri-
cally. This route has been applied to bound states consist-
ing either of two identical spin-0 bosons [5–10] or of a
spin- 12 fermion and its antiparticle [11–13]. Any such

bound state arises, in the case of two scalar constituents,
from their couplings to a further scalar boson or, in the case
of fermionic constituents, from their couplings to a scalar, a
pseudoscalar, or a massless vector boson; for bound states
of scalars, the interactions are taken into account in the BS
equation by considering the BS kernel either in ladder
approximation, which amounts to the iteration of single-
boson exchanges, or in ladder-plus-cross-ladder approxi-
mation. Moreover, for the bound-state constituents the
studies [5–13] employ, for simplicity, the free-propagator
approximation.

In order to get an idea of the behavior of such
Schrödinger interaction potentials to be expected to arise
in the course of spectral inversion, we recall that there is
a well-paved path of simplifications leading from the
relativistic BS equation to its nonrelativistic or ‘‘static’’
Schrödinger reduction. The sequence of necessary steps
involves several well-defined and thoroughly studied ap-
proximations to the BS formalism (for brief reviews of this
reduction, consult, e.g., Refs. [15–17]):

(1) In some instantaneous limit, realizable if in the
bound state’s center-of-momentum frame fixed
by P ¼ ðM; 0Þ the BS kernel takes the form
Kðp; q; PÞ ¼ Kðp; qÞ, the BS equation may be re-
duced to the instantaneous BS equation (for attempts
in these directions, consult, for instance, Ref. [18]
and references therein) for the Salpeter amplitude

�ðpÞ � 1

2�

Z
dp0�ðpÞ:

(2) The additional assumption of free propagation of all
bound-state constituents with effective masses en-
compassing the dynamical self-energy effects leads

to the Salpeter equation [19]. (Note, however, that in
quantum field theory the Dyson–Schwinger equa-
tions relate every n-point Green function to at least
one (m> n)-point Green function. This means, in
particular, that the propagators, i.e., the 2-point
Green functions, and the n-point Green functions
entering in the BS kernel cannot be chosen indepen-
dently: the use of free propagators might be incom-
patible with the feature of confinement exhibited by
quantum chromodynamics, the theory describing
the strong interactions.)

(3) Dropping all negative-energy contributions simpli-
fies Salpeter’s equation to the reduced Salpeter
equation [20–24].

(4) Furthermore, ignoring all spin degrees of freedom of
all bound-state constituents and assuming the BS
interaction kernel K to be of convolution type, i.e.,
to depend only on the difference of the involved
relative momenta p and q, Kðp; qÞ ¼ Kðp� qÞ,
yields the spinless Salpeter equation. Therein, the
interactions manifest in form of a potential arising,
in configuration space, as the Fourier transform of
this kernel Kðp� qÞ. This bound-state equation
may be viewed as a generalization of the
Schrödinger equation towards relativistic kinemat-
ics. (Concise reviews of various aspects and facets
of semirelativistic approaches to the bound-state
problem may be found in, e.g., Refs. [25–27].)1

(5) In an ultimate static limit, replacing in the latter
equation of motion the relativistic form of all
one-particle kinetic energies by the corresponding
nonrelativistic approximation, we eventually end up
with the Schrödinger equation.

Let us begin our analysis by inspecting the simplest
case: bound states of two scalar constituents [5–10]. In
the ladder approximation, the only contribution to the BS
interaction kernel derives from single-particle exchange.
Apart from the couplings of the exchanged particle to the
bound-state constituents, the BS kernel is then nothing but
the propagator of the exchanged particle. For a scalar
boson with mass �, its free propagator is given by SðkÞ ¼
iðk2 ��2Þ�1. The Fourier transform in three dimensions
of the instantaneous approximation to this propagator,
i.e., of its remnant iðk2 þ�2Þ�1, is proportional to
the configuration-space Yukawa potential VðrÞ ¼
� expð��rÞ=r, thus singular at the origin r � jxj ¼ 0.
As a consequence, depending, clearly, on the proximity
of the system described by the BS equation to the non-
relativistic Schrödinger limit, the outcome of any spectral
inversion may be potentials resembling, to some extent, the
Yukawa type but modified, of course, by the various effects
ignored on the way down to the static limit, such as

1A related approach is the quasipotential formalism devised by
Todorov [28].
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relativistic kinematics or higher-order contributions to the
BS interaction kernel; cross-ladder terms are but the sim-
plest example of the latter. Accordingly, we have to devise
and utilize an inversion technique that is capable of dealing
also with singular potentials.

