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the Zipoy-Voorhees spacetime with the parameter � ¼ 2.
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I. INTRODUCTION AND THE RESULT

A. Physical motivations of the problem

The gravitational waves, emitted by a compact object
orbiting a massive axisymmetric central body, depend on
the spacetime geometry of the latter. Decoding the scalar
multipole moments from the phase evolution is an impor-
tant problem in astrophysics [1].

Gravitational wave detectors such as Laser
Interferometer Gravitational Wave Observatory (LIGO)
and Laser Interferometer Space Antenna (LISA) with its
high sensitivity, extend our observational capacities and
yield the possibility to read off the gravitational waveforms
from the inspiral of stellar masses into supermassive black
holes [2]: The gravitational radiation broadcasted by a
moving low-mass object uncovers the spacetime.

The current paradigm is that the central object is a Kerr
black hole, and the notion of the Carter constant is basic for
analytic description of the dynamics and interpretation of
the watched data. According to the no-hair theorem, a
black hole seen from outside is completely characterized
by its mass and spin. If this conjecture is correct, then any
deviation of the quadrupole moment from its Kerr value
has to be zero [3].

The alternative that a dark region, believed to be the
event horizon, is described by another solution of the
Einstein equations with a naked singularity would violate
the no-hair theorem. An experiment shall test parts of the
Universe with stationary axisymmetric vacuum models.
However, for an effective encoding of the orbital parame-
ters of the probe, one would strongly benefit from an
additional integral like Carter constant, see [4,5].

In this paper we study its existence for a particular
spacetime, though the methods we develop can be applied
to other solutions of the gravitational field equations. As
Voorhees poses in [6], one has to pursue the physical
meaning of the models. For this we exploit the integrability
approach, which is more general than the classical sym-
metry analysis.

In the next sections we give purely mathematical treat-
ment of this physical problem. Our negative result proba-

bly means higher complexity or hidden structures of the
spacetime. We will remark on physical connotation of the
output at the very end of the paper.

B. Mathematical formulation of the result

We consider the following four-dimensional metric on
an open set U � R4:

ds2 ¼
�
xþ 1

x� 1

�
2
�
ðx2 � y2Þ

�
x2 � 1

x2 � y2

�
4
�

dx2

x2 � 1
þ dy2

1� y2

�

þ ðx2 � 1Þð1� y2Þd�2

�
�

�
x� 1

xþ 1

�
2
dt2: (1.1)

This metric was introduced in [6,7]. It is Ricci flat, has
Lorenz signature, and two commuting Killing vector fields:
@t (ds

2 is static) and @� (ds2 is axially symmetric).

Our interest in studying this metric is motivated by the
recent papers of Brink [8–10]. She numerically constructed
the geodesics of this metric and found that they behave
quite unusually. As it is clearly seen on Fig. 6 in [8], the
behavior of the geodesics is in noway chaotic and is typical
for the behavior of trajectories of a Liouville-integrable
system. Later, in a private conversation, Brink demon-
strated to us that this ‘‘integrable’’ behavior happens for
all geodesics.
Recall that a function I: T�U ! R is called an integral

for the geodesic flow of the metric g if it Poisson commutes
with the kinetic energy H ¼ 1

2 g
ijpipj. Denoting by f; g the

canonical Poisson bracket, this condition writes as
fI; Hg ¼ 0, and it means that the function I is constant on
the trajectories of the Hamiltonian system. In other words,
I is the conserved quantity of the Hamiltonian H. A metric
g is a Liouville integrable (for dimU ¼ 4) if, in addition to
the Hamiltonian, there exist three Poisson-commuting
functionally independent integrals for the geodesic flow.
Recall that integrals are functionally independent if their
differentials are linearly independent almost everywhere.
Equation (1.1) already has two additional commutative

integrals, namely the momenta p� and pt; the numerical

behavior of the geodesics is an indication of the existence
of a fourth integral, commuting with pt and p�.

