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In this paper we examine the extent to which black hole quasinormal modes (QNMs) could be used to

test the no-hair theorem with future ground- and space-based gravitational-wave detectors. We model

departures from general relativity (GR) by introducing extra parameters which change the mode

frequencies or decay times from their values in GR. With the aid of Bayesian model selection, we assess

the extent to which the presence of such a parameter could be inferred, and its value estimated. We find

that it is harder to measure the departure of the mode decay times from their GR values than it is with the

mode frequencies. The Einstein Telescope (ET, a third generation ground-based detector) could detect

departures of as little as 8% in the frequency of the dominant QNM mode of a 500M� black hole, out to a

maximum range of ’ 6 Gpc (z ’ 0:91). The New Gravitational Observatory (NGO, an ESA space mission

to detect gravitational waves) can detect departures of �0:6% in a 108M� black hole to a luminosity

distance of 50 Gpc (z ’ 5:1), and departures of �10% in a 106M� black hole to a luminosity distance of

’ 6 Gpc. In this exploratory work we have made a specific choice of source position (overhead),

orientation (inclination angle of �=3) and mass ratio of progenitor binary (m1=m2 ¼ 2). A more

exhaustive Monte Carlo simulation that incorporates progenitor black hole spins and a hierarchical model

for the growth of massive black holes is needed to evaluate a more realistic picture of the possibility of ET

and NGO to carry out such tests.
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I. INTRODUCTION

Merging compact binaries consisting of neutron stars or
black holes are promising sources [1] of gravitational
radiation for advanced gravitational wave detectors that
are currently being built [2,3]. These sources are also
potential laboratories for testing general relativity (GR)
in the strong field regime [4–8]. The result of such an event
(with sufficiently massive progenitors) is a highly per-
turbed black hole (BH) which rapidly returns to its quies-
cent state (i.e., a Kerr BH [9]), through the emission of
gravitational waves (GWs). The perturbation, and there-
fore the emitted radiation, can be expanded in the natural
basis of oscillations, the quasinormal modes (QNMs) [10]
(for a recent review on QNM see, e.g., [11]). A Kerr
black hole is characterised only by its mass and angular
momentum, and so are the complex frequencies of
its QNM oscillations [12,13], although the relative ampli-
tudes of the modes depend on the specific details of the
excitation.

Detection of the characteristic ringdown GW signal of a
BH would, therefore, allow a direct test of the no-hair
theorem [14], and hence GR, through the comparison of
frequencies and decay times of these modes with the
predictions of GR for a BH with certain mass and spin.
In practice, the detection and discrimination of multiple
modes is essential, as it is first necessary to infer the mass
and spin of the black hole before checking for consistency
between the modes. If any of the modes have some pa-
rameter dependence other than mass and spin, then the
mass and spin obtained from these modes will not be

consistent with that obtained from the others, and thus
the source of emission must not be a Kerr black hole.
In Ref. [14] Dreyer et al. first developed the formalism

for testing GR with QNM. They also suggested the test of
the no-hair theorem through the measurement of more than
one mode. Berti et al. [15,16] investigated the accuracy of
measurement of individual mode parameters using a Fisher
matrix analysis and estimated the resolvability of individ-
ual modes in the complete signal as a function of signal-to-
noise ratio. They conclude that the presence of a second
mode can be inferred as long as the signal-to-noise ratio
(SNR) is larger than a critical value, under the assumption
that the presence of a ringdown signal has been confirmed
and the parameters of the dominant modes are reliably
measured. The critical SNR depends on the mass ratio of
the progenitor binary, but an SNR of 20 should suffice if
the mass ratio of the progenitor binary is q ¼ m1=m2 * 2.
Kamaretsos et al. showed recently that by using black hole
ringdown signals that are emitted after a binary merges, it
might be possible to recover the mass ratio of the progeni-
tor binary from relative amplitudes of the QNMs [17].
Their signal model, however, is based on non-spinning
black hole binaries. Spins might induce systematic effects
that could make it difficult to reliably measure the mass
ratio of progenitor binary. However, we have to await
ringdown models for spinning black hole binaries to assess
what might or might not be possible to measure.
Kamaretsos et al. [17] also proposed different ways

of testing GR using QNMs. In particular, they proposed
that it is sufficient to use any three of the observed fre-
quencies and decay times for checking the consistency of
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the ringdown signal with GR. This minimal set of parame-
ters could make the test far more effective than trying to
resolve the different mode frequencies and decay times.
This is one approach we shall follow in this work.

More specifically, in this paper we explore the feasibility
of the proposal in Ref. [17] for a limited set of sources and
parameter values. Our study is also limited to sources with
mass ratio 1:2. We find that for the specific ringdown
model that neglects progenitor spins, it is possible to infer
the total mass and spin of the black hole and the mass ratio
of the progenitor binary from the observed ringdown GW,
using a phenomenological mapping from these to the mode
parameters. Having established this, we extend our wave-
form model to include arbitrary deviations from the pre-
dicted values of the frequencies and decay times, which
can be estimated either along with the physical parameters
of the source or on their own, if we assume no relationship
between the complex QNM frequencies and the mass and
angular momentum of the BH. This gives us two methods
of testing GR:

(1) Measure the QNM parameters individually and
check for consistency between the implied mass
and angular momentum from each of the modes.

(2) Assume that the GR waveform is broadly correct,
but allow deviations in the parameters of a subset of
the QNMs away from their predicted values and
then perform model selection between the GR and
non-GR models.

We study both of these techniques in the context of future
space- and ground-based detectors, particularly the
Einstein Telescope [18,19] and a rescoped version of the
Laser Interferometer Space Antenna called New
Gravitational Observatory (NGO).

