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Recently, inspired by Eddington’s theory, an alternative gravity called Eddington-inspired Born-Infeld

gravity was proposed by Bañados and Ferreira. It is equivalent to Einstein’s general relativity in vacuum,

but deviates from it when matter is included. Interestingly, it seems that the cosmological singularities are

prevented in this theory. Based on the new theory, we investigate a thick brane model with a scalar field

presenting in the five-dimensional background. A domain wall solution is obtained, and further, we find

that at low energy the four-dimensional Einstein gravity is recovered on the brane. Moreover, the stability

of gravitational perturbations is ensured in this model.
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I. INTRODUCTION

As the mainstay of gravitational theory, Einstein’s
general relativity (GR) provides precise descriptions to a
variety of phenomena in our Universe. But, it is also well
known that GR suffers various troublesome theoretical
problems, such as the dark matter problem [1], dark energy
problem [2], and the singularity problem [3]. Thus, alter-
native theories are helpful to enrich our knowledge about
the gravity and may provide us new approaches to over-
come these problems.

A purely affine gravitational theory was introduced by
Eddington in 1924 [4,5]. The theory is totally equivalent to
the GR with cosmological constant presented. However,
Eddington’s theory is incomplete because matter is not
included. Recently, inspired by Eddington’s theory, a new
intriguing theory called Eddington-inspired Born-Infeld
(EiBI) theory was put forward by Bañados and Ferreira
[6]. The authors completed Eddington’s theory with matter
included in a conventional way. Instead of insisting on a
purely affine action, they worked in a Palatini formulation,
i.e., the metric and the connection are regarded as inde-
pendent fields, and switched the structure to a Born-Infeld-
like one [7]. The EiBI theory reproduces GR appending
some high-order terms of Ricci tensor for a small matter
density, and approximates to Eddington’s for a large one.
Furthermore, it can be shown that this theory is completely
equivalent to GR with matter fields absent, but deviates
from GR in the presence of matter. As the most attractive
feature, cosmological singularities seem to be prevented in
this theory [6,8]. The relevant cosmological and astro-
physical issues were considered in [8–11], the singularity
features of EiBI theory with perfect fluids as the matter
were included in [12], the tensor perturbations of a homo-
geneous and isotropic space-time were discussed in [13],

and a nonsingular bouncing universe considered as a new
solution to the instability problem of tensor perturbations
was proposed in [14], recently.
On the other hand, in order to unify electromagnetism

and gravity, Kaluza and Klein (KK) proposed a five-
dimensional Einstein’s theory with a circle as the extra
spatial dimension in the 1920s [15,16]. The KK theory
opens the way to describe the particle interactions in
higher-dimensional space-time. Because of some problems
in this theory, KK’s pioneering idea had not draw enough
attention until the late 1970s and 1980s with the develop-
ments of superstring theories. In order to address the prob-
lem of why physical properties of the observed four-
dimensional space-time are totally different from the extra
dimensions, the brane-world scenario as one of the possible
mechanisms was suggested. The prototype idea of brane
world was proposed during the early 1980s [17,18] and
made great progress after the Arkani-Hamed-Dimopoulos-
Dvali model [19,20] and Randall-Sundrum model [21,22]
proposed in the late 1990s. It suggests that the standard
model particles are trapped on a four-dimensional hyper-
surface (called brane) embedded in a higher-dimensional
space-time (called bulk). There has been increasing interest
during recent years in brane-world scenario [23–38]. This is
because it provides us new perspectives to solve some
disturbing problems in high-energy physics, such as the
gauge hierarchy problem and the cosmological constant
problem [19–22]. And, it may also open up new horizons
to understand our Universe, see, e.g., Refs. [39–41] for
introduction.
Based on the gravity coupled to the background scalar

fields in multidimensional space-time, the brane configu-
ration is determined by the gravity theory, the scalar fields,
and the ways of scalar-gravity coupling. In this paper, we
are interested in the brane-world scenario based on this
new gravitational theory, the EiBI theory. A background
scalar field is included in the five-dimensional bulk to
generate the smooth thick brane configuration. We shall
show that the domain wall solution is supported by the
theory, and further, the linear tensor perturbations are
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stable and four-dimensional Einstein gravity is recovered
as the low-energy effective theory on the brane.