In the papers in [9,10], Brink suggested to look for an
integral of the geodesic flow that is a homogeneous poly-
nomial in the momenta (with coefficients depending on the
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position). There are two reasons for this choice of an ansatz
for the integral. The first one is that for all physically
interesting systems the known integrals are such. The
second reason is more mathematical: since the metric is
real-analytic, it is expected that the integral is real-analytic
as well. Now, as it was known already to Whittaker [11],
the existence of an integral analytic in the momenta im-
plies the existence of an integral that is a homogeneous
polynomial in the momenta. (More precisely, if F ¼P1

i¼0 Fk is an integral, where Fk is homogeneous in mo-

menta of degree k, then every Fk is an integral. If F
commutes with pt and p�, then every Fk commutes with

pt and p�.) Thus, we can restrict to the integrals, which are

polynomials of degree k in the momenta. They are essen-
tially the same objects as Killing (0, k) tensors.

The main statement of our paper is that, contrary to
numerical observations, no nontrivial integral of the ex-
pected low degree exists. The ‘‘trivial’’ integrals for the
geodesic flow of the metric g are H, I1 ¼ p�, I2 ¼ pt and

any (polynomial) function of them.
Theorem: There exists no smooth function I: T�U ! R,

which is a polynomial in momenta of degree� 6, such that
H, I1, I2, I are functionally independent and Poisson
commute.

This is a rigorous mathematical statement and its proof
is also rigorous, though it is heavily based on computer
algebra calculations. In the next section we explain the
mathematical foundations and the details of these compu-
tations. The calculations are too complicated to be pre-
sented here in all the details, but the idea behind them is
rather simple and can be easily realized in most computer
algebra packages (see Supplemental Material [12] for the
Maple worksheet we used).

These computations can be extended to decide the ex-
istence of higher degree integrals—the algorithm is un-
changed (in fact, we have also verified the nonexistence of
the integral of degree 7, but the hardware capacity limited
us in degree 8). We will give some further comments in the
conclusion.

II. NONEXISTENCE OF THE INTEGRALS

In this section we demonstrate the nonexistence of a
nontrivial integral of degree 6. This in turn implies the
nonexistence of a nontrivial integral of smaller degree.
Indeed if such an integral I existed in degree k < 6, then
p6�k
t I would be a nontrivial integral of degree 6.

A. The general idea behind the calculations

The condition that the function

I ¼ X
iþjþkþm¼6

Iijkmp
i
xp

j
ypk

�p
m
t (2.1)

commutes with H is equivalent to a linear system S of
partial differential equations (PDEs) of the first order on

the coefficients Iijkm; the latter are smooth functions on U.

Using the assumption that I commutes with p� and pt, we

see that the unknowns Iijkm are functions of x and y only.

More details on the differential equations in Swill be given
in the next subsection.
Let us now take this system S and differentiate its

equations with respect to the variables x and y, denoting

the results by Sx and Sy, respectively. The system Sð1Þ ¼
S [ Sx [ Sy is called the first prolongation of S. Every

smooth solution of S is of course a solution of Sð1Þ. Next
we consider the second prolongation Sð2Þ ¼ Sð1Þ [ Sx2 [
Sxy [ Sy2 and so on. The nth prolongation is SðnÞ ¼S

kþm�n Sxkym .

The system S has finite type if for some ‘ one can solve

the equations Sð‘Þ with respect to all highest derivatives of
the unknown functions (in our case with respect to all jets
of order ‘þ 1). It is known [13,14] that our system is of
finite type. To see this let us notice that in the geodesic
coordinates the metric is flat to the second order at the
given point. Since the coefficients of the top derivatives of

the unknowns in the system S (and its prolongation SðnÞ)
depend only on the zeroth and first derivatives of H, its
symbolic behavior at any point is the same as for the flat
metric. In other words, the symbols of this system are
isomorphic at all points and achieve finite type at the
same level ‘.
The calculation for the flat metric is not difficult, and we

obtain ‘ ¼ k for the system describing integrals of degree
k. In particular, for our Swe need to prolong ‘ ¼ 6 times to
achieve finite type (a calculation supporting this claim will
be shown in Sec. II B).
For every linear system of finite type, the space of

solutions is a finite dimensional vector space. Indeed,
by the classical argument, the solutions are given as
integral surfaces of the Cartan distribution, which in our
case has rank 2 (on the equation manifold given in the

space of (‘þ 1) jets by Sð‘Þ). Thus a solution I of S is
uniquely determined by the values of its derivatives up to
order ‘þ 1 (here 1 is the order of S) at any fixed point
ðx0; y0Þ. This follows from the observation that restriction
of I to a curve � � R2ðx; yÞ through the point ðx0; y0Þ
reduces S to a system of ordinary differential equations in
the Euler form.

