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theory and gravity are considered. Specially the recently advocated topologically massive gravity is

analyzed in some details.
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I. INTRODUCTION

Equivalent descriptions of the same physical theory are
useful and play a significant role in expanding our under-
standing. Aspects of a theory that are hidden in one for-
mulation become transparent in some other formulation.
The time-honored bosonization technique in (1þ 1) di-
mensions is a classic example in this context [1]. More
recent examples are provided by the AdS/CFT correspon-
dence [2] and the duality discussed in [3] that paved the
path for a rigorous treatment of confinement in a four-
dimensional theory. Apart from this direct model to model
equivalence, there is another sort of dual description where
a particular theory is interpreted as a combination or a
doublet of theories. Such a description is sometimes not
just desirable, but essential, in abstracting the spectrum of
the composite theory. A typical illustration is the Proca
model in (2þ 1) dimensions. The two massive modes of
this model are known to be obtained from a doublet of self-
dual models with helicity �1 [4,5], a fact that was briefly
suggested in [6]. Very recently, similar notions and
concepts have been exploited to study a new version of
topologically massive gravity [7,8]. The present paper is
devoted to this aspect, albeit from a more general
perspective.

Broadly speaking there are two approaches to visualize
this doublet structure of a composite theory—one based on
the Lagrangian formulation while the other involves the
Hamiltonian formulation. The standard viewpoint in the
first approach is to solder the distinct Lagrangians through
a contact term [4,5] while in the latter (Hamiltonian) case,
a canonical transformation is found that diagonalizes the
Hamiltonian into independent pieces [9–11]. We shall here
concentrate on the Lagrangian version. However we avoid
the usual soldering formalism which sometimes becomes
technically involved requiring arcane field redefinitions.
We adopt a method based on equations of motion [12]
necessitating very simple field redefinitions that are
generic to a wide variety of models.

The basic ideas are introduced in Sec. II where we
analyze a quantum mechanical model. This is discussed
in some detail because it may be interpreted as a field
theory in (0þ 1) dimension which is a precursor to field
theory in (2þ 1) dimensions. We show that the motion of a
charged particle in the presence of electric and magnetic
fields is simulated by a doublet of chiral oscillators, one
moving in the clockwise direction while the other in the
anticlockwise direction. This discussion is extended in
Sec. III to the case of spin-1 vector models in (2þ 1)
dimensions. Source terms are also included. Then in
Secs. IV and V we analyze exhaustively spin-2 tensor
models which appear in discussions [6,13] of linearized
gravity in (2þ 1) dimensions. Taking a doublet of self-
dual massive spin-2 models considered earlier in [14], we
show that the effective theory is a new type of generalized
self-dual model that has a Fierz-Pauli term, a first-order
Chern-Simons term, and the Einstein-Hilbert term. Subject
to a specific condition, it reduces to the model taken in [7].
Our conclusions and final remarks are relegated to Sec. VI.

II. QUANTUM MECHANICAL MODEL

We introduce our formalism by considering the two-
dimensional topological quantum mechanical model
governed by the Lagrangian [5,9]

L ¼ m

2
_xi
2 þ e _xiAiðxÞ � eVðxÞ ði ¼ 1; 2Þ (1)

exhibiting the motion of a charged particle in external
electric and magnetic fields. For a rotationally symmetric
motion in a constant magnetic field and a harmonic
potential,

Ai ¼ � 1

2
�ijxjB; V ¼ k

2
x2i ;

the Lagrangian (1) simplifies to (setting e ¼ 1),

L ¼ m

2
_x2j þ

B

2
�ijxi _xi � k

2
x2i : (2)

This Lagrangian may be interpreted as a combination of
two chiral oscillators. It was shown in [5] where the
discussion was performed at the level of the action.
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Here we show how similar conclusions may be obtained
in a simpler way by looking at equations of motion. This
approach will be exploited to treat the more complex
examples of field theory and gravity. Let us consider a
pair of Llagrangians,

Lþ ¼ 1

2!þ
�ijxi _xj � 1

2
x2i (3)

