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We discuss a Brans-Dicke model with a cosmological constant, a negative value of the w parameter, and

an arbitrary (in general nonvanishing) scale factor at the big bang. The Friedmann equations for a flat

universe are considered. The current observational values for Hubble constant H0 and deceleration

parameter q0 play the role of initial conditions. We follow the approach of Uehara and Kim in order to

solve field equations analytically. In K. Uehara and C.W. Kim [Phys. Rev. D 26, 2575 (1982)] only

positive values ofw were considered; we extend the study to a complete set of possiblew values. Our main

result is that the scale factor (during its evolution back in time direction) may not vanish, unlike in the

standard �CDM case. In other words, the considered model demonstrates a cosmological bounce instead

of the initial singularity. The famous formula (24), that leads to the bounce, is valid only for the dust-filled

universe with p ¼ 0 and, therefore, is not adequate for the early universe hot stage when the bounce

happens. So, our results are qualitative in nature and must be used to obtain initial values for the hot stage

of the Universe.
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I. INTRODUCTION

The cosmic acceleration is now a well observationally
established fact [1–6]; however its physical reasons remain
open. So hence, the most studied model for the moment
is the cold dark matter one with cosmological constant
(�CDM). Providing good quantitative agreement with
observational data, this model however does not explain
the nature of the dark matter and dark energy. Another
weakness of �CDM is the absence of explanation of the
smallness of � value if it is assumed to be the so-called
‘‘vacuum energy.’’ All these arguments lead to the idea of
a dynamical theory of dark energy creation (see, for ex-
ample, [7]). The most widely discussed candidates are
quintessence (a slowly rolling scalar field [8]) and higher
order curvature gravity [including so-called fðRÞ gravity
models [9]].

The Brans-Dicke model (BD) is one of the first gravity
models with a scalar field [10]. It was suggested in 1961

and contains an additional parameter ! whose value has to
be determined by observational data. Large values of w
mean an important contribution from the tensor part (Ricci
scalar), and smaller values ofwmean an increasing role for
the scalar field contribution. In the limit jwj ! 1 BD
theory leads to general relativity (GR). In the BD model
the value of Newton’s constant is proportional to the in-
verse scalar field (G � 1=�), proving additional coupling
between the model parameters. The most accurate limit on
w comes from Cassini-Huygens mission data on the post-
Newtonian parameter � and is jWj> 50 000 [11].
BD theory is the most natural GR extension. It is inter-

esting because, first, this model could be the low energy
effective limit of grand unification (and super unification)
approaches [from the latest LHC data (see [12]) this pos-
sibility is not completely closed yet]. Second, because the
scalar field in BD theory can be reinterpreted as a dilation
field in string theory. Finally, because the BD model is the
simplest GR extension and is useful to investigate any
supertheory, so as to gauge the difference with GR [13].
In addition, BD gravity is widely used in cosmology as one
needs a scalar field for inflation and such a field is neces-
sary in the BD model. A large set of inflationary models
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[14–16] is based on BD gravity and more generic scalar-
tensor approaches. Brans-Dicke theory is also closely
related to the widely discussed fðRÞ gravity (see, for
example, [17]).

It is necessary to stress that there is no accelerated
expansion in the standard version of the BD model, so
one has to study its extended versions. One of the most
common extensions is a scalar field potential addition. As
the accurate shape of this potential is not yet known [18],
one can consider a � term as the effective contribution
instead of a potential (so we obtain the BD� model). The
explanation of the � term smallness in the framework of
BD� is possible and was suggested in [19]. In Ref. [20],
with the help of the scalar field in BD� context, a dark
matter hallo around galaxies is modeled.