The rest of the paper is organised as follows: In Sec. II
we define the waveform model and describe the analysis
methods used in testing the no-hair theorem. In Sec. III we
will discuss the expected sensitivities of ET and NGO and
the distribution of the signal-to-noise ratio of ringdown
signals in these detectors. Section IV describes the simu-
lations of the tests of the no-hair theorem using two differ-
ent methods: (1) consistency of the various parameters
characterizing a ringdown signal, and (2) Bayesian model
selection applied to simulated ringdown signals buried in
Gaussian background. Section V contains comparisons of
the two methods used in testing GR and our conclusions.

II. SIGNAL MODEL AND ANALYSIS METHOD

In this section we will discuss the nature of the ringdown
waveform used in this study. The main focus will be to use
a superposition of quasinormal modes containing not only
the dominant mode but also the first two subdominant ones.
Ringdown signals that we study are assumed to be emitted
by deformed black holes that form from the merger of
compact binaries consisting of non-spinning components

in quasi-circular orbits. The latter assumption allows us to
use a phenomenological waveform model based on nu-
merical relativity simulations; the observed signal is char-
acterised by only three intrinsic parameters: the mass and
spin of the final black hole and the mass ratio of the
progenitor binary.

A. Ringdown model

A perturbed black hole emits a spectrum of modes
characterized by three numbers ðl; m; nÞ. Indices l ¼
2; 3; . . . ; and m ¼ �l; . . . ;þl, are the well-known spheri-
cal harmonic indices, and n ¼ 0; 1; 2; . . . , is the mode
overtone index. Overtones other than the fundamental n ¼
0 mode are not excited with significant amplitudes and
have much shorter damping times [15]. We shall therefore
only consider the fundamental mode and drop the index
from further discussion.
The two polarizations of the gravitational waveform, hþ

and h�, emitted by a BH of massM during its ringdown are
described as the sum over the QNMs,

hþðtÞ ¼ M

r

X
l;m>0

Aljmje�t=�lmYlmþ cosð!lmt�m�Þ; (1)

h�ðtÞ ¼ �M

r

X
l;m>0

Aljmje�t=�lmYlm� sinð!lmt�m�Þ; (2)

for t � 0 and hþ ¼ h� ¼ 0, for t < 0, t ¼ 0 being the start
of the ringdown signal. Here r is the luminosity distance to
the black hole, AljmjðqÞ are the mode amplitudes that

depend only on the ratio q ¼ m1=m2 (m1 >m2) of the
component masses of the progenitor binary, and
�lmðM; jÞ and !lmðM; jÞ are the characteristic mode damp-
ing times and frequencies. The mode damping times and
frequencies depend only the black hole massM and its spin
j, but they are difficult to compute analytically. It is neces-
sary to use numerical methods to compute them [11]. Fits
to some of the lower order modes can be found in Berti
et al. [15]. � 2 ½0; �Þ is the angle between the BH spin-axis
and the line-of-sight to the observer, and� 2 ½0; 2�� is the
azimuth angle of the black hole with respect to the ob-
server. Ylmþ;�ð�Þ are the sum of spin �2 weighted spherical

harmonics [16],

Ylmþ ð�Þ � �2Y
lmð�; 0Þ þ ð�1Þl�2Y

l�mð�; 0Þ; (3)

Ylm� ð�Þ � �2Y
lmð�; 0Þ � ð�1Þl�2Y

l�mð�; 0Þ: (4)

Although the waveform in Eqs. (1) and (2) contains a
summation of modes over all values of l andm, the relative
amplitudes of the higher order modes are significantly less
than those of the lower, so we restrict the sum to the most
significant modes. The waveform considered for this
analysis is a superposition of the n ¼ 0, l ¼ 2, m ¼ 1
and n ¼ 0, l ¼ m ¼ f2; 3; 4g modes (which will hereafter
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be referred to as the 21, 22, 33 and 44 modes, respectively)
with the 22 mode being dominant.

The relative dominance of the higher order modes is
dependent on the specific excitation that occurred (through
Alm) and the position of the observer (through Ylm). This
depends on both the mass ratio q ¼ m1=m2 � 1 of the
compact binary components prior to merger, and the in-
clination angle �. We used a phenomenological model
based on fits to a set of numerical simulations to describe
the mode amplitudes. We used the data in Kamaretsos
et al. [17], but instead of using the mass ratio q we used
the symmetric mass ratio � ¼ m1m2=ðm1 þm2Þ2 ¼
q=ð1þ qÞ2 to derive new physically motivated fits. The
22 mode is expected to grow linearly with the symmetric
mass ratio as noted in Refs. [20,21]. Modes with odd l orm
are not expected to be excited when the progenitor binary
is of equal mass and so we expect their behaviour close to
� ¼ 1=4 to be some power of (1� 4�). These consider-
ations led us to the following forms of the various ampli-
tudes:

A22ð�Þ ¼ 0:864�; (5)

A21ð�Þ ¼ 0:52ð1� 4�Þ0:71A22ð�Þ; (6)

A33ð�Þ ¼ 0:44ð1� 4�Þ0:45A22ð�Þ; (7)

A44ð�Þ ¼ ½5:4ð�� 0:22Þ2 þ 0:04�A22ð�Þ: (8)

Figure 1 plots the above fits together with the amplitudes
of the various modes derived from numerical simulations.

The current data seems to indicate that Â44 � A44ð�Þ=
A22ð�Þ has a minimum at � ¼ 0:22. However, the ampli-
tude of the 44 mode derived from numerical simulations is
not very reliable and so this might be just an artifact of bad
data. More accurate simulations are needed to validate this
result.