To this end, we recently generalized the earlier geo-
metric spectral inversion [29–33] to treat singular poten-
tials [34]. We suppose that fðrÞ is the shape of the
potential and v > 0 is the coupling parameter in the
Schrödinger Hamiltonian H ¼ ��=ð2mÞ þ vfðrÞ. In
this inversion technique, a functional sequence is built

which starts from a seed f½0�ðrÞ and reconstructs the
potential shape fðrÞ from a given spectral function E ¼
FðvÞ that defines how a discrete eigenvalue E of H
depends on the parameter v. The most relevant earlier
paper is Ref. [34], which also includes a proof of unique-
ness for the inverse for a large class of singular potentials.
Here, the inversion sequence is defined in Sec. II C; a
statement of the uniqueness theorem may be found in
Sec. II D. The principal goal of the present paper is to
take for FðvÞ the solutions to the Minkowski-space BS
equation [5–10,13] for bound states of two scalar constit-
uents, and to reconstruct directly from this set of data an
effective potential shape fðrÞ in the Schrödinger model
defined by the Hamiltonian H.

The outline of this paper is as follows. In Sec. II, we
summarize enough of the geometric spectral inversion
theory to make this paper essentially self-contained. In
Sec. III, we present the spectral data FðvÞ from the BS
solutions [5–10]. In Sec. IV, we apply the functional in-
version sequence of Sec. II C to these data to construct the
effective potential shape. In the Appendix, we sketch the
nonrelativistic reduction of the Bethe–Salpeter formalism
for scalar bound-state constituents along a route which
mimics to the utmost possible extent the case of fermionic
bound-state constituents.

II. GEOMETRIC SPECTRAL INVERSION

We consider the discrete spectrum of a Schrödinger
Hamiltonian operator

H ¼ ��þ vfðrÞ; r �k x k; (2)

where fðrÞ is the shape of an attractive central potential,
and v > 0 is a coupling parameter. We shall assume that
the potentials are monotone nondecreasing and no more
singular than the Coulomb potential fðrÞ ¼ �1=r. The
arguments we use apply generally to the problem in
d > 1 spatial dimensions, but, for definiteness, we shall
usually assume that d ¼ 3. The operator inequality
[35,36]

�� �
�
d=2� 1

r

�
2
; d � 3; (3)

implies that a discrete spectrum exists for sufficiently
large coupling v > 0. For d ¼ 3, the Hamiltonian H is
bounded below by

E � min
r>0

�
1

4r2
þ vfðrÞ

�
; (4)

and a simple trial function can be used to establish an
upper bound to E. Thus, we may assume, in particular,
that the ground-state energy may be written as a function
E ¼ FðvÞ. An explicit example of the class of problems
we consider is provided by the Hulthén potential, whose
shape is given by fðrÞ ¼ �1=ðer � 1Þ and whose s-state
(‘ ¼ 0) eigenvalues En are given [37] exactly for d ¼ 3
by the formula

En ¼ FnðvÞ ¼ �
�
v� n2

2n

�
2
; v> n2; n¼ 1;2;3; . . . :

(5)

The problem discussed in the present paper may be stated
as follows: given, for example, the curve F1ðvÞ, can we
use this spectral data to reconstruct the potential shape
fðrÞ? We call this reconstruction a ‘‘geometric spectral
inversion’’.

A. Exact representation of spectral functions
by kinetic potentials

The discrete spectra of operators bounded from below,
such asH ¼ ��þ vfðrÞ, may be characterized variation-
ally [38]. Thus, the ground-state energy may be written

FðvÞ ¼ inf
c2DðHÞ
kc k¼1

ðc ; Hc Þ: (6)

Since H depends on the coupling v, so therefore does the
domain DðHÞ. However, for the problems considered,
either H has discrete eigenvalues, perhaps for v greater
than some critical coupling v1, or the entire spectrum of H
is discrete for v > 0. The kinetic potential �fðsÞ associated
with a given potential shape fðrÞ is defined (for the ground
state c ) by a constrained minimization in which the mean
kinetic energy s � h��i is kept constant:

�fðsÞ ¼ inf
c2DðHÞ
kc k¼1

ðc ;��c Þ¼s

ðc ; fc Þ: (7)

The eigenvalue FðvÞ of H is then recovered from �fðsÞ by a
final minimization over s:

FðvÞ ¼ min
s>0

½sþ v �fðsÞ�: (8)

The spectral function FðvÞ is concave (F00ðvÞ< 0); more-
over, it has been shown [29] that