The paper is organized as follows: In Sec. II, we give a
brief introduction to the EiBI theory. In Sec. III, we put
forward a thick brane model and solve the theory to get a
domain wall solution. In Sec. IV, gravitational fluctuations
are considered. Finally, conclusions and discussion are
presented.

II. THE n-DIMENSIONAL EDDINGTON-INSPIRED
BORN-INFELD THEORY

Following Refs. [6,42], we consider the EiBI theory in
n-dimensional space-time and the action is proposed as

Sðg;�;�Þ ¼ 1

�b

Z
dnx½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jgMN þ bRMNð�Þj

q

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jgMNj

q
� þ SMðg;�Þ; (1)

where � ¼ 8�G5, b is a constant with inverse dimensions
to that of cosmological constant, and RMNð�Þ represents
the symmetric part of the Ricci tensor built with the
connection �. SMðg;�Þ is the action of matter fields
coupled to the metric only. The dimensionless parameter
� must be different from zero, inasmuch as when
matter fields are absent, the metric variation yieldsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jgPQ þ bRPQj

q
½ðgPQ þ bRPQÞ�1�MN ¼ 0, and this

makes no sense.
The equations of motion for this theory are obtained by

varying the action (1) with respect to the metric field g and
the connection field �, respectively. The variation of the
action with respect to the metric simply gives

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jgPQ þ bRPQj

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jgPQj

q ½ðgPQ þ bRPQÞ�1�MN � �gMN

¼ ��bTMN; (2)

where the energy-momentum tensor is defined as

TMN ¼ 2ffiffiffiffiffiffiffiffiffiffiffi
�jgPQj

p �LMðg;�Þ
�gMN

with indices raised by the metric

gMN .
The variation with respect to the connection can be

simplified by introducing an auxiliary metric

qMN ¼ gMN þ bRMN; (3)

and hence the variation leads to qMN;K ¼ 0, where the

semicolon is the covariant derivative with respect to the
connection �. This means that the auxiliary metric qMN

is compatible with the connection �, i.e., �K
MN ¼

1
2 q

KLðqLM;N þ qLN;M � qMN;LÞ is the Christoffel symbol

of the auxiliary metric. Then, by combining (2) and (3),
one has

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jqPQj

q
qMN ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jgPQj

q
gMN � b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jgPQj

q
TMN; (4)

where qMN is the inverse of qMN .
The Eqs. (3) and (4) and matter field equations form a

complete set of equations of the theory.
For a large value of bRMN , the EiBI action (1) apparently

approximates to the Eddington’s, while for a small value of

bRMN , by expanding the first term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�jgMN þ bRMNj

p
of

the EiBI action to second order in b, one has

S ¼ 1

2�

Z
dnx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jgMNj

q �
R� 2�eff þ b

4
RR

� b

2
RM

NR
N
M þOðb2Þ

�
þ SMðg;�Þ; (5)

where R ¼ gMNRMNðqÞ and �eff � ð�� 1Þ=b. Thus,
Eqs. (3) and (5) clearly show that the EiBI action repro-
duces the Einstein-Hilbert action with cosmological con-
stant �eff in lowest-order approximation. Further, by
varying this approximate action with respect to the metric
gMN , one has the modified Einstein equations

RMN ¼ 2

n� 2
�effgMN þ �

�
TMN � 1

n� 2
TgMN

�

þ b�2

�
SMN � 1

2ðn� 2ÞSgMN

�

� n� 4

n� 2
b�eff

�
1

n� 2
�effgMN

þ �

�
TMN � 1

n� 2
TgMN

��
; (6)

where SMN ¼ TK
MTKN � 1

n�2TTMN . When n ¼ 4, the

modified Einstein equation (6) will degenerate into the
standard Einstein equations with matter absent [6].
However, it is not the same case when n ¼ 5, for there is
still an additional correction associated with cosmological
constant. But, this is not in conflict with the conclusion that
the EiBI action (1) is equivalent to the Einstein-Hilbert
action in vacuum, since when matter is absent, Eq. (2)
simply implies that