To complete the signal model we have to specify the
damping constants �‘m. Instead of damping times �‘m it is

customary to use quality factors Q‘m defined by Q‘m ¼
!‘m�‘m=2. Berti et al. [15] provide a simple fitting formula
to many mode frequencies and quality factors of the form

M! ¼ f1 þ f2ð1� jÞf3 ; (9)

Q ¼ q1 þ q2ð1� jÞf3 ; (10)

where f1, f2, f3, q1, q2 and q3 are fitting constants. For the
modes considered in this paper, Table I lists the fitting
constants.
The gravitational-wave strain observed by a detector due

to the excitation of QNM can be expressed as

h ¼ Fþhþ þ F�h�; (11)

where Fþ and F� are the detector antenna pattern func-
tions, which depend on the position ð�; ’Þ of the black hole
relative to the detector and polarisation angle c of the
radiation (see Ref. [17] for details). The measured strain,
therefore, depends on the following 9 parameters:

~� ¼ fM;�; r; �; ’; c ; �; �; t0g; (12)

which includes the epoch t0 when the signal arrives at our
detector.1

Figure 2, left panel, shows the response of a signal
containing all four modes considered in this work, as
well as the phase evolution of each of modes 21, 22, 33
and 44 for a 5� 106M� black hole at a distance of 1 Gpc,
assumed to be formed from a binary of mass ratio q ¼ 2.
The black hole is assumed to be overhead with respect to
the detector, the orbital plane making an angle of � ¼ �=3
radians—a suboptimal orientation but one for which the
subdominant modes will have a nonzero amplitude. The
polarization and azimuth angles are randomly chosen to be
c ¼ 2:67 radians and � ¼ 2:31 radians.
The overall amplitude is very nearly the same as that of

the 22 mode. The amplitude of the 33 mode, which is the
second most dominant after 22, is about a third of the 22
mode, followed by the 21 mode, which has a slightly
smaller amplitude. The 44 mode, whose amplitude is
about 12% of the 22 mode, has a negligible effect on the
overall signal. Although 21 and 33 are of roughly the same
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FIG. 1 (color online). Fits to the amplitudes of modes excited
in the process of a binary black hole merger as a function of the
symmetric mass ratio of the progenitor binary.

TABLE I. The fitting constants in Eqs. (9) and (10), for the 21,
22, 33 and 44 modes, for the dominant n ¼ 0 overtone [15].

ðl; mÞ f1 f2 f3 q1 q2 q3

(2, 1) 0.6000 �0:2339 0.4175 �0:3000 2.3561 �0:2277
(2, 2) 1.5251 �1:1568 0.1292 0.7000 1.4187 �0:4990
(3, 3) 1.8956 �1:3043 0.1818 0.9000 2.3430 �0:4810
(4, 4) 2.3000 �1:5056 0.2244 1.1929 3.1191 �0:4825

1Note that Eqs. (1) and (2) are written assuming t0 ¼ 0. A
nonzero value of t0 can be trivially included in the signal model
by writing t as t� t0 and assuming hþ;�ðtÞ ¼ 0 for t < t0.
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amplitude, the energy in 33 mode, whose frequency is
roughly twice that of 21, will be significantly larger as
we will see in Sec. III, while discussing the relative signal-
to-noise ratios of the different modes. The interference
between the different modes causes features that become
apparent in the spectrum of the modes shown in the left
hand panel of Fig. 2, which we will discuss further in
Sec. III.

B. A generalized model for the QNM

In order to test GR, we extended the waveform model so
that the frequencies and decay times of the modes were
allowed to be dependent not only onM and j, but also other
dimensionless parameters. More specifically, we consid-
ered that frequencies !lm depended on three parameters
ðM; j;�!̂lmÞ and damping times �lm also depended on
three parameters ðM; j;��̂lmÞ. Furthermore, we assumed
that the dimensionless parameters �!̂lm and ��̂lm were
independent for each mode. Following Li et al. [22], in this
generalized model, the frequencies !lm;non GR and decay

times �lm;non GR were expressed as

!lm;non GR ¼ !lm;GRð1þ�!̂lmÞ; (13)

�lm;non GR ¼ �lm;GRð1þ��̂lmÞ; (14)

where !lm;GR and �lm;GR are the frequencies and decay

times of modes as in GR. The signal produced by the GR
hypothesis is a special case of the generalized model, in
which �!̂lm ¼ ��̂lm ¼ 0 for all l, m.

C. Bayesian analysis

Having described the waveform model and its parame-

ters (contained in a parameter vector ~�), we will now
describe how these parameters are estimated from data

containing a ringdown signal. We assume that the data
from the gravitational-wave detector in the frequency do-

main ~d contains both the ringdown signal ~hðf; ~�Þ and some
additive Gaussian noise with known power spectrum ShðfÞ.
Thus, the data ~d is assumed to be ~di ¼ ~hðfi; ~�Þ þ ~ni, where
i is the index of the frequency bin. The noise power spectra
used for ET and NGO are given in Sec. III A. As we
perform our analysis in the frequency domain, we use the

Fourier transformed signal model ~hðfÞ ¼ R1
0 hðtÞe�2�iftdt

computed with the FFTW package.
Our goal is to compute the posterior probability distri-

bution (PDF) (see, for instance, Ref. [23]), of the parame-

ters pð ~�jd;H Þ,

pð ~�jd;H Þ ¼ pðdj ~�;H Þpð ~�jH Þ
pðdjH Þ ; (15)

where pðdjH Þ is the evidence, or marginal likelihood, of
the model

pðdjH Þ ¼
Z
�
pð ~�jH Þpðdj ~�;H Þd ~�; (16)