L� ¼ � 1

2!�
�ijyi _yj � 1

2
y2i (4)

where independent set of coordinates xi and yi have been
used. The equations of motion are given by

1

!þ
�ik _xk � xi ¼ 0 (5)

� 1

!�
�ik _yk � yi ¼ 0: (6)

These may be put in the form,

€x i ¼ �!þ2xi; €yi ¼ �!�2yi

which are just the standard oscillator equations.
Consequently (3) and (4) represent two chiral oscillators
(with frequencies !þ and !�) having opposite chirality
which is manifested by the different signs of the first term
in L�. Let us introduce a new set of variables ðfi; giÞ by
combining chiral ones as

xi þ yi ¼ fi; xi � yi ¼ gi: (7)

Subtracting (6) from (5) and using the definition of gi we
obtain,

1

!þ
�ik _gk þ��ik _yk � gi ¼ 0; � ¼ 1

!þ
þ 1

!�
: (8)

Contracting (8) by 1
!�

�ip yields,

1

!þ!�
€gp þ 1

!�
�pi _gi þ �

!�
€yp ¼ 0: (9)

Taking the difference of (8) and (9) and exploiting the
oscillator equation of motion for y yields,

€g i þ ð!þ �!�Þ�ik _gk þ!þ!�gi ¼ 0: (10)

Adopting a similar analysis we can show that the other
variable fi also satisfies an identical equation,

€f i þ ð!þ �!�Þ�ik _fk þ!þ!�fi ¼ 0: (11)

These equations of motion factorize in terms of their dual
(chiral) components as [5],

ð�ji@t þ!��jiÞð�ik@t �!þ�ikÞXk ¼ 0;

Xk ¼ ðfk; gkÞ: (12)

Observe that the above equations of motion can be
obtained from the Lagrangian,

L ¼ 1

2
_X2
i �

1

2
ð!þ �!�Þ�ijXi

_Xj � 1

2
!þ!�X2

i : (13)

It is now straightforward to identify this Lagrangian with
(2) for a unit mass (m ¼ 1) by taking, !� �!þ ¼ B and
!þ!� ¼ k.
This shows how two chiral oscillators with distinct

frequencies moving in clockwise and anticlockwise direc-
tions simulate the motion of a charged particle in the
presence of electric and magnetic fields. Moreover the
magnetic part is a consequence of the different angular
frequencies. For !þ ¼ !�, this term just drops out and
only the effect of the electric field is retained. Finally, note
that the obtention of (13) is effected by the change of
variables (7). Such a change will also play a crucial role
in both field theory and gravity to be discussed in the
subsequent sections.

III. VECTOR MODELWITH
DIFFERENT COUPLING

In this section we shall extend the idea developed in the
previous section to (2þ 1) dimensional field theory. This is
a natural extension since the earlier quantum mechanical
model may be interpreted as field theory in (0þ 1) dimen-
sions. In that case the Lagrangians in (3) and (4) would be
interpreted as the analogues of self- and anti-self-dual
models [15,16] in (2þ 1) dimensions in the limit where
all spatial derivatives are ignored. Let us consider therefore
the following doublet of models,

LSD¼Lþ¼1

2
f�f

�� 1

2m1

����f
�@�f�þ1

2
f�J

� (14)

LASD¼L�¼1

2
g�g

�þ 1

2m2

����g
�@�g�þ1

2
g�J

�: (15)

The different signs in the Chern-Simons piece show that
they may be regarded as a set of self-dual and anti-self-dual
models [4,15,16] where we have also included source
terms. The equations of motion are given by,

f� � 1

m1

����@
�f� þ 1

2
J� ¼ 0 (16)

and

g� þ 1

m2

����@
�g� þ 1

2
J� ¼ 0: (17)

Proceeding as before we introduce a new set of fields
which are the analogues of (7),

f� þ g� ¼ k�; f� � g� ¼ h�: (18)

Now adding (16) and (17) and substituting the old fields by
the new one k� (say) leads to
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k� � 1

m1

����@
�k� þM����@

�g� þ J� ¼ 0 (19)

where M ¼ ð 1
m1

þ 1
m2
Þ.