RMN ¼ �ðð2Þ=ðn�2ÞÞ � 1

b
gMN: (7)

Then, we substitute this relation into the field equation (3),
and it just gives us

qMN ¼ �ðð2Þ=ðn�2ÞÞgMN: (8)

It means that the metric gMN is also compatible with the
connection �. Thus, Eqs. (7) and (8) indicate that the EiBI
action is equivalent to the Einstein-Hilbert action with the

cosmological constant �G ¼ ðn=2� 1Þð�ðð2Þ=ðn�2ÞÞ � 1Þ=b
when matter is absent. Without loss of generality, here we
assume that the parameter b is positive, thus when � < 1,
�G < 0 represents an anti-de Sitter (AdS) vacuum; when
� > 1, �G > 0 represents a de Sitter (dS) vacuum; and
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when � ¼ 1, �G ¼ 0 represents a Minkowski vacuum.
Furthermore, when the parameter � � 1, substituting (7)
back into the EiBI action with SM ¼ 0 just gives the
Eddington action [5,6]

Sð�Þ ¼ 1

�~b

Z
dnx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�j~bRMNð�Þj

q
; (9)

where the parameter ~b � b=ð1� �ðð2Þ=ð2�nÞÞÞ.

III. THE MODEL

In this section, based on the five-dimensional EiBI the-
ory, we consider a brane-world model with a scalar field
existing in the background as the ‘‘material’’ to construct
the brane configuration. The ansatz for the most general
metric which preserves four-dimensional Poincaré invari-
ance is [22]

ds2 ¼ a2ðyÞ���dx
�dx� þ dy2; (10)

where a2ðyÞ is the warp factor and y denotes the physical
coordinate of extra dimension. The EiBI theory without
matter is fully equivalent to Einstein-Hilbert action with
the cosmological constant �G. While when matter, such as
here a background scalar field, is included, the EiBI theory
will be distinct from the Einstein’s relativity. The
Lagrangian of a scalar field is given by

LM ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jgPQj

q
½12@K�@K�þ Vð�Þ�; (11)

where Vð�Þ is the scalar potential. We assume that
the scalar field refers to the extra dimension only, i.e.,
� ¼ �ðyÞ, to be consistent with the four-dimensional
Poincaré invariance of the metric. Then, the scalar field
equation is

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jgPQj

q @K½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jgPQj

q
@K�� ¼ @V

@�
; (12)

and the contravariant energy-momentum tensor is given by

TMN ¼ @M�@N�� ½12@K�@K�þ Vð�Þ�gMN: (13)

In this case, the auxiliary metric can be assumed as
qMN ¼ ð�u; u; u; u; vÞ with u and v the functions of y.
From the Eqs. (4) and (13), one finds

uvð1=2Þ ¼ a2½�þ b�ð12�02 þ Vð�ÞÞ�; (14)

u2v�ð1=2Þ ¼ a4½�� b�ð12�02 � Vð�ÞÞ�; (15)

where the prime denotes the derivative with respect to the
extra dimension y. Thus, we have

uðyÞ ¼ a2½�þ b�ðV þ 1
2�

02Þ�ð1=3Þ½�þ b�ðV � 1
2�

02Þ�ð1=3Þ;
(16a)

vðyÞ ¼ ½�þ b�ðV þ 1
2�

02Þ�ð4=3Þ½�þ b�ðV � 1
2�

02Þ��ð2=3Þ:
(16b)

From the metric (10), the equations of motion (3) and (12)
are written explicitly as

u ¼ a2 þ b
uu0v0 � 2vðu02 þ uu00Þ

4uv2
; (17a)

v ¼ 1þ b
uu0v0 þ vðu02 � 2uu00Þ

u2v
; (17b)

4
a0

a
�0 þ�00 ¼ @Vð�Þ

@�
: (17c)