Take n � ‘ and consider the prolonged system SðnÞ.
Treating the derivatives of Iijkm at (x, y) up to the order

nþ 1 as independent variables u (called jets) allows us to
write this linear system in the form Au ¼ 0. Because
coefficients of the Zipoy-Voorhees metric ds2 are algebraic
(rational) functions, the entries of the matrix A are also
algebraic as functions of the point ðx; yÞ.
If at a certain point ðx0; y0Þ the rank of the matrix A

equals to the dimension of u, the only solution is trivial
u ¼ 0. From the finite type condition it follows then that
the solution u is identically zero.
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As we explain in the next section, our PDE system S
decouples into two linear subsystems that have to be solved
independently. For one of them Sodd the situation is as
described above: for the fifth prolongation the linear sys-
tem Au ¼ 0 has only the trivial solution. For the second
subsystem Seven the situation is more complicated, since it
has 16-dimensional space of solutions. These solutions
correspond to the following ‘‘trivial’’ integrals:

Itriv ¼ �H3 þH2 �X
2

i¼0

�iI
i
1I

2�i
2 þH � X

4

j¼0

�jI
j
1I

4�j
2

þ X6
k¼0

�kI
k
1I

6�k
2 ; (2.2)

where �, �i, �j, �k are arbitrary constants.

Thus for Seven the matrix A has a 16-dimensional kernel,
whence rkðAÞ � dimðuÞ � 16. If rkðAÞ ¼ dimðuÞ � 16,
then every solution u of the equations Au ¼ 0 is ‘‘trivial’’
because the system is of finite type and n � ‘. In other
words, u has form as in Eq. (2.2) globally.

How do we check that the finite type level ‘ does not
exceed the number n we consider? If for a certain n we
have rkðAÞ ¼ dimðuÞ, the condition ‘ � n is fulfilled au-

tomatically since we can express from the equations in SðnÞ
all derivatives of the unknown functions. This finishes the
case Sodd. In fact in this case ‘ ¼ 5 (this is a simpler system
than Seven and it achieves finite type earlier) and we go to
n ¼ 5 in our calculations.

For Seven for n ¼ 6 we will have dimðuÞ � rkðAÞ ¼ 16,
which equals to the dimension of the space of trivial
integrals of degree 6. Since ‘ ¼ 6 by the general theory,
we conclude that every integral must belong to the family
(2.2), which finishes our argument.

The size of the matrix A in our calculations is quite big,
and it is not possible to handle it by hand. We use the
symbolic software Maple. This is possible as the idea
described above can be realized algorithmically.

Actually we perform prolongations (symbolic differen-
tiations) and operate with polynomial or rational functions.
The coefficients of the latter are rational numbers and the
point we substitute is also rational—we choose ðx0; y0Þ ¼
ð12 ; 2Þ. Then we calculate ranks of the matrices with rational

numerical entries, which is done via the Gauss method. All
of these calculations are exact (no approximations), and so
the result has to be considered as a computer assisted
mathematically rigorous proof.

B. Details of calculations

We look for an integral I of form (2.1) with coefficients
Iijkm being smooth functions onU. Since fI; I1g ¼ fI; I2g ¼
0, these coefficients do not depend on �, t and are smooth
functions on the open domain in R2ðx; yÞ (given by the
conditions x, y, � �1, x � �y).