H , pð ~�jH Þ is the prior distribution of the parameters

given the signal model and pðdj ~�;H Þ is the likelihood

of the data for a particular set of parameters ~�:

pðdj ~�;H Þ / exp

�
�2

X j~di � ~hðfi; ~�Þj2
ShðfiÞ

�
: (17)

Posterior distributions for particular parameters of interest,
e.g., the�!̂lm and��̂lm, are computed bymarginalizing the
PDF over all other parameters. We also compute the Bayes
factor Bi;j between various hypotheses, Bi;j ¼ pðdjiÞ=
pðdjjÞ, which is the evidence ratio between hypotheses i
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FIG. 2 (color online). Left: Strain amplitude of a quasinormal mode signal from a black hole that forms from the merger of a binary
of (observed) total mass 5� 106M� and mass ratio q ¼ 2 at 1 Gpc. We have plotted the first four dominant modes, 21, 22, 33 and 44,
together with their superposition. Right: The signal-to-noise ratio integrand of the same signal d�2=df ¼ jHðfÞj2=ShðfÞ, where ShðfÞ
is taken to be that of NGO. The presence of the 33 and 44 mode can be clearly seen in the overall spectrum; 21, however, is buried
under 22.
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and j. Due to the large range of this quantity wewill always
use the natural logarithm of this, logBi;j, in Sec. IVC.

To compute the PDFs and evidence we use the INSPNEST

implementation of the nested sampling algorithm, de-
scribed in [23], modified to use the ringdown signal model,
which is available as part of the LSC Algorithm Library
[24]. The end product of the analysis is the model evidence
and a set of samples from the posterior PDF that are
histogrammed to produce the figures below.

III. VISIBILITY OF THE QNM SIGNALS

In this section we will explore the visibility of quasinor-
mal mode signals. We will begin with the expected sensi-
tivities of ET and NGO and then go on to explore the
visibility of the signal in these two detectors. The SNR
of a ringdown signal depends quite critically on a number
of intrinsic and extrinsic parameters of the source. We
will vary most of these parameters to obtain a distribution
of the SNR.

A. Sensitivity curves

In this paper, the ET and NGO detectors are considered.
For simulations concerning ET, the power spectral density
corresponding to the ET-B sensitivity curve is considered,
described by ShðfÞ ¼ 10�50hnðfÞ2 Hz�1, where hnðfÞ is
given by

hnðfÞ ¼ 2:39� 10�27x�15:64 þ 0:349x�2:145 þ 1:76x�0:12

þ 0:409x1:10;

and x ¼ f=100 Hz. For NGO, the sensitivity curve asso-
ciated with the L ¼ 1� 109 m arm, 4-link mission studied
in Ref. [25], which corresponds to a power spectral density
given by

ShðfÞ ¼ 10

3L2

�
1þ

�
2Lf

0:41c

�
2
�
ð4Sacc þ S0Þ; (18)

where,S0 ¼ 1:153� 10�22 m2 Hz�1, and

Sacc ¼ 1:37� 10�32

�
1þ 10�4 Hz

f

��
2�f

1 Hz

��4
m2 Hz�1:

(19)

B. Visibility of ringdown signals

An important requirement for tests of the no-hair theo-
rem is good visibility of the signal in our detector; the
larger the SNR, the greater would be the power of the test.
The SNR depends both on the intrinsic parameters of the
black hole—its mass and spin angular momentum—as
well as its extrinsic parameters: its distance and various
angles describing the orientation of its spin axis, its loca-
tion on the sky and the polarization of the radiation. In this
section we will look at the distribution of the SNR in ET
and eLISA/NGO.

The SNR of a ringdown signal observed using matched
filtering is given by

�2 ¼ 4
Z fhigh

flow

jHðfÞj2
ShðfÞ df; (20)

where ShðfÞ is the detector noise power spectral density
and HðfÞ is the Fourier transform of the signal in Eq. (11).
The limits on the integrand can, in principle, be from 0 to
1. However, in order to prevent the ‘‘junk’’ radiation that
occurs in the Fourier transform due to abrupt cutoff of the
time-domain signal from corrupting the SNR, we choose
finite values for both of them. More concretely, we choose
flow to be half of the smallest signal frequency (which in
our case is that corresponding to the 21 mode) and fhigh to

be twice the highest signal frequency (which in our case is
that corresponding to the 44 mode).
� is the SNR of the signal containing all the modes

considered in this paper. To test the no-hair theorem
it is essential that the SNRs of the subdominant modes
(21, 33, 44) are comparable to the dominant 22 mode. To
assess their importance, we shall also separately consider
the SNR �‘m of each mode:

�2
‘m ¼ 4

Z fhigh

flow

jH‘mðfÞj2
ShðfÞ df; (21)

whereH‘m is the Fourier transform of the signal in Eq. (11)
but with hþ and h� containing only the relevant mode. We
will compare the distribution of �‘m for ‘m ¼ 21, 22, 33
and 44 modes, but it should be kept in mind that �2 is not
the sum over different �2