Since the form of the scalar potential Vð�Þ is not given,
the system is not completely determined. Thus, the three
equations are not totally independent and the three varia-
bles aðyÞ, �ðyÞ, and Vð�Þ cannot be solved uniquely from
the equations. With the expectation that the scalar is a
kink solution (odd function), and the warp factor is a
Z2-symmetric function (even function), which peaks at
the origin and falls off along the extra dimension to make
sure that the null signal takes an infinite amount of time to
travel from y ¼ �1 to y ¼ 0, we assume a simple restric-
tion �0ðyÞ ¼ Ka2ðyÞ with K a constant parameter. Then,
the Eq. (17c) can be easily solved as

VðyÞ ¼ 3
2K

2aðyÞ4 þ V0; (18)

where the integral constant V0 represents the scalar
vacuum energy density. Thus, (16) can be expressed as

uðyÞ ¼ a2ð~�þ 2b�K2a4Þð1=3Þð~�þ b�K2a4Þð1=3Þ, vðyÞ ¼
ð~�þ 2b�K2a4Þð4=3Þð~�þ b�K2a4Þ�ð2=3Þ, where the pa-

rameter ~� ¼ �þ b�V0. Here, in order to simplify the
calculation, we fix the integral constant V0 by setting
~� ¼ 0, namely, we fix the scalar vacuum energy density
as V0 ¼ � �

b� . Then, the auxiliary metric is largely sim-

plified as

uðyÞ ¼ 	aðyÞð14=3Þ; (19a)

vðyÞ ¼ 2	aðyÞð8=3Þ; (19b)

where the parameter 	 ¼ ð ffiffiffi
2

p
b�K2Þð2=3Þ. Now, it is easy to

check that Eq. (17) supports the following solution:

aðyÞ ¼ sechð3=4Þ
�

2ffiffiffiffiffiffiffiffi
21b

p y

�
; (20)

�ðyÞ ¼ � 75=4

2� 31=4�1=2

�
iE

�
iyffiffiffiffiffiffiffiffi
21b

p ; 2

�

þ sechð1=2Þ
�

2yffiffiffiffiffiffiffiffi
21b

p
�
� sinh

�
2yffiffiffiffiffiffiffiffi
21b

p
��
; (21)

with the parameter 	 fixed as 	 ¼ 7=6, namely,

K ¼ �
�
7

3

�ð3=4Þ 1

2
ffiffiffiffiffiffi
b�

p : (22)

Here, we have set the integral parameters to fix að0Þ ¼ 1
and the function E is an elliptic integral. We plot the branch
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of the scalar with respect to the positive K in Fig. 1(a),
and the other branch is easily got by reflecting these
curves along the horizontal axis. As y ! �1, the scalar

j�ðyÞj approaches a constant v0 ¼ ið73Þ1=4 7
4
ffiffiffi
�

p ð
ffiffiffi
2
�

q
�2ð34Þ �

2Eð2ÞÞ ’ 2:59=
ffiffiffiffi
�

p
.

Moreover, from Eq. (18), the scalar potential VðyÞ is
given by

VðyÞ ¼ 7
ffiffiffiffiffiffi
21

p
24b�

sech3
�

2yffiffiffiffiffiffiffiffi
21b

p
�
� �

b�
: (23)

With an elliptic integral existing in the expression of scalar,
we fail to get an analytic expression of the scalar potential
Vð�Þ. Nevertheless, from Eq. (18), we have @V

@� ¼ 6Kaa0

and @2V
@�2 ¼ 6ða00a þ a02

a2
Þ, then we find that, as � ! �v0,

@V
@� ! 0 and @2V

@�2 ! 9b
7 > 0. It means that the points

Vð�v0Þ are two minimums (vacua) of the potential.
Thus, as we have expected, the scalar is indeed a kink
solution with �ð�1Þ ¼ �v0 corresponding to the two
vacua of the potential. This brane solution depicts a
domain wall configuration.