Since the coefficients of H also do not depend on �, t,
the commutation of H and I writes as

fH; Ig ¼ @H

@x

@I

@px

� @I

@x

@H

@px

þ @H

@y

@I

@py

� @I

@y

@H

@py

¼ 0:

(2.3)

Substituting formula for H and I into this expression we
get a polynomial in momenta of degree 7. Its vanishing
is equivalent to vanishing of all its coefficients and there
are 120 of them. These coefficients are rational func-
tions of ðx; yÞ with integer coefficients, and they are
linear in Iijkm and their first derivatives. The number

of unknowns Iijkm ¼ Iijkmðx; yÞ is 84, and thus Eq. (2.3)

gives a first order linear overdetermined system S of
PDE.
Notice that the Hamiltonian H is even in the total

degree by the variables p�, pt (i.e., it does not contain

quadratic terms pxpt and similar). Then writing I ¼
Iodd þ Ieven, where the index refers to the parity of kþ
m in Eq. (2.1), we observe the splitting fH; Ig ¼
fH; Ioddg þ fH; Ieveng and the summands in the last expres-
sion preserve the parity (e.g., fH; Ioddg has odd total
degree by the variables p�, pt).

Thus our system of equations decouples: S ¼
Sodd [ Seven, Sodd \ Seven ¼ ;. The subsystem Sodd is a
system of linear PDE on Iijkm with kþm odd, and the

subsystem Seven is a system of linear PDE on Iijkm with

kþm even. Both Sodd and Seven are overdetermined.
In fact Sodd consists of 60 equations on 40 unknown

functions, while Seven consists of 60 equations on 44
unknowns. Our goal for the subsystem Sodd is to show
that its certain prolongation at some point ðx0; y0Þ satisfies
dimðuÞ � rkðAÞ ¼ 0. Our goal for the subsystem Seven is to
show that its certain prolongation at ðx0; y0Þ satisfies
dimðuÞ � rkðAÞ ¼ 16. We follow the scheme described
in Sec. II A and let ðx0; y0Þ ¼ ð12 ; 2Þ.
Now we put the results of our calculations into the table.

The first row in the table is the number of equations in SðnÞodd,

the second is the number of the unknowns Iijkm (with kþ
m odd) and their derivatives by x, y up to order nþ 1. The
third row is the rank of the corresponding matrix A of the
size ðno: of eq:Þ � ðdimðuÞÞ.
The number of nontrivial integrals is the minimum of the

quantity � ¼ dimðuÞ � rkðAÞ.
n 0 1 2 3 4 5

No. of eq. 60 180 360 600 900 1260

dimðuÞ 120 240 400 600 840 1120

rkðAÞ 60 180 360 590 838 1120

� 60 60 40 10 2 0

We see that the fifth prolongation is enough to prove that
the system Sodd has only trivial solutions.
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Next comes the table for Seven. The meaning of the rows
is similar. The number of nontrivial integrals is the mini-
mum of the quantity � ¼ dimðuÞ � rkðAÞ � 16.

n 0 1 2 3 4 5 6

No. of eq. 60 180 360 600 900 1260 1680

dimðuÞ 132 264 440 660 924 1232 1584

rkðAÞ 60 180 360 600 888 1215 1568

� 56 68 64 44 20 1 0

We see that the sixth prolongation is enough to prove
that the system Seven has only ‘‘trivial’’ solutions, i.e., every
integrals Ieven is of the form in Eq. (2.2).

Finally we demonstrate how to calculate the number ‘
symbolically. As explained in Sec. II A, it is enough to
compute it for the flat metric. We form equation S similar
to the above, but now we count only the equations of order

nþ 1 in SðnÞ, and we separate top-order terms. The latter
are the derivatives of Iijkm of order nþ 1 denoted by v, and

the subsystem writes as a linear inhomogeneous equation
Bv ¼ w, where w combines derivatives of order � n.
When � ¼ dimðvÞ � rkðBÞ ¼ 0 the corresponding n ¼ ‘.
Here is the table for Seven.

n 0 1 2 3 4 5 6

No. of eq. 60 113 166 219 272 325 378

dimðvÞ 88 132 176 220 264 308 352

rkðBÞ 60 113 166 214 262 307 352

� 28 19 10 6 2 1 0

Thus ‘ ¼ 6. Similar calculations for Sodd yield ‘ ¼ 5.
This finishes the proof of the theorem.