‘m. Even so, the relative strengths

of different modes give us an indication of how good we
can expect our tests of the no-hair theorem to be.
Figure 2, right panel, plots the SNR integrand d�2=df of

the various modes. The overall signal gets most of its
contribution from the 22 mode, but other modes signifi-
cantly alter the phasing of the signal (left panel) and its
spectrum. The overall signal has bumps caused by the 33
and 44 modes, but the 21 mode, whose frequency is close
to that of 22, has little effect on the overall amplitude or the
phasing of the waves. Note that the spectrum of 33 is far
larger than the 21 mode although they are of similar
amplitude.
Figure 2 gives a qualitative understanding that the sub-

dominant modes have a significant effect on the phasing
and spectrum of the signal. But we need to evaluate the
distribution of the SNR to better gauge the relative impor-
tance of the different modes. The response of our detectors
to a ringdown signal depends on a total of nine parameters,
as enumerated in Eq. (12). To compute the distribution of
the SNR, however, we do not need to vary all nine parame-
ters. We know that the SNR depends inversely on the
luminosity distance r of the source and so this can be fixed
to any value we wish, and we take it to be r ¼ 1 Gpc. The
distribution does not depend on the epoch of the signal t0
nor on the phase �. We should study the distribution as a
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function of M and � while varying the remaining four
parameters. However, since our goal is to explore the test
of the no-hair theorem for a small sample of signals with
high SNR, we will restrict ourselves to only a couple of
sources. Wewill consider a BH that results from the merger
of a 500M� binary in the case of ET and a 5� 106M�
binary in the case of NGO. In both cases we take the
symmetric mass ratio to be q ¼ 2 or � ¼ 2=9.

The cumulative distribution of the SNR is shown in
Fig. 3. We see that there is a 25% chance that the SNR
will be greater than 300 in ET and 3000 in NGO. The
corresponding SNR in the 33 mode is 90 and 900 for ET
and NGO, respectively. Even the least dominant 44 mode
has SNRs of 20 and 200, respectively. The SNRs drop off
as inverse distance and at redshifts z� 1–3, from within
which we can expect the event rate of massive black holes
to be in excess of several per year; the SNRs will be still
large enough that NGO should be able to carry out mean-
ingful tests of GR for a large fraction of sources detected.
Only very rare close-by events will allow such tests in the
case of ET.

IV. TESTS OF THE NO-HAIR THEOREM

In this section wewill explore the ability of ETand NGO
to test the no-hair theorem if they were to detect a ring-
down signal from a black hole that resulted from the
coalescence of a binary. We will begin with a summary
of the parameters used in our simulations followed by a
description of the two different approaches that were used
to test the no-hair theorem. The first method uses consis-
tency of the various mode frequencies and damping con-
stants with GR predictions, and the second method is a
Bayesian model selection approach that addresses which of
a class of different models best describes the underlying
signal. We find that the latter approach is far more powerful
in testing the no-hair theorem.

The model selection approach followed in this paper is
computationally rather expensive. We have therefore se-
lected a small sample of signals (two in ET and four in
NGO) to assess how well future detectors are able to test
the no-hair theorem. The SNR study from the foregoing
section can be used to conclude how effective such tests are
for a random signal detected in our instruments.

A. Choice of injection parameters

The GW signal emitted from the QNM of a black hole
ringdown as observed in a detector depends on the mass
and spin of the final BH, the mass ratio of the progenitor
binary and other extrinsic parameters that describe the
orientation of the black hole, its distance from the detector
and its position on the sky. For the different sensitivity
bands of ET and NGO we chose the following range of
source parameters. For ET, black holes of observed mass
500M� and 1000M� at luminosity distances, DL, from
125 Mpc and 225 Mpc respectively, out to 6.63 Gpc (cor-
responding to redshift z ’ 1 [26]), were considered. For
NGO, black holes of observed mass 5� 106 and 108M� at
DL ¼ 1–59 Gpc (with the upper limit corresponding to a
redshift z ’ 6), and black holes of observed mass 105 and
106M� at DL ¼ 125 Mpc–6:63 Gpc, were considered. In
both cases, the source position ð�; 	Þ was set to be directly
above the detector at the time of observation.
For all systems, the inclination and polarization angles

ð�; c Þ were set to be ð�3 ; �3Þ and the azimuth � was taken to

be zero. For the first four systems described, the mass ratio
q of the binary system prior to merger and the spin j of the
black hole after merger were set to q ¼ 2 and j ¼ 0:61,
respectively. For the final two systems outlined, however,
q ¼ 10 and j ¼ 0:26, to represent a more typical NGO
binary system. For the sake of using the phenomenological
fit in Table I the binary components were assumed to be
non-spinning. It is important to note, especially for NGO,
that the observed mass of the system is redshifted to be
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FIG. 3 (color online). Distribution of the signal-to-noise ratios in different quasinormal modes (21, 22, 33 and 44) for sources located
at random positions on the sky, with random inclination and polarization angles. The left plot is for QNM resulting from the merger of
a 500 solar mass binary observed in ET, and the right plot is for a 5 million solar mass binary observed in NGO. In both cases the mass
ratio of the binary is assumed to be q ¼ 2 and the source is assumed to be at 1 Gpc.
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greater than the intrinsic mass of the system by a factor of
(1þ z). Here we report this observed, redshifted mass for
injections and recovery.

For injections consistent with GR, parameters �!̂lm ¼
��̂lm ¼ 0, whereas for non-GR signals, either �!̂22 or
��̂22 was varied in the range �0:01 . . .� 0:1, with all
other �!̂lm ¼ ��̂lm ¼ 0.

B. Constraining QNM parameters

Having established the parameters of our test sources,
we now move on to consider the two tests of GR. The first
method broadly follows the outline of Ref. [17] to estimate
the parameters of each QNM in the ringdown signal. By
choosing two of the measurements one can infer the true
mass and spin of the black hole by excluding regions in the
M, j plane which are inconsistent with the measured
parameters. The third measurement is then used to confirm
the consistency of the inference. In the case of GR the
allowed area will intersect both the previous areas as in
Fig. 4. Alternatively, if the signal is inconsistent with GR
the intersections of the confidence regions will not agree,
as in Fig. 5.