An analytical accurate solution for Friedmann equations
in the BD� model was also obtained in Ref. [21] where
positive values of ! and initial conditions for the scale
factor in the form aðtminÞ ¼ 0, where tmin is big bang time,
were considered. Partial solutions in this model with scalar
field power dependence versus the scale factor were
presented in [22–25]. Vacuum solutions were obtained in
[26–28]. Some papers discussed a �-term dependence as a
function of the scalar field (for example, [29]). Numerical
integration and stability analysis of BD�þmatter solu-
tions were carried out in [30]. The big rip solution in BD�
is discussed in [31]. The analytical solution in the pure BD
model with negative w, avoiding the initial singularity,
was obtained in 1973 by Gurevich et al. [32]. There is no
cosmic acceleration in the Gurevich et al. solution, so
nowadays one has to extend BD theory to include cosmic
acceleration. In this paper we study the Einstein-
Friedmann equation solutions in BD� theory for w< 0
with a scale factor with initial value aðtminÞ ¼ amin.
Generally amin � 0. Friedmann equations are studied for
a flat universe. We take the current values for the Hubble
parameter and its derivative (deceleration parameter) as
their initial conditions. In our study, we use the approach
suggested in [21]. We would like to point out that only
positive values of w are considered in [21], so our solution
with w< 0 represents a new branch. As opposed to the
standard �CDM model, in the considered case, the scale
factor never vanishes during backward time evolution. A
so-called ‘‘bounce’’ (a snap back from the minimal value
of amin) corresponds to this situation. The expression (24)
leading to the bounce is obtained for a cold universe with
p ¼ 0 and is not valid for a hot universe. Therefore all the
values in the bounce region are only qualitative estimates
for the initial values for the transition to the hot stage.

This paper is organized as follows: in Sec. II we discuss
the choice of the space-time metric and the corresponding
field equations; in Sec. III the initial values for cosmologi-
cal parameters are obtained; in Sec. IV we obtain an
analytical solution with a bounce for a dust-filled universe
(p ¼ 0); Sec. V contains a preliminary discussion of the

results of Sec. IV; in Sec. VI we explore the case of a
ultrarelativistic state of matter (hot phase); and Sec. VII is
devoted to the conclusions.

II. FIELD EQUATIONS

The Friedmann-Robertson-Walker (FRW) metrics
reads1

ds2 ¼ dt2 � aðtÞ2
�

dr2

1� kr2
þ r2d�2

�
; (1)

where k ¼ 0, �1.
The action of the BD� theory can be written as

S ¼ 1

16�

Z
d4x

ffiffiffiffiffiffiffi�g
p �

�ðRþ 2�Þ � w

�
g��@��@��

þ 16�Lmatter

�
: (2)

Here w is the BD theory parameter,�ðtÞ is the scalar field,
and � is the cosmological constant.2

Variation of the action with respect to the metric g�� and

the scalar field � gives the following field equations:

G�� ¼ 8�

�
T�� þ�g��

þ w

�2

�
@��@��� 1

2
g��g

��@��@��

�

þr�r��� g��r�r��

�
; (3)

8�

�
T
�
� þ 2� ¼ 3þ 2w

�
r�r��; (4)

where r� is a covariant derivative,

G�� ¼ R�� � 1
2Rg��;

T�� ¼ ð�þ pÞu�u� � pg��;

@�� ¼ 	t
�@t�:

(5)

Here �ðtÞ and pðtÞ are the matter density and pressure,
respectively, the stress-energy tensor corresponds to a
barotropic fluid, and G�� is the Einstein tensor.

Here it is convenient to introduce new dimensionless
variables3:

1Here and below we set light speed c ¼ 1.
2� here can differ from the one in �CDM theory.
3Here and below the present time is denoted by the subscript 0,

soG0 is the current value of the gravitational constant. From now
on we consider the current time moment as the initial one, so that
t0 ¼ 0. Current values of cosmological parameters are taken as
initial conditions. New variables lead to �0 ¼ 1, which is
convenient for further calculations.
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�ðtÞ � �ðtÞ=G0;


ðtÞ � @t�=ð
ffiffiffiffi
�

p
�Þ;

~HðtÞ � HðtÞ=
ffiffiffiffi
�

p
¼ @ta=ð

ffiffiffiffi
�

p
aÞ;

~�ðtÞ ¼ 4�G0�=�;

~pðtÞ ¼ 4�G0p=�:

(6)

HereH is the Hubble parameter, and ~H is its dimensionless
value. In these notations, Friedmann equations for a flat
universe (k ¼ 0) in a comoving frame ðu� ¼ ½1; 0; 0; 0�Þ
are

Gt
t

�
¼ 3 ~H2 ¼ 2~�

�
þ 1þ w

2

2 � 3 ~H
; (8)

Gr
r

�
¼ 2 _~Hþ 3 ~H2 ¼ � 2~p

�
þ 1� w

2

2 �

€�

�
� 2 ~H
: (9)

The Klein-Gordon equation (4) can be rewritten as

2~�� 6~p

�
þ 2 ¼ ð3þ 2wÞ

� €�

�
þ 3 ~H


�
: (10)

Here and below the dot denotes the derivative with respect

to the dimensionless time ~t � ffiffiffiffi
�

p
t.