III. CONCLUSION

The question of existence of an additional integral is
crucial for understanding of static axially symmetric Ricci-
flat metrics. The most famous spacetimes in the general
relativity, given by the Schwarzschild and Kerr metrics,
can be effectively studied because their geodesic flows
admit an additional quadratic integral. This integral allows
to describe and to control the behavior of the geodesics,
and it also helps to solve the wave and other physically
relevant equations.

The family of Zipoy-Voorhees metrics with a real pa-
rameter � is given by the formula

�
xþ 1

x� 1

�
�
�
ðx2 � y2Þ

�
x2 � 1

x2 � y2

�
�2� dxdx

x2 � 1
þ dydy

1� y2

�

þ ðx2 � 1Þð1� y2Þdzdz
�
�

�
x� 1

xþ 1

�
�
dtdt:

Transformation ðx; �Þ � ð�x;��Þ is the symmetry of this
family, so we let � � 0. Parameter � ¼ 0 corresponds to
the flat metric, while for � ¼ 1 we get the Schwarzschild

metric. These are the only two cases from the family that
admit more than two linearly independent Killing vector
fields. For the Schwarzschild spacetime, the symmetry
algebra is in fact noncommutative, but its nontrivial
Casimir function is an additional integral that yields
Liouville integrability.
We have checked that no other metric from the family

admits a quadratic integral. The search for higher degree
integrals we restricted to the next interesting parameter
� ¼ 2, corresponding to the metric in Eq. (1.1). We hoped
that the integral of degree 4 exists; some other groups of
mathematicians and physicists have also tried to find the
missing integral by looking for a lucky ansatz. But, un-
fortunately, we have not found it, and moreover we have
proved it cannot exist in degree <7. We have investigated
degree 7 with other methods (not the one presented in the
paper), and also rigorously proved the nonexistence of
nontrivial integrals.
We stopped at degree 8 by purely technical reasons—

even though the operational memory was not suffering,
the computation time got too long. Actually, Maple ob-
tains the matrix A quite fast; the hard part of the calcu-
lations is to compute the rank of the matrix A, which for
the integrals of degree 6, has size 1680� 1584. Our
standard PC required a few days for this. But we hope
that a faster computer and more specialized symbolic
software (which handles rational numbers in exact man-
ner) could advance further.
Let us remark that the Zipoy-Voorhees metrics can be

included in the bigger family of Manko-Novikov metrics,
which are also given by explicit formulas (see e.g., [15]).
Every axially symmetric stationary Ricci-flat metric can be
written with the help of the Ernst equations. Having ex-
plicit formula for the integral for the Zipoy-Voorhees
spacetime would suggest a perturbation of this formula to
integrate other stationary axially symmetric Ricci-flat met-
rics. Brinck also calculated numerically the geodesics of
certain Manko-Novikov metrics and indicated numerically
an integrable behavior.
Existence of an integral of high degree is not completely

impossible, as recently some nontrivial superintegrable
systems were found. Its search can follow the proposed
algorithm. One can further simplify it as it is apparent that
the matrix A contains a lot of zeros. Another possibility is
to use geometric methods to investigate the structures
generated by the integral (in this way [16] allowed to
find a new integrable system in [17]).
The advantage of having an integral is so huge that

the search for additional integrals of axially symmetric
Ricci-flat metrics should be continued. But as our results
indicate, if the spacetime in Eq. (1.1) is integrable, it
should be rather a nontrivial phenomenon.
On the other hand our result, coupled with numerical

evidence from [8], can indicate that a more complicated
physical reality underlies the Zipoy-Voorhees spacetimes
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(opposite to the Kerr model). Maybe some weaker form
of integrability stays behind the analytical formulation
(like in KAM theory) and a weak chaos (like in Arnold
diffusion) takes place. The latter can be confused with
noise but has to be detected through very accurate
simulations, which we hope to see in the near future.
These accurate simulations were done recently in [18],
where numerical evidence was presented towards the
conclusion that the Zipoy-Voorhees spacetime is not

integrable since Birkhoff chains and chaotic trajectories
were found.
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