In order to compute the constraints, we find the upper
and lower 90% probability interval of the marginal poste-
rior probability distribution of the parameters �!̂lm and
��̂lm. In each case the injected values of these parameters
were set to 0, corresponding to the GR waveform. The
priors for ��̂lm and �!̂lm were all uniform in the interval
½�1:0; 0:3� for all analyses, and the M, j and q parameters
were set to their injected values. As we are estimating
the mode parameters directly, through �!̂lm and ��̂lm,
the values of M and j parameters do not play any role in
the results other than to set the center of the prior range.
The reason for the asymmetric choice of interval is that by
allowing�!̂22 to be greater than 0.3, the frequencies of the
22 and 33 modes collide, leading to strong correlations
between the parameters of these modes upon recovery and
confusion between the modes. Note that we allow the
frequency of the 33 mode to vary downward into the
band of the 22 mode, but this does not result in difficulties
as the 22 mode is already within this band, making its
identification easier. In all searches, the luminosity dis-
tance of the source and orientation angles are assumed
known and fixed to the aforementioned values.

We chose the �!̂22, ��̂22 and �!̂33 parameters to
perform our consistency test as these are the three recov-
ered parameters with the greatest precision for the signals
we considered, and will therefore give the most stringent
test.

We first injected signals using the GR waveform and
performed parameter estimation on the three test parame-
ters. The 90% probability limits on !lm and �lm were
projected in the ðM; jÞ-plane to show visually the consis-
tency test between the three modes, and that they agree at
the injected value ðM; jÞwithin the measurement accuracy.

Figure 4 shows that for each system, the projections of!lm

and �lm coincide at the same position, and the region of
coincidence encloses the injected value of the mass and
spin of the system, as expected.
To contrast, in Fig. 5 we show the corresponding plots

where the injection is performed with deviations from GR
of �!̂22 of �0:01 and �0:05 for both ET and the 106M�
NGO system, whilst for the 108M� NGO system, devia-
tions of �0:001 and �0:005 were considered (all other
parameters are taken to be the same).
This demonstrates the feasibility of the method for test-

ing the no-hair theorem using consistency of the modes,
when the signal is strong and the modes are clearly dis-
tinguishable. Of course, we may not be fortunate enough to
observe BH ringdowns from such nearby sources, in which
case we expect the power of the method to diminish.
To investigate the accuracy to which the mode parame-

ters are resolvable, we performed a set of injections at
luminosity distances spanning the entire distance range
quoted in Sec. IVA, and estimated the �!̂22, �!̂33 and
��̂22 parameters. For each black hole system considered,
the width of the 90% confidence intervals for the extracted
values of �!̂lm and ��̂lm were plotted against luminosity
distance in Fig. 6, for injections with GR waveforms. Our
results are in agreement with similar studies carried out in
Ref. [27]. From Fig. 6, it can be seen that the width of the
90% confidence intervals for the values of �!̂22;33 and

��̂22 increases with distance, as expected. �!̂33 is ex-
tracted with considerably less accuracy than �!̂22, be-
cause for a black hole system with q ¼ 2, as considered
here, the 33 mode is significantly less excited than the
dominant 22 mode, and thus the 33 mode has a much lower
SNR, resulting in poorer resolution. By the same token,
��̂22 is extracted with considerably less accuracy than both
�!̂22;33, as there is less extractable information from the

mode decay times as opposed to the mode frequencies. In
general, however, the relative weights and SNRs of each
mode depends on the source parameters including orienta-
tion, and the noise curve of the detector.
We also see that ET can resolve �!̂22 with errors of less

than 1% at DL ¼ 4 Gpc for the systems considered, in
addition to resolving �!̂22;33 and ��̂22 with errors of

1.5%, 2.5% and 10% for a black hole of 500M� at DL ¼
6:63 Gpc.
NGO can resolve �!̂22 to �0:6% accuracy at DL ¼

59 Gpc (z ¼ 6) for both 5� 106M� and 108M� systems,
showing good results across the range of masses detect-
able. ��̂22 (�!̂33) can be resolved to �3:5% (1.5%) and
�1% (0.15%) accuracy for 5� 106M� and 108M� sys-
tems, respectively, at this distance. This trend is mirrored
for the 106M� system, with NGO able to resolve �!̂22 to
�2% accuracy at DL ¼ 6:63 Gpc (z ¼ 1), and ��̂22
(�!̂33) to 10.5% (5%) at this distance. For the 105M�
system, however, resolution of �!̂22 is poor even at dis-
tances of DL ¼ 1 Gpc, suggesting that it would not be

BAYESIAN MODEL SELECTION FOR TESTING THE NO- . . . PHYSICAL REVIEW D 85, 124056 (2012)

124056-7



possible to conduct these discriminatory tests using such
systems, as they are not expected to exist at distances
closer than 1 Gpc.