F00ðvÞ �f00ðsÞ ¼ � 1

v3
< 0: (9)
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Hence, FðvÞ and �fðsÞ have opposite convexities and
are related by the following Legendre transformations
�f $ F [39]:

�fðsÞ ¼ F0ðvÞ; s ¼ FðvÞ � vF0ðvÞ; (10)

1

v
¼ � �f0ðsÞ; FðvÞ

v
¼ �fðsÞ � s �f0ðsÞ: (11)

FðvÞ is not necessarily monotone, but the kinetic potential
�fðsÞ is monotone decreasing. Equation (10) enables us also
to use the coupling as a minimization parameter. For this
purpose, we write the coupling as u and we have from
Eq. (8)

FðvÞ ¼ min
u>0

½FðuÞ � uF0ðuÞ þ vF0ðuÞ�: (12)

This is particularly useful in cases where �fðsÞ is difficult to
find explicitly.

Another form of expression, useful for our present task,
is obtained if we change the kinetic-energy parameter from
s to r itself, by inverting the (monotone) function �fðsÞ to
define the associated K function by

K½f�ðrÞ ¼ s ¼ ð �f�1 � fÞðrÞ: (13)

Now the energy formula Eq. (8) becomes

FðvÞ ¼ min
r>0

½K½f�ðrÞ þ vfðrÞ�: (14)

A sleight of hand may be perceived here since K depends
on f. However, we do now have a relation that has F on one
side and f on the other: our goal is to invert this expression,
to effect F ! f. We shall do this below by constructing a
sequence of approximate K functions which do not depend
on f.

B. Smooth transformations and
envelope approximations

In this section, we consider potential shapes fðrÞ that
may be written as smooth transformations fðrÞ ¼ gðhðrÞÞ
of a ‘‘basis potential’’ hðrÞ. The idea is that we know the
spectrum of��þ vhðrÞ and we try to exploit this to study
the spectrum of ��þ vfðrÞ. When the transformation
function g has definite convexity (g00 does not change
sign), the kinetic-potential formalism immediately allows
us to derive energy bounds. This is a consequence of
Jensen’s inequality [40], which may be expressed in our
context by the following:

g is convexðg00 �0Þ)ðc ;gðhÞc Þ�gððc ;hc ÞÞ;
gis concaveðg00 �0Þ)ðc ;gðhÞc Þ�gððc ;hc ÞÞ: (15)

More specifically, we have for the kinetic potentials

g00 �0) �fðsÞ�gð �hðsÞÞ; g00 �0) �fðsÞ�gð �hðsÞÞ: (16)

We can summarize these results by writing �fðsÞ � gð �hðsÞÞ
and remembering that the relation � indicates an
inequality whenever g has definite convexity. The expres-
sion of these results in terms ofK functions is even simpler,
for we have

K½f� ¼ �f�1 � f � ðg � �hÞ�1 � ðg � hÞ ¼ �h�1 � h ¼ K½h�:
(17)

Thus, K½f� � K½h� is the approximation we sought, that no
longer depends on f. The corresponding energy bounds are
provided by

E ¼ FðvÞ � min
s>0

½sþ vgð �hðsÞÞ� ¼ min
r>0

½KðhÞðrÞ þ vfðrÞ�:
(18)

C. The envelope inversion sequence

We suppose that an eigenvalue E of H ¼ ��þ vfðrÞ
is known as function E ¼ FðvÞ of the coupling parameter
v > 0. In some cases, such as the square well, the discrete
eigenvalue may exist only for sufficiently large coupl-
ing, v > v1. The kinetic potential �fðsÞ may be obtained
by inverting the Legendre transformation in Eq. (10).
Thus

FðvÞ ¼ min
s>0

½sþ v �fðsÞ�V �fðsÞ ¼ max
v>v1

�
FðvÞ
v

� s

v

�
: (19)

We shall also need to invert the relation (14) between F½n�

and K½n� by means of

KðrÞ ¼ max
v>v1

½FðvÞ � vfðrÞ�: (20)

We begin with a seed potential shape f½0�ðrÞ from which

we generate a sequence ff½n�ðrÞg1n¼0 of improving potential

approximations. The idea behind this sequence is that we

search for a transformation g so that gðf½n�ðrÞÞ is close to
fðrÞ in the sense that the eigenvalue generated is close to
FðvÞ. The envelope approximation is used at each stage.