Further, the energy density is defined as 
ðyÞ ¼
TMNw

MwN � V0, where w
M is the 4-velocity of the static

observer and here we have subtracted the contribution of
the vacuum energy density V0. Thus, from Eq. (13), we
have


ðyÞ ¼ �T0
0 þ

�

b�
¼ 7

ffiffiffiffiffiffi
21

p
18b�

sech3
�

2yffiffiffiffiffiffiffiffi
21b

p
�
: (24)

The energy density is localized in the origin of 5th dimen-
sion as shown in Fig. 1(b), and it does not dissipate with
time. The brane thickness can be defined as the full width
of the peak at half maximum value and it is completely
decided by the parameter b. For a small value of b, the
brane thickness can be hidden from our low-energy obser-
vation on the brane.

Moreover, with the warp factor and auxiliary metric, the
Ricci scalar curvature is given by

R ¼ gMNRMN ¼ 1

b

�
2� 7tanh2

�
2ffiffiffiffiffiffiffiffi
21b

p
�
y

�
: (25)

When y approaches infinity, the scalar curvature
R ! �5=b < 0. It means that the bulk is an asymptotically
AdS space-time. It is also consistent with the brane con-
figuration that matter mainly distributes on the brane with
AdS vacuum left far away from it.

IV. GRAVITATIONAL FLUCTUATIONS

Here, we are interested in the tensor fluctuations which
involve the spin-2 gravitons in our model, thus we impose
the axial gauge h�5 ¼ h55 ¼ 0 to remove the scalar mode

and vector mode, and the perturbed metric is simply given
by [21]

dŝ2 ¼ ĝMNðx; yÞdxMdxN
¼ a2ðyÞ½��� þ h��ðx; yÞ�dx�dx� þ dy2; (26)

where h�� represent tensor fluctuations about background

space-time. Then, with the relation (19), the perturbed
auxiliary metric can be assumed as

dŝ02 ¼ q̂MNðx; yÞdxMdxN ¼ ½qMN þ �MNðx; yÞ�dxMdxN
¼ 	að8=3ÞðyÞ½a2ðyÞð��� þ ���Þdx�dx�

þ ��5ðx; yÞdx�dyþ 2ð1þ �55ðx; yÞÞdy2�; (27)

where � and � represent fluctuations of the auxiliary
metric.
Now, with these two perturbed metrics, after calculating

the linear fluctuations of the field equation (4), the per-
turbed auxiliary metric is given by

��� ¼ h�� þ 1

Ka2

�
3
a0

a
��� 1

6
��0

�
���; (28a)

��5 ¼ 1

Ka2
@���; (28b)

�55 ¼ 4

3Ka2
��0; (28c)

b 1

b 2

15 10 5 0 5 10 15

2

1

0

1

2

y

b 1

b 2

15 10 5 0 5 10 15
0.0

0.5

1.0

1.5

y

FIG. 1 (color online). The shapes of the scalar �ðyÞ and the energy density 
ðyÞ. The parameters are set to � ¼ 1, � ¼ 1.
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where �� represents the perturbation of the background scalar field. Further, with the above perturbed auxiliary metric and
the relations (17a) and (17b), the linear fluctuations of the field equation (3) are give as follows.

The �� components:

1

2
��
@�@�h�
þ1

2
��
@�@�h�
�1

2
hð4Þh���1

4
a2h00���2aa0h0���1

2
@�@�h� 7

12
aa0���h

0 þ 1

24K
�����

000

þ 1

12K

1

a2
���h

ð4Þ��0 � 1

3K

a0

a3
���h

ð4Þ��� 1

K

a0

a3
@�@���þ 7

12K

a0

a
�����

00 � 1

36K

a00

a
�����

0

� 13

36K

a02

a2
�����

0 � 3

4K

a000

a
������ 25

4K

a00a0

a2
�����þ30

K

a03

a3
������ 3

bK

a0

a
�����þ 1

6bK
�����

0 ¼0; (29)

where h ¼ ��
h�
 and hð4Þ ¼ ��
@�@
.
The �5 component:

1

2
��
@�h

0
�
 � 1

2
@�h

0 þ 1

4K

1

a2
@���

00 � 1

3K

a0

a3
@���

0 � 9

2K

a00

a3
@���þ 27

2K

a02

a4
@���� 1

bK

1

a2
@��� ¼ 0: (30)

The 55 component:

� 1

2
h00 � 5

3

a0

a
h0 þ 1

3K

1

a2
��000 � 1

3K

1

a4
hð4Þ��0 � 2

3K

a0

a5
hð4Þ��þ 10

3K

a02

a4
��0 � 2

9K

a00

a3
��0

� 6

K

a000

a3
��þ 34

K

a00a0

a4
��� 12

K

a03

a5
��� 8

3bK

1

a2
��0 ¼ 0: (31)

Moreover, the fluctuation of the scalar field equation
(12) is given by

1

2
�0h0 þ 1

a2
hð4Þ��þ ��00 þ 4

a0

a
��0 ¼ @2V

@�2
��: (32)

Further, we consider the transverse-traceless (TT)
components �h�� of the gravitational perturbations

defined by �h�� ¼ P��


h

, where P��

 ¼ ��
�
� �

1
3����

 is the TT projection operator for symmetric

tensor field with ��� ¼ ��� � @�@�=h
ð4Þ. And the TT

components satisfy the conditions

��� �h�� ¼ ���@� �h�� ¼ 0: (33)

Since Eqs. (30)–(32) are purely non-TT components and
all the TT components are involved in the Eq. (29), with the
TT projection operator, it is easy to find that the scalar
perturbation �� decouples from the TT tensor perturba-
tions and Eq. (29) gives us

1
2 a

2 �h00�� þ 4aa0 �h0�� þhð4Þ �h�� ¼ 0: (34)

In order to eliminate the prefactor a2 in the first term, we

utilize a coordinate transformation dy ¼ aðzÞffiffi
2

p dz to rewrite

the perturbed metric (26), and hence, in the new coordinate
z, Eq. (34) is rewritten as

@z;z �h�� þ 7
@za

a
@z �h�� þhð4Þ �h�� ¼ 0: (35)

Further, we decompose �h�� in the form

�h��ðx; zÞ ¼ "��ðxÞa�ð7=2ÞðzÞ�ðzÞ; (36)

where the factor a�7=2ðzÞ is appended in order to eliminate
the first derivative term of �ðzÞ, and the mass m of KK
excitations is defined by the four-dimensional Klein-
Gordon equation

hð4Þ"��ðxÞ ¼ m2"��ðxÞ: (37)

Then, a Schrödinger-like equation is obtained from
Eq. (35)

� @z;z�ðzÞ þUðzÞ�ðzÞ ¼ m2�ðzÞ; (38)

with the effective potential UðzÞ given by

UðzÞ ¼ 7

2

@z;za

a
þ 35

4

ð@zaÞ2
a2

: (39)

The Hamiltonian in Eq. (38) can be factorized as

H ¼
�
d

dz
þ 7

2

@za

a

��
� d

dz
þ 7

2

@za

a

�
; (40)

with the coefficient 7=2 rather than 3=2 as usual
[22,24,26,31,32,34,43]. Thus, supersymmetric quantum
mechanics ensures that there is no normalizable mode
with m2 < 0 [27]. It means that this system is tachyonic
free and stable under tensor fluctuations. The KK mass
spectrum of the Schrödinger equation (38) determines
graviton masses observed on the brane. The zero mode is
easily got from (38) by setting m ¼ 0, and it is
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�0ðzÞ ¼ N0a
7=2ðzÞ; (41)

where the normalization parameter N0 is fixed by

the normalization condition
R
�2ðzÞdz ¼ R

�2ðyÞ dy
aðyÞ ¼R

N2
0a

6ðyÞdy ¼ 1, so N2
0 ¼ 45=½256 ffiffiffi

b
p ffiffiffiffiffiffiffi

2
21�

q
�ð94Þ�ð134 Þ� �

0:35=
ffiffiffi
b

p
. The normalizable zero mode ensures that the

massless graviton only propagates along the brane and
provides the gravitational fields in the low-energy effective
theory.