The method outlined above to test the accuracy with
which we can extract the three QNM parameters was

applied to the case of non-GR signals (�!̂lm or ��̂lm set
to some value within the range quoted in Sec. IVA, with all
other �!̂lm ¼ ��̂lm ¼ 0) from systems of M ¼ 500M�
and 108M� in ET and NGO. The QNM corresponding to
these systems lie closest to the most sensitive frequency
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FIG. 4 (color online). Projections in the ðM; jÞ-plane of the 90% confidence limits on !22, �22 and !33 (black, red dashed and green
dot-dashed lines respectively) for injections of signals consistent with GR for M ¼ 500M� (top-left at 125 Mpc; SNR ¼ 2888),
M ¼ 1000M�, (top-right at 225 Mpc; SNR ¼ 2423);M ¼ 105M� (middle-left at 125 Mpc; SNR ¼ 63),M ¼ 106M� (middle-right at
125 Mpc; SNR ¼ 1756), M ¼ 5� 106M� (bottom-left at 1 Gpc; SNR ¼ 6377) and M ¼ 108M� (bottom-right at 1 Gpc; SNR ¼
115154). The injected value is denoted in each case by a diamond.
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regions of the corresponding detectors, so this test is an
optimistic case. Also, the distances used were from the
lower end of the range quoted in Sec. IVA. For each non-
GR injection, the 90% probability limits on the values of
�!̂22, �!̂33 and ��̂22 were extracted and used to project

the corresponding confidence limits on !lm and �lm in the
ðM; jÞ-plane.
Figure 5 shows that even for deviations from GR as

small as 1% (corresponding to �!̂22 ¼ �0:01) for
ET and the 106M� NGO system, and as small as 0.1%
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FIG. 5 (color online). Projections in the ðM; jÞ-plane of the 90% confidence limits on !22, �22 and !33 [black, red dashed and green
dot-dashed lines, respectively for non-GR injections of M ¼ 500M� (top at 125 Mpc; with �!̂22 ¼ �0:01, SNR ¼ 2867 (left) and
�!̂22 ¼ �0:05, SNR ¼ 2779 (right)], M ¼ 106M� [middle at 125 Mpc; with �!̂22 ¼ �0:01, SNR ¼ 1753 (left) and �!̂22 ¼
�0:05, SNR ¼ 1735 (right)] and M ¼ 108M� [bottom at 1 Gpc; with �!̂22 ¼ �0:001, SNR ¼ 115130 (left) and �!̂22 ¼ �0:005,
SNR ¼ 115031 (right)]. The injected value is denoted in each case by a diamond.
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FIG. 6 (color online). Width of the 90% confidence intervals for �!̂22,�!̂33 and ��̂22 (black, green dot-dashed and red dashed
lines respectively) against luminosity distance for injections of 500 (top-left), 1000 (top-right), 105 (middle-left), 106 (middle-right),
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(corresponding to �!̂22 ¼ �0:001) for the 108M� NGO
system, the projection of !22 does not intersect consis-
tently with the projections of �22 and !33, which were
unchanged from their GR predicted values. When an addi-
tional parameter dependence is introduced for one mode
parameter, the mass and spin derived from this modified
parameter will not be consistent with the mass and spin
derived from the other unchanged parameters. For a devia-
tion of 5% for ET and the 106M� NGO system, and 0.5%
for the 108M� NGO system, the projection of!22 does not
even touch the projections of �22 and !33, let alone inter-
sect at the correct value. This shows that in extracting the
individual mode parameters from a QNM signal and pro-
jecting them in the ðM; jÞ-plane, it is possible to determine
if one, or many, of the mode parameters are not consistent
with GR and have some parameter dependence other than
on the mass and spin.

C. Discriminating between models

Although we have demonstrated the possibility of per-
forming a consistency test between the QNM parameters
by plotting them on the ðM; jÞ-plane, this method does not
provide a quantitative measure of the consistency as such.
In this section we seek to provide such a quantification by
performing model selection on two competing models: the
standard GR model for which we estimateM, j and q; and
the extended model where we estimate M, j and q but
allow the individual mode parameters to vary away from
their GR predicted values through the �!̂lm and ��̂lm
parameters. We shall see that even in the event where a
source is too distant to allow the consistency method
discussed in the previous section to be applied, it could
still possible be to perform model selection to distinguish
between GR and non-GR models.

Bayesian model selection is a method of determining,
for a given signal, whether the GR or non-GR model is
more likely by comparing the evidences for each. Note that
unlike in the previous case where we estimated the QNM
parameters directly, here we are estimating the physical
parameters of the source along with deviations from the
QNM parameters, where all QNM parameters are allowed
to vary together. The reason for this difference is that in
estimating the QNM parameters directly we would not
have a corresponding GR model with any free parameters
unless we also searched over M, j and q. Because in the
non-GR case we are measuring five parameters, including
the best-determined ones, the resulting joint probability
distributions are strongly correlated, although the presence
of the 21 mode and the assumption that ��33 ¼ 0 help to
break the degeneracy.

Here we compare evidences for both GR and non-GR
signals injected into simulated ET and NGO data as de-
scribed above, but calculate the evidence for each model
using the nested sampling algorithm. The ratio of these
evidences, known as the Bayes factor, quantifies the

support for one model over the other provided by the
data. Full computation of the Bayesian evidence automati-
cally takes into account the difference in dimensionality of
the parameter space, which penalizes the more complex
non-GR model accordingly, as we shall see.
Figure 7 displays how the Bayes factor between the GR

and non-GR models changes as the deviation of the in-
jected signal from GR increases. In the case of ET, we used
the signal from a 500M� black hole at at distance of
125 Mpc, giving a signal to noise ratio between 2644 and
2888. The NGO simulation used both a 108M� system at a
distance of 1 Gpc, with signal to noise ratio between
114909 and 115154, and a 106M� system at a distance of
125Mpc, with signal to noise ratio between 1706 and 1757.
For ET and the 106M� NGO system, we varied both �!̂22

and ��̂22 in the range �0:1 to 0, whereas for the 108M�
NGO system, we varied�!̂22 and��̂22 in the range�0:01
to 0, and in each case computed the evidence for both GR
and non-GR models. As the deviation from GR increases,
the evidence for the non-GR model increases whilst the
evidence for the GR model decreases, causing the Bayes
factor (the ratio of evidences for the two models in log
space) to increasingly favor the non-GR model, as ex-
pected. This is because as the deviation from GR increases,
the data fits the GR model with less accuracy, but the
parameter freedom of the non-GR model permits a con-
sistency with the data. If we assume a threshold of
logBGR;non-GR ¼ �10 (corresponding to prior odds of e10