Multiplying (19) by 1
m2

����@� yields,

1

m2

����@�k� � 1

m1m2

@�k
�� þ M

m2

@�g
��

þ 1

m2

����@�J� ¼ 0 (20)

where, k�� ¼ @½�k�� and g�� ¼ @½�g�� are antisymmetric

combinations that may be interpreted as field tensors asso-
ciated with the respective fields k� and g�.

In order to eliminate the g� variable from (20), we add

(19) to it and then exploit (17). One finally obtains

@�k
�� þ ðm2 �m1Þ����@�k� �m2m1k

�

¼ m2m1J
� þ 1

2
ðm1 �m2Þ����@�J�: (21)

The expression here is purely in terms of the new variable
k�.

Following similar steps an equation involving only the
h� variable is obtained,

@�h
�� þ ðm2 �m1Þ����@�h� �m2m1h

�

¼ 1

2
ðm1 þm2Þ����@�J�: (22)

In the absence of sources the above equations display a
factorization property analogous to (12),�
g�� þ 1

m2

����@�

��
g�� � 1

m1

����@
�

�
f� ¼ 0;

ðf� ¼ k�; h�Þ: (23)

The Lagrangians which lead to (21) and (22) are given
by

Lk¼�1

4
k��k

���1

2
ðm2�m1Þ����@

�k�k�þ1

2
m1m2k�k

�

�m1m2k�J
��1

2
ðm2�m1Þ����k

�@�J� (24)

and

Lh ¼ � 1

4
h��h

�� � 1

2
ðm2 �m1Þ����@

�h�h�

þ 1

2
m1m2h�h

� � 1

2
ðm2 þm1Þ����h

�@�J�: (25)

It is notable that in the absence of the sources both the
effective Lagrangians in (24) and (25) are identical. The
first term represents the ordinary Maxwell term, the second
one involving epsilon specifies the Chern-Simons term,
and the last one is a mass term. Therefore the effective
Lagrangian density Lh or Lk gets identified with the
Maxwell-Chern-Simons-Proca (MCSP) model. This result

was obtained earlier using various approaches ranging
from the soldering of actions [4,5] to path integral methods
[11] based on master actions. Within the Hamiltonian
formalism this was achieved by using the canonical
transformations [10,11]. Compared to these, the present
analysis is very economical and follows as a natural ex-
tension of the quantum mechanical analysis presented ear-
lier. Furthermore, although both k� and h� yield the same

free theory, their roles are quite distinct in the presence of
interactions as may be evidenced from the different source
contributions appearing in (24) and (25), respectively.
The dual composition is succinctly expressed by the

following maps:

L 2SDðf; gÞ()LMCSPðf� gÞ (26)

where the left-hand side indicates a doublet comprising
self- and anti-self-dual models (14) and (15), while the
right-hand side depicts the composite model that is ex-
pressed either in terms of the (fþ g) variable (24) or the
(f� g) variable (25)
Let us now look into the case whenm1 ¼ m2 ¼ m. Then

the epsilon term vanishes reducing the expression forLk or
Lh to the usual Proca model. Also the source term gets
considerably simplified.

IV. EXTRAPOLATION TO GRAVITY

Here we shall implement the notions developed in the
previous sections to discuss the example of rank-two tensor
models which arise in various formulations of gravity. In
Sec. III we illustrated the combination of a doublet of self-
dual models with distinct masses and spins �1 to yield an
effective Maxwell-Chern-Simons-Proca model. Here we
consider the combination of a doublet of spin �2 models
that arise in linearized gravity.
Let us start with the action of first-order self-dual mas-

sive spin-2 model as suggested in [14]