The best transformation g½n� at stage n is given by using the

current potential approximation f½n�ðrÞ as an envelope
basis. We have:

�f ¼ g½n� � �f½n� ) g½n� ¼ �f � �f½n��1:

Thus

f½nþ1� ¼ g½n� � f½n� ¼ �f � K½n�:

The resulting inversion algorithm may be summarized by
the following:
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inversion algorithm

f½n�ðrÞ ! F½n�ðvÞ ! K½n�ðrÞ ¼ max
u>v1

½F½n�ðuÞ � uf½n�ðrÞ�;
(21)

f½nþ1�ðrÞ ¼ max
v>v1

�
FðvÞ
v

� K½n�ðrÞ
v

�
: (22)

The step f½n�ðrÞ!F½n�ðvÞ is effected by solving

ð��þvf½n�Þc ¼Ec numerically for E ¼ F½n�ðvÞ.

D. Uniqueness

We consider now a singular potential fðrÞ of the form

fðrÞ ¼ gðrÞ
r

; where gð0Þ< 0; g0ðrÞ � 0; (23)

and gðrÞ is not constant. Examples of this class of singular
potential shapes fðrÞ are Yukawa gðrÞ ¼ �e�ar, Hulthén
gðrÞ ¼ �r=ðear � 1Þ, and linear-plus-Coulomb gðrÞ ¼
�aþ br2, with a, b > 0. With these assumptions, we
have proved in Ref. [34] the following
Theorem The potential shape fðrÞ in H ¼ ��þ vfðrÞ

is uniquely determined by the ground-state energy function
E ¼ FðvÞ.

III. SPECTRAL DATA FROM MINKOWSKI-SPACE
BETHE–SALPETER EQUATION

A. The raw data

In Table I, we exhibit the binding energy E versus
coupling v results from numerical solutions of the
Bethe–Salpeter equation for a system of two scalar parti-
cles each of massm, bound by single or multiple exchange
of a scalar particle of mass �, computed by Carbonell

TABLE I. Couplings v and binding energies E arising from Bethe–Salpeter equations in either
ladder or ladder-plus-cross-ladder approximation for common mass m ¼ 1 of the bound scalar
bosons and mass � ¼ 0:15 or � ¼ 0:5 of the exchanged scalar boson, or from the ladder-
approximation nonrelativistic limit, the Schrödinger equation with Yukawa potential VðrÞ ¼
�v expð��rÞ=r.

v E
Minkowski-space Bethe–Salpeter equation Schrödinger equation

Ladder Ladderþ cross-ladder Yukawa potential

� ¼ 0:15 [5,7,13] � ¼ 0:50 [5–7,13] � ¼ 0:50 [6,7] � ¼ 0:50

0.5716 1.440 1.21 1.034 �0:01

- 2.01 1.62 1.285 �0:05

1.437 2.498 1.93 1.532 �0:10

2.100 3.251 2.42 1.848 �0:20

3.611 4.901 3.47 2.204 �0:50

5.315 6.712 4.56 2.918 �1:00

v

E

F2(v)

F1(Rv)/R^2

1 2 3 4 5

1.0

0.8

0.6

0.4

0.2

FIG. 1 (color online). Approximate exchange-mass dependence from scaling arguments: Table I data F2ðvÞ vs scaled Table I data
F1ðRvÞ=R2.
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and Karmanov in Refs. [5], Table 1, [6], Table 1, [7],
Tables 1 and 2, and [13], Table 1. For comparison, we
add corresponding results of the Schrödinger equation
with an interaction potential of Yukawa form VðrÞ ¼
v expð��rÞ=r, which, as shown in the Appendix, consti-
tutes the nonrelativistic limit of the ladder BS equation.
Interestingly, the nonrelativistic binding energies emerging
from the Schrödinger equation with Yukawa potential
seem to reproduce better the ladder-plus-cross-ladder ap-
proximation findings than the ones from mere ladder
approximation.

B. Exchange-mass dependence

In this subsection, we demonstrate that the spectral data
of Table I for� ¼ 0:5 can be obtained approximately from
the corresponding data shown in Table I for � ¼ 0:15 by a
scale change in the potential of a Schrödinger model. This
is interesting if one expects to find that a potential such as
the Yukawa VðrÞ ¼ �ve��r=r would account approxi-
mately for the spectral dependence of the problem on the
exchange mass �. Let us consider a Schrödinger operator
given by

� �þ v
fðrÞ
r

! E ¼ FðvÞ; (24)

where E is a discrete eigenvalue. A simple scaling argu-
ment applied to the operator

H ¼ � 1

2m
�þ v

fð�rÞ
r

(25)

shows that a corresponding discrete eigenvalue of H is
given in terms of FðvÞ by the formula

E ¼ �2

2m
F

�
2mv

�

�
: (26)