Equations (8)–(10) lead to the continuity one in the
form:

_~�

~�þ ~p
þ 3 ~H ¼ 0; (11)

which is consistent with the equivalence principle.

III. INITIAL VALUES OF THE MODEL
PARAMETERS

We introduce the deceleration parameter q and the di-
mensionless matter density � for the initial time in the
following form:

_~H � �ð1þ qÞ ~H2;

� � 4�G0ð�0 � p0Þ
H2

0

¼ ~�0 � ~p0

~H2
0

:

(12)

Combining Eqs. (8)–(10) to exclude 
 and €�=�, we obtain
for p ¼ 0 at the current moment t0 the following equation:

w½ ~H2
0ð2� q0 � �zÞ � z�2 � 2 ~H2

0ð3z� 1Þ
þ ~H4

0ð6� 6q0 � 6�zþ 4�Þ ¼ 0;

z � 2þ 2w

3þ 2w
: (13)

This equation defines H0 as a function of �, q0, and !. In
the jwj � 1 approximation4 Eq. (13) yields

1
~H2
0

! ð2� q0 � �Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ q0 � �Þ

w

s
: (14)

In the GR limit (jwj ! 1) the second term can be
neglected, so current cosmological parameter values
can be established as [33,34] H0 � 2:3� 10�18 s�1,
�0 � 0:27� 10�29 g=cm3 (accounting for baryonic and
dark matter), q0 � �0:6. We consider a dust-filled uni-
verse, thus neglecting the pressure. In the zeroth approxi-
mation we rewrite the above expression for the
cosmological constant:

� ! ð2� q0ÞH2
0 � 4�G0ð�0 � p0Þ � 11:3� 10�36 s�2:

(15)

From the lunar ranging experiment (LLR) data [35] one
can extract the following limitations: j@tG=Gjð0Þ �
4� 10�20 s�1; hence j
0j is a small value j
0j< 0:01.
When jwj � 1 we have

~H 0 � 0:68; ~�0 � 0:2; � � 0:4: (16)

Combining Eqs. (8) and (9), multiplying the result by 1= ~H2
0

and substituting €�=� from (10), we obtain for the initial
moment t0 the following expression:


0
~H0

¼ 1
~H2
0

� ð2� q0 � �Þ þ �þ 1= ~H2
0

3þ 2w
: (17)

Substituting the H value from (14), we obtain the order of5

1=
ffiffiffiffiffiffiffijwjp

:


0 ! �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ q0 � �Þ
wð2� q0 � �Þ

s
: (18)

IV. DUST-FILLED UNIVERSE SOLUTION

First of all we consider a dust-filled universe, i.e., p ¼ 0.
As in Ref. [21], we rewrite field equations using f � �a3

and take into account that the expression (11) leads to
~�=� ¼ ~�0f0=f.

Considering €f=f ¼ €�=�þ 6 ~H
þ 3 _~H þ 9 ~H2, we
combine field equations in the following way:
3
2 ½ð8Þ þ ð9Þ� þ ð10Þ=½6þ 4w�. This yields

€f� �2ðfþ ~�0f0Þ ¼ 0; �2 � 8þ 6w

3þ 2w
: (19)

The obtained equation can be straightforwardly integrated:

fð~tÞ
f0

¼ cþEþ c�=E� ~�0; Eð~tÞ � expð�~tÞ; (20)

4Here and below (unless otherwise noted) the arrow denotes
the jwj � 1 approximation.

5When calculating the right hand of the expression (17) we
considered only the terms of order 1=

ffiffiffiffiffiffiffijwjp
from (14); the last

term from (17) was neglected due to the taken accuracy.
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where cþ and c� can be easily obtained from the initial
data.