S¼
Z
d3x

�
m

2
����f�

�@�f��þm2

2
ðf2�f��f

��Þ
�

(27)

where f ¼ 	��f��. The metric is flat :	�� ¼
diagð�;þ;þÞ. In this model we use second rank tensor
fields, like f�
 with no symmetry with respect to their

indices. Replacing m by �m in (29) implies helicity
change fromþ2 to�2. The first term in (27) is reminiscent
of a spin-1 topological Chern-Simons term which will be
called a Chern-Simons term of first order. The second term
in (27) is the Fierz-Pauli (FP) mass term [17] which is the
spin-2 analogue of a spin-1 Proca mass term. Note that FP
term breaks the local invariance of the Chern-Simons term.
The above first-order self-dual massive spin-2 field action
can be easily found after writing topologically massive
gravity in an intrinsically geometric form language and
then linearizing it [18].
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Let us then consider the following doublet of first-order
Lagrangian densities in the presence of source terms,

LðfÞ ¼ m

2
����f�

�@�f�� þm2

2
ðf2 � f��f

��Þ

�m

2
f��J�� (28)

L ðgÞ ¼ �m

2
����g�

�@�g�� þm2

2
ðg2 � g��g

��Þ

þm

2
g��J�� (29)

where f�� and g�� are distinct fields. Note that although
the helicities are �2, the mass term is identical for both
Lagrangians (28) and (29). The case of different masses
will be dealt with in the next section. Now the equations of
motion are given by,

��
��@�f�� þmðf	�� � f��Þ ¼ 1

2
J�� (30)

��
��@�g�� �mðg	�� � g��Þ ¼ 1

2
J��: (31)

Following our previous approach, let us introduce new
fields F and G as,

F��¼f��þg��; G��¼f���g��;

F¼	��f��¼fþg; G¼	��G��¼f�g: (32)

Now adding (30) and (31) and substituting old fields by
new ones defined in (32) leads to

��
��@�F�� �mðG�� � 	��GÞ ¼ J��: (33)

Our motivation now is to express the above equation solely
in terms of the G-field. To achive this we abstract certain
results from (30).

(i) Contraction by 	�� of (30) yields

����@�f�� þ 2mf ¼ 1

2
J; J ¼ 	��J��: (34)

(ii) Contraction by ���� of (30) leads to

�@�f
�� þ @�f�m����f�� ¼ 1

2
����J��: (35)

(iii) Operating (30) by @� on both sides gives

�mð@�f�� � @�fÞ ¼ 1

2
@�J��: (36)

Taking the difference of (30) and (31) and exploiting
(32) leads to

��
��@�G�� �mðF�� � 	��FÞ ¼ 0: (37)

Taking the trace yields the identity,

F ¼ � 1

2m
����@�G��: (38)

Using (38) in (37) we obtain

F�� ¼ 1

m
��

��@�G�� � 1

2m
	��½���!@�G!��: (39)

Now substituting F�� in (33) gives,

1

m
��

��@�

�
��

��@�G�� � 1

2
	���

��!@�G!�

�

�m½G�� � 	��G� ¼ J��: (40)

Combining (34) and (35) we obtain,

���
�f�� ¼ 1

2m2
@�J�� � 1

2m
���

�J��: (41)

The corresponding equation for g follows by replacing m
by �m,

���
�g�� ¼ 1

2m2
@�J�� þ 1

2m
���

�J��: (42)

Subtracting (42) from (41) yields

����G�� ¼ � 1

m
����J��: (43)

Therefore from (43) we can conclude,

����@�G�� ¼ � 1

m
����@�J�� (44)

G�� �G�� ¼ � 1

m
ðJ�� � J��Þ: (45)

Substituting (44) in (40) we get

��
��@�½����@�G��� �m2½G�� � 	��G�

¼ � 1

2m
����@

�½��
!@
J!�� þmJ�� (46)

The symmetrised version of the above equation reads,

��
��@�½����@�G��� þ ��

��@�½����@�G���
�m2½G�� þG��� þ 2m2	��G ¼ mðJ�� þ J��Þ:

(47)

Exploiting (45) we obtain the final effective equation of
motion,

1

2
��

��@�½����@�ðG�� þG��Þ�
�m2½G�� � 	��G� ¼ mJ��: (48)