Thus, if we compare two different � values, �1 and
�2 with R � �1=�2, and we write for the �1 case
E1 ¼ F1ðvÞ, then, under the scaling rule (26), for the �2

case we would have E2 ¼ F1ðRvÞ=R2. For our present
problem, we have �1 ¼ 0:5, �2 ¼ 0:15, and therefore
R ¼ �1=�2 ¼ 10=3. Hence, given the second column of
Table I expressed as E ¼ E1 ¼ F1ðvÞ, we would expect to
generate data consistent with the first column of Table I by
the formula E2 ¼ ð9=100ÞF1ð10v=3Þ. Graphs of F2ðvÞ and
its approximation in terms of the scaled F1ðvÞ are shown
in Fig. 1. The scaling law seems to yield a rough
approximation.

IV. THE CONSTRUCTION OF
EFFECTIVE POTENTIALS

We now consider the BS spectral data collected in
Table I and we use our inversion theory [34] to answer
the question what potential shape fðrÞ in the Schrödinger

Hamiltonian H ¼ �1=ð2mÞ�þ vfðrÞ would generate the
corresponding binding energies E for the given values of
the coupling parameter v? For this purpose, we take
m ¼ m1m2=ðm1 þm2Þ with m1 ¼ m2 ¼ 1. We adopt the

0 1 2 3 4 5

r

-4

-3

-2

-1

0

f(
r)

  

seedf[8]

0 1 2 3 4 5

r

-4

-3

-2

-1

0

f(
r)

  

0 1 2 3 4 5 6

v

-1

-0.8

-0.6

-0.4

-0.2

0

F
(v

)

data

FIG. 2 (color online). Geometric inversion of spectral data of
bound states of two scalar bosons described by aMinkowski-space
Bethe–Salpeter equation in ladder approximation formass� ¼ 0:5
of the exchanged particle [5–7,13]. Graph (a) shows the first eight
iterations f½n�, n ¼ 1; 2; . . . ; 8, starting from the seed, while graph
(b) shows the resulting potential shape fðrÞ and, in the inner graph,
the corresponding spectral curve FðvÞ along with the input data.
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inversion algorithm of Eq. (22) with the pure Coulomb

seed potential f½0�ðrÞ ¼ �1=r. For the three sets of BS data
in Table I, our results are exhibited, respectively, in
Figs. 2–4. In each case, we first show a sequence of

eight iterations and then depict the last potential iteration,

f½8�ðrÞ, along with the eigenvalue curve FðvÞ of the Bethe–
Salpeter data and the corresponding eigenvalue curve of

the Hamiltonian H¼��þvf½8�ðrÞ. For comparison,

0 1 2 3 4 5

r

-4

-3

-2

-1

0

f(
r)

  

seed
f[8]

0 1 2 3 4 5
r

-4

-3

-2

-1

0

f(
r)

  

0 1 2 3 4 5 6

v

-1

-0.8

-0.6

-0.4

-0.2

0

F
(v

)

data

FIG. 3 (color online). Geometric inversion of spectral data of
bound states of two scalar bosons described by a Minkowski-
space Bethe–Salpeter equation in ladder-plus-cross-ladder ap-
proximation for mass � ¼ 0:5 of the exchanged particle [6,7].
Graph (a) shows the first eight iterations f½n�, n ¼ 1; 2; . . . ; 8,
starting from the seed, while graph (b) shows the resulting
potential shape fðrÞ and, in the inner graph, the corresponding
spectral curve FðvÞ along with the input data.
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FIG. 4 (color online). Geometric inversion of spectral data of
bound states of two scalar bosons described by a Minkowski-
space Bethe–Salpeter equation in ladder approximation for mass
� ¼ 0:15 of the exchanged particle [5,7,13]. Graph (a) shows
the first eight iterations f½n�, n ¼ 1; 2; . . . ; 8, starting from the
seed, while graph (b) shows the resulting potential shape fðrÞ
and, in the inner graph, the corresponding spectral curve FðvÞ
along with the input data.
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Fig. 5 shows the reconstructed potentials for both ladder
(L) and ladder-plus-cross-ladder (Lþ CL) kernels with an
exchanged-particle mass � ¼ 0:5, along with the corre-
sponding Yukawa-potential shape YðrÞ � � expð��rÞ=r.
Judged by the eye, the Yukawa potential seems to be closer
to the inversion output for the ladder-plus-cross-ladder
case than for the mere ladder case. In view of the ordering
of couplings v in Table I, this observation is no genuine
surprise.