One can rewrite (10) as

2fþ 2~�0f0 ¼ ð3þ 2wÞð _� _a3Þ: (21)

With the help of Eq. (20) one gets the expression for the
Hubble parameter from Eq. (20)6:

3 ~H ¼
_f

f
�

_�

�
¼

_f

f
� 2f0

fð3þ 2wÞ
Z ~t

const

�
f

f0
þ ~�0

�
d~t

¼
_f

f
� 2ðcþE� c�=Eþ cHÞ

�ð3þ 2wÞðcþEþ c�=E� ~�0Þ
¼ 6ð1þ wÞðcþE� c�=EÞ � 2cH

�ð3þ 2wÞðcþEþ c�=E� ~�0Þ :

(22)

Here cH can also be determined from initial data.
Solving (20) and (22) for the present time, one obtains

the coefficient values as

cþ ¼ 1þ ~�0

2
þ 
0 þ 3 ~H0

2�
;

c� ¼ 1þ ~�0

2
� 
0 þ 3 ~H0

2�
;

cH ¼ �
0ð3þ 2wÞ
2

� 
0 þ 3 ~H0

�
;

(23)

resulting in the following expression for the scale factor:

a

a0
¼ ðcþEþ c�=E� ~�0Þ1=3

� exp

� �1

3ð4þ 3wÞ
Z E

1

�
cþE2 þ cHE� c�

cþE2 � ~�0Eþ c�

�
dE

E

�

¼
�
cþEþ c�

E
� ~�0

�ð1þwÞ=ð4þ3wÞ
exp

��2cHðA� A0Þ
3ð4þ 3wÞ ffiffiffiffi

�
p

�
;

(24)

where

� � 4cþc� � ~�2
0 ¼ 1þ 2~�0 � ð3 ~H0 þ 
0Þ2=�2

¼ �3

8þ 6w
½ ~H0 � 
0ð1þ wÞ�2;

AðEÞ � arctan½ð2cþE� ~�0Þ=
ffiffiffiffi
�

p
�:

(25)

� ¼ ðcþEþ c�=E� ~�0Þ1=ð4þ3wÞ exp
�
2cHðA� A0Þ
ð4þ 3wÞ ffiffiffiffi

�
p

�
:

(26)

In order to keep � positive, it is necessary to set w to be
rather large (jwj � 1) and negative.7

In the GR case jwj ! 1 and Eq. (24) tends to the
well-known Friedmann solution with a cosmological
constant:

HFr ¼ 1ffiffiffi
3

p 	 Eþ Ecr

E� Ecr

; Ecr �
ffiffiffi
3

p
~H0 � 1ffiffiffi

3
p

~H0 þ 1
;

�Fr ¼
ffiffiffi
3

p
; (27)

aFr
a0

¼ ð ffiffiffi
3

p
~H0 þ 1Þ2=3ðE� EcrÞ2=3

ð4EÞ1=3 : (28)

It is necessary to note that in this case E ¼ Ecr, � ¼ 0,
a ¼ 0, and the scale factor aðtÞ experiences a kink
(which is absent when �> 0). The big bang corresponds

to the moment t1 � �1:46��1=2, ��1=2 � 1010 yr (see
Fig. 1).

V. NONSINGULAR COSMOLOGY

In BD� models, the scale factor may not vanish
during its evolution back in time unlike in the standard
�CDM one. This is a bounce of the scale factor from
its minimal value am � 0. The bounce appears in case
there is a local minimum of the scale factor greater
than zero. The parameter phase space for the bounce
case starts from amðEÞ ¼ 0, so it is possible to obtain
the condition for a bounce from Eq. (24). It has the
following form:

�> 0: (29)

Further, the time estimation for E at the bounce is

Emin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�=cþ

q
: (30)

The exact equality Em ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�=cþ

p
is satisfied when� ¼ 0,

e.g., when the scale factor vanishes at the local minimum.
Such a scenario excludes the initial singularity and leaves
the scale factor regular and continuous everywhere, includ-
ing during the bounce [see Eq. (22)].
It is possible to estimate the numerical values of the

scale factor ~aðtÞ and � at the bounce from the following
arguments. The cosmological microwave background ra-
diation indicates that the Universe was hot and radiation
dominated at early stages of its evolution [38]. Using the
expression for an adiabatic expansion ahot=a0 ¼ 4� 10�5

[39] we can obtain the value of � at the bounce for
jwj � 1 from Eq. (18), so that

� � 2~�0a
3
m=a

3
0 < 2~�0a

3
hot=a

3
0 � 2:6� 10�14: (31)

This tiny value of � can be achieved only in a nearly flat
universe, i.e., when 1þ q0 � � � 0. This result states that
the LLR bound on w remains in agreement with the
cosmological one in the BD� model, as well as with the
flatness of the Universe.