Let us now discuss, in the absence of sources, the factoriz-
ability of the equations of motion. Some conditions on the
tensor field are necessary to achieve this factorization. It is
known [8] from a study of the equations of motion of (27)
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that the tensor field f�� satisfies (a) tracelessness f
�
� ¼ 0,

(b) transversality @�f�� ¼ 0, and (c) symmetricity f�� ¼
f��. Consequently the composite fields F��, G�� in (32)

should also satisfy these properties. Indeed one may also
verify this directly from (48), in the absence of sources.
Under these conditions (48) factorizes as,

ð����
@� þm	�
Þð����@� �m	�
�ÞG�� ¼ 0: (49)

We observe that the above equation of motion (48) corre-
sponds to an effective theory whose action is given by

S ¼
Z

d3x

�
1

4
G:d�ðGÞ þm2

2
ðG2 �G��G

��Þ

� 1

2
mG��J

��

�
(50)

where

G:d�ðGÞ ¼ G����
��@�½����@�ðG�� þG��Þ�:

Note that the first term in the action (50) stands for the
quadratic Einstein-Hilbert term while the second one is the
Pauli-Fierz mass term applicable for spin-2 particle. In
the absence of source this action corresponds to an effec-
tive theory which is the analogue of Proca model for spin-1
case in vector theory.

Proceeding in a likewise manner the equation of motion
for the F-field emerges as

1

2
��

��@�½����@�ðF�� þ F��Þ� �m2½F�� � 	��F�
¼ m½����@!J

�! þ ����@
�J�� þ ����@

�J���: (51)

In the absence of sources this is just a replica of (48).
Thus, as happened for the vector model, either combination
F or G yields an effective theory which has the Einstein-
Hilbert term and the FP term with differences cropping in
the source terms.

The analogue of the map (26) is now written for the spin-
2 example,

L 2SDðf; gÞ()LEHFPðf� gÞ: (52)

Here the doublet of self-dual models on the left-hand side
is given by (28) and (29), while the composite Einstein-
Hilbert Pauli-Fierz model is defined in (50).

V. TENSOR FIELDS WITH DISTINCT MASS

In this section we repeat the analysis for the doublet (28)
and (29) but with distinct mass parameters. To avoid
technical complications we drop the source terms. We
show that combining this doublet yields an effective theory
that has an EH term, a FP mass term and a generalized first-
order CS term. This CS term contains, apart from the
standard form given in (27), two other similar terms with
a different orientation of indices. Consider therefore the
Lagrangian densities,

LþðfÞ ¼ m1

2
����f�

�@�f�� þm2
1

2
ðf2 � f��f

��Þ (53)

L�ðgÞ¼�m2

2
����g�

�@�g��þm2
2

2
ðg2�g��g

��Þ: (54)

Now (53) and (54) yield the equations of motion,

��
��@�f�� þm1ðf	�� � f��Þ ¼ 0 (55)

��
��@�g�� �m2ðg	�� � g��Þ ¼ 0: (56)

Following identical field definitions as (32) and analogous
steps, it can be shown that the final form of the equation of
motion for G�� is given by,

�1

2
��

��@�½����@�ðG��þG��Þ��m1m2½G���	��G�

þ1

2
ðm1�m2Þð����@�G��þ��

��@�G��Þ¼0: (57)

A similar equation of motion is also obtained for the other
variable F��.

The action from which the above equation of motion
(57) follows is given by,

S ¼
Z

d3x

�
m1m2

2
ðG2 �G��G

��Þ þ 1

4
G:d�ðGÞ

þ 1

8
ðm2 �m1Þf����G��@�G�� þ ��

��G��@�G��

þ 2��
��G��@�G��g

�
: (58)

We have thus successfully combined different mass
terms in the spin-2 case to yield the action (58) of the
effective theory. While the first two terms are the usual FP
and EH terms the last piece, which is a consequence of
different masses, is a generalized form of the CS term. As
announced earlier it has, apart from the usual structure, two
other pieces that may be obtained from a reorientation of
indices. In fact it has all possible orientations of indices
leading to a first-order Chern-Simons term. Furthermore if
we impose a condition of symmetricity G�� ¼ G��, then
all pieces become identical and the s tandard first order CS
term with a coefficient 1