V. FORM FACTORS

In quantum mechanics, the three-dimensional form fac-
tor FðkÞ of a bound state described by its configuration-
space wave function c ðxÞ is nothing else but the Fourier
transform of the corresponding charge density �ðxÞ �
jc ðxÞj2. For a given coupling strength v and common
mass m of the two bound-state constituents, the reduced
radial wave functions uðrÞ of s states satisfy an ordinary
differential equation that determines the associated
binding-energy eigenvalues E:

� 1

m
u00ðrÞ þ vfðrÞuðrÞ ¼ EuðrÞ; uð0Þ ¼ 0: (27)

It proves convenient to normalize the radial wave functions
uðrÞ such that

R1
0 drjuðrÞj2 ¼ 1. In momentum space, any

corresponding form factor FðkÞ is given by the Fourier–
Bessel transform of the radial density u2ðrÞ, that is to say, by

FðkÞ ¼ 1

k

Z 1

0
dr

sinðkrÞ
r

u2ðrÞ; Fð0Þ ¼ 1: (28)

Figures 6 and 7 depict the ground-state form factorsFðkÞ for
v ¼ 5 andm ¼ 1 for each of the three potential shapes fðrÞ
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FIG. 5 (color online). Potential shapes fðrÞ from Figs. 2 and 3
resulting from geometric inversion of the ladder (L) and ladder-
plus-cross-ladder (Lþ CL) Bethe–Salpeter findings [5–7,13] for
the masses of two-scalar-boson bound states, with exchanged-
boson mass � ¼ 0:5, compared with the corresponding Yukawa
potential YðrÞ ¼ � expð��rÞ=r, arising in the nonrelativistic
limit of the ladder case.
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FIG. 6 (color online). Momentum-space form factor FðkÞ of
the ground-state Schrödinger solution mimicking the results of
the Bethe–Salpeter equation in ladder (a) and ladder-plus-cross-
ladder (b) approximation with coupling v ¼ 5 and exchanged-
particle mass � ¼ 0:5.
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shown in Figs. 2–4, obtained by application of our geomet-
rical inversion technique to the spectral data of Table I. By
comparing Figs. 6(a) and 7, we see that the quantum-
mechanical form factors broaden with increasing mass �
of the exchange particle. Likewise, a comparison of the two
plots in Fig. 6 reveals that the quantum-mechanical form
factors broaden when taking into account higher-order cor-
rections in the BS interaction kernel, that is to say, when
working in the somewhat more sophisticated ladder-plus-
cross-ladder approximation instead of in the naı̈ve ladder
approximation. These form factors FðkÞ constitute the
three-dimensional counterparts of the four-dimensional
form factor FðQ2Þ found from the ladder-plus-cross-ladder
Minkowski-space BS equation with exchanged-boson mass
� ¼ 0:5 in Refs. [8–10,13].

VI. CONCLUSION

For a quantum-mechanical description of relativistic
systems in which a single particle is bound to a fixed
center, one uses the Klein–Gordon equation or the Dirac
equation. For the analysis of systems composed of more
than one particle within quantum field theory, the Bethe–
Salpeter formalism is required. In a series of papers,
Carbonell et al. discussed the bound states of a system
of two charged scalar bosons by means of the Bethe–
Salpeter equation in Minkowski-space representation, in
contrast to most studies of this kind which rely on the
Euclidean-space formulation of this equation. These inves-
tigations report some numerical results for the binding

energies, in a variety of cases, as functions EðvÞ of a
coupling parameter v. What we have done in the present
analysis is to employ a geometric spectral inversion theory
to reconstruct, in each case, the potential shape fðrÞ in a
Schrödinger model H ¼ ��=ð2mÞ þ vfðrÞ which would
have the same energy curve EðvÞ. As more complete
quantum-field-theoretic spectral data becomes available,
we shall be able to reveal more details of such spectrally
equivalent potential models.
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APPENDIX: NONRELATIVISTIC REDUCTION OF
THE BETHE–SALPETER EQUATION

For the sake of completeness we briefly sketch how, by
successive application of a sequence of simplifying as-
sumptions and approximations, the Bethe–Salpeter equa-
tion for two bound-state constituents both of spin zero
may be reduced to an equation of motion of Schrödinger
form with all interactions represented by a static potential.
Regarding kinematics, for a bound state of two particles
discriminated by a label i ¼ 1, 2 the relation between total
momentum P and relative momentum p of the constitu-
ents, on the one hand, and the individual-particle momenta
p1, p2, on the other hand, reads