6Note that d~t ¼ dE=ð�EÞ.
7It is also important to mention that the w< 0 case in the BD

model opens the possibility for wormholes existence without
energy conditions violation; see [36,37] for details.
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The model under consideration as well as the usual
singular cosmology8 of [21] is not applicable for the hot
stage of the Universe. Thus the discussed results should be
used only to obtain initial values for the hot universe during
the evolution back in time study.

VI. SOLUTION FOR A HOT UNIVERSE

The analytical study of the functions behavior near the
bounce can be done only for an ultrarelativistic pressure.
During the hot phase when p ¼ 1

3� Eqs. (8)–(10) lead to

the following expression:

_~Hþ 2 ~H2 ¼ 1

6

�
�w
2 þ 6þ 8w

3þ 2w

�
� Qð~tÞ: (32)

When w<�1:5, we obtain a positive value of Q.
In the FRW case (when 
 ¼ 0 and jwj ! 1), from

Eq. (32) it is possible to obtain expressions for the hot
stage that are similar to Eqs. (27) and (28):

HFr ¼ 1ffiffiffi
3

p 	 Uþ 1

U� 1
; Uð~Þ � exp

�
4~ffiffiffi
3

p
�
;

aFr
ahot

¼
�ðU� 1Þ2Uhot

ðUhot � 1Þ2U
�
1=4

:

(33)

Here a new variable ~ is introduced. It represents a dimen-
sionless time; that is a measure from the scale factor

minimum ð~� ~tÞ= ffiffiffiffi
�

p
is equal to the age of the Universe

and the subscript ‘‘hot’’ corresponds to the transition from
the hot stage to the cold one.

The derivatives of the scale factor (33) are singular [as
well as for the FRW case in the matter-dominated uni-
verse—see (27) and (28)]. Remarkably, when � ! 0 is in

the cold phase, the second derivative €a goes to þ1 at the
bounce while it goes to �1 in the vicinity of the bounce.
Therefore the Hubble function appears to be rapidly grow-
ing when� ! 0. The situation has to be similar to the case
of the radiation-dominated universe. Since the hot phase
matches large values of ~H, it ends for a short time interval
~. Therefore, when jwj � 1 and 
 
 1 the solution of
BD� is nearly indistinguishable from the FRWone (except
in the bounce region).
Further, we consider the series expansion of the scale

factor að~Þ against ~ near the local minimum (bounce).
Keeping the terms up to the fourth order, it is possible to
obtain

a ¼ am þ 1
2am

_~Hm~
2 � 1

12amb
2 _~H

2
m~

4 þ 	 	 	 : (34)

Here _~Hm and b are constants; _~Hm corresponds to the
second derivative of the scale factor at the bounce, hence

it should be positive when am > 0: _~Hm > 0. Therefore, the
equations for the Hubble function and its first derivative up
to second order on ~ are

~H 2 ¼ _~H
2
m~

2; _~H ¼
_~Hmð1� b2 _~Hm~

2Þ
1þ _~Hm~

2=2
� _~H

2
m~

2:

(35)

After substituting this into (32), one gets

€a

a
þ _a2

a2
¼

_~Hm½1þ ~2 _~Hmð32 � b2Þ�
ð1þ _~Hm~

2=2Þ2
¼ Q> 0: (36)

The last inequality is satisfied automatically [see Eq. (32)]
and is valid only when 0< b2 < 3=2.

From (34), one notices that at ~1 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
_~Hmb

2

q
the sec-

ond derivative of the scale factor changes its sign (~1 is an

FIG. 1 (color online). The left-hand side represents að~tÞ=a0 according to Eq. (24) for a dust-filled universe with a bounce for the
following parameter values: w ¼ �1000, q ¼ �0:6, � ¼ 0:45 for the upper line and � ¼ 0:436 53 for the lower one. The time unit is
1010 yr. Right-hand side: Illustration (taken from NASA: http://map.gsfc.nasa.gov) for að~tÞ=a0 in �CDM theory, corresponding to the
Friedmann solution.

8The article [21] presents an analytical solution for �< 0,
w> 0.