2 ðm2 �m1Þ is obtained. The first

term in (58) is the Fierz-Pauli (FP) mass term with mass
coefficient m ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

m1m2
p

. The second term involves the

usual kinetic term (defined in the previous section) which
is equivalent to linearized Einstein-Hilbert (EH) term up to
quadratic order. Thus the action (58) for the spin-2 particle
may be interpreted as an analogue of Maxwell-CS-Proca
model for the spin-1 particle. Incidentally the CS term for
the vector case has a unique orientation of indices
����f

�@�f� and any changes are absorbed in a trivial

normalization of signs.
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VI. CONCLUSION

The present analysis depicts the important role of sym-
metry in understanding various models in odd dimensions.
The dual nature of symmetry manifested in (left-right)
chirality or (anti-)self duality was responsible for the prop-
erties of the final theory. For example, a two-dimensional
oscillator could be interpreted as a composition of two
chiral oscillators moving in opposite directions. Chirality
therefore gets hidden in an ordinary two-dimensional os-
cillator since the opposing effects of chirality in its con-
stituent pieces are cancelled. Indeed the generalized
Landau problem with electric and magnetic fields was
shown to be composed of such chiral oscillators. The
explicit demonstration was done at the level of equations
of motion with an appropriate change of variables.

The quantummechanical example served as the bedrock
from where the more involved examples of field theory and
gravity were studied. More specifically, the similarity in
the structures of the quantum mechanical model and the
other models in field theory/gravity naturally suggested
this possibility of dual composition. Once this was evident
the rest was more a matter of technique. Self- and anti-self-
dual models in (2þ 1) dimensions combined to yield the
Maxwell-Chern-Simons-Proca model. In the case of grav-
ity we obtained a new form of generalized self-dual model.
The correct sign of the Einstein-Hilbert term was obtained.
Apart from this there were two mass terms. One was the
usual Fierz-Pauli term while the other was a generalized
form of the first-order Chern-Simons term that encom-
passed all possible permutations of the indices. If we
imposed the condition that the rank-two tensor field was
symmetric then the self-dual model discussed in [7] was
reproduced.

We have also discussed the factorizability of equations
of motion of different models. Such a phenomenon illumi-
nates the dual composition of the models. Specially in
the case of gravity, this factorization is possible subject
to certain conditions following from the equation of
motion.

In hindsight it might be desirable, though not essential,
to visualize in general terms the obtention of a new theory
from a combination of chiral ones. Chiral theories occur in
doublets corresponding to the left and right degrees of
freedom. The equations of motion following from this
doublet are form invariant, differing only by a sign in the
chiral piece. Adding and subtracting these equations natu-
rally leads to a combination which is either a sum or a
difference of the original variables. Renaming this ‘‘sum’’
and ‘‘difference’’ as new fields yields a pair of coupled
differential equations. It is then possible to eliminate one of
these new fields in favor of the other using these differen-
tial equations. The final outcome is an equation of motion
involving only the new fields. Furthermore, the symmet-
rical treatment implies that we obtain identical equations of
motion for both the new fields. Consequently we are led to
a unique new theory obtained by a composition of the
chiral degrees of freedom.
We feel that our approach is simple and economical

when compared with other approaches [7,8,13] which
discuss such a dual structure in odd-dimensional theories.
Contrasted with existing Lagrangian or Hamiltonian based
approaches that require involved field redefinitions or
canonical transformations, the formulation here is trans-
parent as well as generic. The simple change of variables
(7) is universally applicable and irons out obstacles faced
otherwise in treating field theoretical or gravity models.
Also, contact or interference terms were completely
avoided to manifest the dual structure. Inclusion of sources
posed on problems. We feel that the present illustration
could be useful in unravelling other features of gravita-
tional models.
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