P � p1 þ p2; p � �2p1 � �1p2

()p1 ¼ �1Pþ p; p2 ¼ �2P� p;

where �1, �2 denote two real parameters satisfying �1 þ
�2 ¼ 1. In the center-of-momentum frame of some bound

state of mass M ¼
ffiffiffiffiffiffi
P2

p
, defined by P � p1 þ p2 ¼ 0

and therefore P ¼ ðM; 0Þ, the individual-particle momenta
p1, p2, become

p0
1 ¼ �1Mþ p0; p0

2 ¼ �2M� p0;

p1 ¼ p; p2 ¼ �p:

Our starting point of the nonrelativistic reduction
is the Bethe–Salpeter equation in momentum-space
representation

�ðp; PÞ ¼ i

ð2�Þ4 S1ðp1Þ
Z

d4qKðp; q; PÞ�ðq; PÞS2ð�p2Þ:
(A1)

Its instantaneous approximation assumes that in the center-
of-momentum frame of the bound state the Bethe–Salpeter
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FIG. 7 (color online). Momentum-space form factor FðkÞ of
the ground-state Schrödinger solution mimicking the results of
the Bethe–Salpeter equation in ladder approximation with cou-
pling v ¼ 5 and exchanged-particle mass � ¼ 0:15.
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interaction kernel Kðp; q; PÞ depends only on the (initial
and final) spatial relative momenta p, q : Kðp; q; PÞ ¼
Kðp; qÞ. Then, integrating over p0 reduces the Bethe–
Salpeter equation (A1) to a kind of instantaneous
Bethe–Salpeter equation

�ðpÞ ¼ i

2�

Z
dp0S1ðp1ÞS2ð�p2Þ

Z d3q

ð2�Þ3 Kðp; qÞ�ðqÞ

for the ‘‘Salpeter amplitude’’ �ðpÞ, defined as integral
of �ðp; PÞ over the time component p0 of the relative
momentum p:

�ðpÞ � 1

2�

Z
dp0�ðp; PÞ:

Replacing the propagator SiðpÞ of bound-state constituent i
by its free counterpart Sð0Þi ðpÞ entails the Salpeter equation

�ðpÞ ¼ i

2�

Z
dp0S

ð0Þ
1 ðp1ÞSð0Þ2 ð�p2Þ

Z d3q

ð2�Þ3 Kðp; qÞ�ðqÞ:
(A2)

The free Feynman propagator Sð0Þi ðpiÞ in momentum
space of a scalar boson of mass mi and momentum pi is
given by

Sð0Þi ðpiÞ¼Sð0Þi ð�piÞ¼ i

p2
i �m2

i þ i"
; " #0; i¼1;2:

In terms of relativistic free-particle energies EiðpÞ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

q
the unique2 partial fraction decomposition of

Sð0Þi ðpiÞ is

Sð0Þi ðpiÞ ¼ i

2EiðpÞ
�

1

p0
i � EiðpÞ þ i"

� 1

p0
i þ EiðpÞ � i"

�
;

" # 0; i ¼ 1; 2:

Evaluating the integral over the two propagators in
Eq. (A2) by contour integration and Cauchy’s residue
theorem gives

Z
dp0S

ð0Þ
1 ðp1ÞSð0Þ2 ð�p2Þ

¼ 2�i

4E1ðpÞE2ðpÞ
�

�
1

M� E1ðpÞ � E2ðpÞ �
1

Mþ E1ðpÞ þ E2ðpÞ
�
:

The three-dimensional reduction of the relativistically
covariant Bethe–Salpeter equation (A1) to a Schrödinger-
type equation is applicable to nearly nonrelativistic and
weakly bound states composed of sufficiently heavy con-
stituents. For such systems, the first contribution to the
above integral over propagators may be assumed to domi-
nate the second one,

1

M� E1ðpÞ � E2ðpÞ 	 1

Mþ E1ðpÞ þ E2ðpÞ ;

since in this situation M � E1ðpÞ þ E2ðpÞ, such that the
second term in the propagator integral may be safely
neglected:

Z
dp0S

ð0Þ
1 ðp1ÞSð0Þ2 ð�p2Þ� 2�i

4E1ðpÞE2ðpÞ
1

M�E1ðpÞ�E2ðpÞ:

Adopting this standard approximation, one arrives at the
reduced Salpeter equation for spin-0 bound-state constitu-
ents

½E1ðpÞ þ E2ðpÞ��ðpÞ � 1

4E1ðpÞE2ðpÞ
Z d3q

ð2�Þ3 Kðp; qÞ�ðqÞ
¼ M�ðpÞ: (A3)