NONSINGULAR BRANS-DICKE-� COSMOLOGY PHYSICAL REVIEW D 85, 124059 (2012)

124059-5



inflection point). So we consider an additional scale factor
inflection point compared to the FRW case. At the time

~2 ¼
ffiffiffi
3

p
=

ffiffiffiffiffiffiffiffiffiffiffiffi
_~Hmb

2

q
¼ ffiffiffi

3
p

~1, the first derivative of the scale

factor changes its sign. Hence, the solutions for the hot
phase and the cold one should be matched along the ~1 to
~2 interval.

When _~Hm is large9 and b is small, starting from the time
~1, the second derivative of the scale factor rapidly goes to
a large negative value (during the time interval of the order
of ~1). Meanwhile the Hubble function remains positive
(up to the moment ~2). Therefore, along the ~1 to ~2
interval the solution for the hot phase can be matched to

the cold phase solution. Varying the values of am,
_~Hm, and

b, one could achieve a smooth connection.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we have demonstrated that the Friedmann
solution with a cosmological term is a degenerated case of
a more generic cosmology (for example, the BD� one as a
ground effective approximation).

In standard FRW cosmology, the graph of the solution of
the scale factor aðtÞ has a form of a vertical line before
vanishing (the bounce is possible afterward); in the BD�
case

(i) withw> 0 the graph of the scale factor aðtÞ vanishes
with a finite slope (first derivative remains finite at
a ¼ 0);

(ii) when w< 0 the graph of the scale factor aðtÞ does
not reach zero (and a bounce occurs), so all func-
tions remain regular.

Further, an adequate model with a bounce can be
obtained numerically because of the complicated struc-
ture of the theory. Here it is important to note that the
parameter k (we considered the case k ¼ 0 in this paper)
describes the flatness type of the Universe and could
provide a leading contribution near the bounce due to
the scale factor smallness. The hot phase also implies
the presence of a nonvanishing pressure (we considered
p ¼ 0) which leads to the inability of obtaining an ana-
lytical solution for the hot phase. The presence of the
bounce in the BD� cosmological solution allows one to
avoid one of the greatest problems of cosmology: the
initial singularity.

Moreover, we would like to point out that the appear-
ance of a bounce instead of a singularity is rather a
common effect in gravity models when an additional
scalar or tensor contribution is taken into account. For
example, when studying the interplay between curvature
and Maxwell terms in Gauss-Bonnet gravity one encoun-
ters an effect of the same nature when the singularity
is changed by a local minimum [40]. The same ef-
fects occur in Gauss-Bonnet cosmology with additional

fields [41]. A bounce appearance was also discovered in
many new (sometimes exotic) models with additional
terms (some examples of bounce appearance can be
found at [42–45]) and in loop quantum gravity [46,47].
So, this effect is rather common and natural from the
mathematical point of view (changing the balance be-
tween different term contributions) and can be used to
obtain new (stronger) estimations of model parameters.
So, based on the condition of existence of a bounce and,
so, from Eq. (31) one can put a new limit on the BD
parameter w in the form

jwj> 1040; w < 0: (37)

This limitation is much stronger than the existing experi-
mental one (jwj> 50 000). Note that these huge values
(of order of 1040) are rather common in theoretical phys-
ics and cosmology. Such values provide an addition argu-
ment on the Mach principle nonobservability (but, on
the other hand, do not prohibit its existence). Future
developments will show the connection of these values
with reality.
Finally, we have to emphasis that one can treate BD

theory as the GR one with scalar field including a potential
in a specific form. For small values ofw (when w<�1=2)
the conventional inflation is prevented because of potential
properties [48]. Further, when w<�3=2 it seems that
the field has a negative kinetic term and, therefore, repre-
sents a phantom field. Solutions of such type, really, could
be unphysical ones (see, for example, [49]). Unlike this
in BD theory the scalar field is usually not coupled
with stress-energy components and is treated as an inde-
pendent (geometrical, for example) part of field equations.
Therefore, the situation becomes a physical one. In
the same situation Coule [50] suggested applying the
Zeldovich argument to ‘‘close’’ bounces but [51] contained
some entropy problems. In the case when w<�4=3
[Eq. (26)] the bounce appearance also becomes possible
[52–54].
At last, it is possible to extend the consideration by

taking the perturbations into account [55] and it could be
a good test for the BD� model with additional ideas like,
for example, [56].
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