in favour of the non-GRmodel), below which a deviation is
considered significant, then with the source parameters
above we are able to distinguish deviations at the level of
1% with ET and NGO for the most sensitive �!̂22

parameter.
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FIG. 7 (color online). The differences in evidence between the
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FIG. 8 (color online). The differences in evidence for the GR and non-GR models is plotted against the luminosity distance to the
source, for observation of ringdown signals from a 500M� black hole in ET (top panels), 108 and 106M� black hole in NGO (middle
and bottom panels, respectively). The non-GR model is simulated by varying either �!̂22 (left panels) or ��̂22 (right panels) as
compared to their GR values of 0. �!̂22 and ��̂22 are varied over the range 0 to �0:1 in steps of �0:01 in the case of ET and the
106M� NGO system, and over the range 0 to�0:01 in steps of�0:001 in the case of the 108M� NGO system, while keeping all other
parameters as for GR. The different curves in each panel correspond to different values of the non-GR parameter, starting with 0 for the
top most curve and changing by either �0:01 (top and bottom panels) or �0:001 (middle panels). A difference in evidence of �10 or
smaller is considered good enough to discriminate a non-GR model from GR model.
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As with the mode resolution of testing GR, the power of
the model selection test decreases with increasing source
luminosity distance since the signal visibility decreases.
The model selection method was carried out for the sources
above at distances spanning the entire range outlined in
Sec. IVA, and the Bayes factor between the GR and non-
GR minimal set plotted as a function of distance for signals
with different deviations from GR. Figure 8 shows that for
signals with larger deviations from GR, the maximal set
non-GR model is favored out to much greater distances.
We see also that for GR injections, the GR model is indeed
preferred, since the simpler model fits the data adequately.
When the distance is increased, the size of this effect
decreases as the posterior distribution for the modified
parameters gradually expands to fill the prior range. The
power of the model selection method relies on the ability to
exclude parts of the parameter space of the more complex
model.

For the purposes of comparison, if we again impose a
threshold on the Bayes factor of logBGR;non-GR ¼ �10, we
see that the non-GR model is favored above the threshold
at all distances for the 108M� system with a deviation of
only 0.6%, whereas deviations as small as 0.1% can be
detected out to a distance of �10:7 Gpc. For the 106M�
NGO system, the non-GR model is favoured above the
threshold up to�1 Gpc for a 2% deviation and�6 Gpc for
a 10% deviation. For ET, we are able to cross the threshold
up to �1:61 Gpc for a 2% deviation and 6.63 Gpc for an
8% deviation.

V. CONCLUSIONS

In this paper we have investigated how well quasinormal
modes could be used to test general relativity. Our work is
based on a quasinormal mode signal model [17] which
assumes that the progenitor binaries are nonspinning. We
have specifically looked at the ability of future ground- and
space-based detectors in testing the black hole no-hair
theorem. More specifically, we have investigated how
well future interferometric gravitational wave detectors
can test deviations of quasinormal mode frequencies and
damping from their general relativistic values.

As expected, the l ¼ 2, m ¼ 2 mode of the signal is the
most clearly measurable for the sources we considered,
which can be used to infer the mass and spin of the black
hole. Measurement of a third parameter, i.e., the frequency
of the l ¼ 3, m ¼ 3 mode, is then used to confirm consis-
tency between the modes. If the true signal is consistent
with GR, then the measurement of the different parameters
would be consistent with one another. We find that a 10%

deviation in !22 is clearly discernible for a 500M� source
at 1.25 Gpc in ET, as well as 106 and 108M� sources at
1.25 Gpc and 10 Gpc, respectively, in NGO. Within the
reach of NGO, the event rate could be rather high, and so
no-hair tests are promising in this case. Binary coales-
cences of intermediate mass black holes within 1.25 Gpc
are highly unlikely, and hence ET might not be able to
carry out such tests, except in the case of rare close-by
events.
In Sec. IVC, therefore, we applied Bayesian model

selection to obtain a more robust and quantitative measure
of the consistency of the data with GR vs a generalized
theory where the mode parameters depended on an extra
parameter other than the black hole mass and spin (i.e.,
‘‘hairy’’ black holes). Using this technique, we are able to
measure deviations at the 10% level in the !̂22 parameter
out to ’ 6 Gpc for a 500M� source with the Einstein
Telescope. With NGO, we are able to measure deviations
at the 10% level at 6 Gpc with a 106M� source, and the
0.6% level at z� 5:1 with a 108M� source.
In the above analysis, we have assumed that the location

and orientation of the GW source is known prior to the
analysis—a significantly simplified analysis compared to
the full problem of determining these parameters alongside
the test of relativity. Another limitation of our study is that
it is restricted to a small number of systems with very
specific source location, orientation and mass ratio of the
progenitor binary. Moreover, due to the lack of accurate
models, the study has used a very simple model of the
ringdown signal that neglects the effect of initially spin-
ning black holes of the progenitor binary. The presence of
spins could significantly alter the spectrum of the modes
excited and their relative amplitudes, which could impact
our ability to infer the mass ratio of the progenitor binary
and the no-hair tests studied in this paper. Nevertheless, the
methods we have developed in this work are equally ap-
plicable to the more general case, which should be per-
formed as part of a follow-up study. Such a study will be
helpful in a more robust evaluation of the potential of
future detectors in testing the no-hair theorem.
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