Moreover, assuming that, in the first term of the propagator
integral, the factor ½M� E1ðpÞ � E2ðpÞ��1 varies faster
than the factor ½E1ðpÞE2ðpÞ��1 justifies the substitution
EiðpÞ � mi in the denominator of the interaction term
in Eq. (A3). Finally, the nonrelativistic expansion EiðpÞ �
mi þ p2=ð2miÞ of the free energies leads to the
Schrödinger-type equation

�
m1þm2þ p2

2m1

þ p2

2m2

�
�ðpÞ� 1

4m1m2

Z d3q

ð2�Þ3Kðp;qÞ�ðqÞ
¼M�ðpÞ: (A4)

The Schrödinger equation governing the dynamics of
two particles, of masses m1, m2, interacting via a potential
VðxÞ involving their relative coordinate x � x1 � x2, in a
bound state of mass M reads, in configuration-space rep-
resentation,

�
m1 þm2 � �x

2m1

� �x

2m2

þ VðxÞ
�
c ðxÞ ¼ Mc ðxÞ:

Upon introduction, for configuration-space wave function
c ðxÞ and interaction potential VðxÞ, their Fourier trans-
forms

~c ðpÞ¼
Z d3x

ð2�Þ3=2 e
�ip
xc ðxÞ; ~VðpÞ¼

Z
d3xe�ip
xVðxÞ;

the latter proving to be a very convenient choice, the
Schrödinger equation becomes in momentum-space repre-
sentation

2A different decomposition of the free scalar-boson propagator
Sð0Þi ðpiÞ that is, however, not compatible with the Cauchy residue
theorem is

Sð0Þi ðpiÞ ¼ i

2p0
i

�
1

p0
i � EiðpÞ þ i"

þ 1

p0
i þ EiðpÞ � i"

�
:

RICHARD L. HALL AND WOLFGANG LUCHA PHYSICAL REVIEW D 85, 125006 (2012)

125006-10



�
m1 þm2 þ p2

2m1

þ p2

2m2

�
~c ðpÞ þ

Z d3q

ð2�Þ3
~Vðp� qÞ ~c ðqÞ

¼ M ~c ðpÞ: (A5)

Assuming the kernel Kðp; qÞ to be of convolution type,
i.e., Kðp; qÞ ¼ Kðp� qÞ, the comparison of the reduced
Salpeter equation in nonrelativistic limit (A4) with the
momentum-space Schrödinger equation (A5) allows for
the identification

~Vðp�qÞ¼� 1

4m1m2

Kðp�qÞ() ~VðpÞ¼� 1

4m1m2

KðpÞ:

As an illustration of this relationship, let us demonstrate
how the Yukawa potential arises from single-boson ex-
change between our two bound-state constituents i ¼ 1,
2. Let gi denote the interaction strength (having the mass
dimension 1) of the three-boson coupling of the spin-0
bound-state constituent i (of massmi) to some spin-0 force
mediator of mass �. Introducing the momentum transfer
k � p� q, the resulting one-boson exchange contribution
to the interaction kernel is

iKðp; q; PÞ ¼ iKðkÞ ¼ iðig1Þðig2Þ
k2 ��2

;

contenting oneself with this form entails the ladder ap-
proximation to Eq. (A1). In instantaneous limit, this kernel
reads

KðkÞ ¼ g1g2
k2 þ�2

:

As consequence of the spherical symmetry of KðkÞ, the
Fourier transformation of ~VðkÞ yields the spherically sym-
metric configuration-space Yukawa potential VðxÞ ¼ VðrÞ,
r � jxj. For convenience, we represent it in the form
VðrÞ � vfðrÞ:

VðxÞ ¼
Z d3k

ð2�Þ3 eik
x ~VðkÞ ¼ �
Z d3k

ð2�Þ3
eik
xKðkÞ
4m1m2

¼ � g1g2
16�m1m2

e��r

r
¼ VðrÞ � vfðrÞ;

fðrÞ ¼ � e��r

r
:

Hence our coupling constant v is related to the mass and
coupling parameters of the underlying quantum field
theory by

v ¼ g1g2
16�m1m2

:

Especially, for identical bound-state constituents, clearly
satisfying m1 ¼ m2 ¼ m and g1 ¼ g2 ¼ g, this result
becomes

v ¼ g2

16�m2
:
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[16] W. Lucha and F. F. Schöberl, Int. J. Mod. Phys. A 14, 2309
(1999).

[17] W. Lucha and F. F. Schöberl, Fiz. B 8, 193 (1999).
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