We numerically plot the effective potential UðzÞ and the
zero mode �0ðzÞ in Fig. 2. The Fig. 2(b) shows that the
gravitational zero mode localizes at the origin of extra
dimension and vanishes as jyj ! 1. The effective poten-
tial is volcano-like. It has a deep well at the origin and
asymptotically vanishes at each side, as shown in Fig. 2(a).
Thus, besides a bound massless mode, there exists a set of
continuous massive KK modes �mðzÞ starting at m2 > 0.
These massive KK modes are not localized on the brane.
Nevertheless, for two barriers existing at each side of the
potential well, some massive resonant states could exist. If
their lifetimes on the brane are long enough, they can be
regarded as quasilocalized massive gravitons.

From the decomposition (36), the wave function of the

gravitational zero mode is �hð0Þ��ðxÞ ¼ N0"��ðxÞ, and this TT
mode is the four-dimensional massless graviton propagat-
ing on the brane. Therefore, as in [22], the low-energy
effective theory should be provided by including only the
massless zero mode in the fluctuational metric (26), i.e.,

dŝ2 ¼ a2ðyÞgð4Þ��ðxÞdx�dx� þ dy2

¼ a2ðyÞð��� þ �hð0Þ��ðxÞÞdx�dx� þ dy2:
(42)

Since the scalar perturbation decouples from the TT com-
ponents of the tensor perturbations and is just relevant to
non-TT components, from the linear fluctuations of the
field equations, the above effective perturbed metric with
the TT zero mode just leads to the vanishing of the scalar
perturbation ��. And hence, the components of the per-

turbed auxiliary metric (28) are simplified as ��� ¼ �hð0Þ��

and ��5 ¼ �55 ¼ 0. Thus, the perturbations of the auxil-

iary metric are identical to the TT perturbations in the
space-time metric although they are multiplied by different
warp factors. This intriguing result was also presented in
[13], where the authors studied the TT tensor perturbations
of a homogeneous and isotropic space-time in EiBI theory.
However, when the non-TT part is included, this conclu-
sion does not hold anymore for the nonvanishing �� in
(28). Then, with this perturbed auxiliary metric, the EiBI
action (1) gives us the four-dimensional effective gravita-
tional theory on the brane

S � 1

�b

Z
d5x½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jĝMN þ bRMNj

q
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jĝMNj

q
�

� 1

2~�

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jgð4Þ	�j

q
Rð4Þ; (43)

where Rð4Þ ¼ gð4Þ��Rð4Þ
�� with Rð4Þ

��ðxÞ constituting by

gð4Þ��ðxÞ, and 1=~� ¼
ffiffi
2

p
	ð3=2Þ
�

Rþ1
�1 dya6ðyÞ ¼ ffiffiffi

2
p

	ð3=2Þ=
ðN2

0�Þ � 5:09
ffiffiffi
b

p
=�. So, we can read off the relation of

the effective four-dimensional Planck scale MN ¼ ð~�Þ�1=2

and the fundamental five-dimensional Planck scale

M� ¼ ð�Þ�1=3, namely, M2
N ¼ 5:09

ffiffiffi
b

p
M3�. An analogous

relation can be found in the Randall-Sundrum-2 model
[22], where M2

N ¼ M3�=k with the parameter k a scale of
order the Planck scale EPl 	 1019 GeV. Thus, here we set
the parameter b	 E�2

Pl to fixMN andM� both of order the

Planck scale. The Eq. (43) shows that four-dimensional
Einstein gravity is indeed recovered on the brane at low-
energy level.

V. CONCLUSIONS AND DISCUSSION

In this paper, we have investigated generating a flat thick
brane configuration in EiBI gravity by including a scalar
field in the bulk. The solution of scalar field is found to be a
kink which connects two vacua of the potential and the
brane configuration is a domain wall. Further, as discus-
sions in [38,41,44,45], by introducing a proper Yukawa

b 1
b 2
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FIG. 2 (color online). The shapes of the effective UðzÞ potential and the zero mode �0ðzÞ. The parameters are set to � ¼ 1, � ¼ 1.
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coupling with the scalar field, Dirac fermions can be
localized on the domain wall.

In tensor fluctuations, a Schrödinger equation is ob-
tained, and furthermore, the Hamiltonian can be factor-
ized. It ensures the stability of the system. While in [13],
the tensor modes were found to be linearly unstable in
TT perturbations to a four-dimensional homogeneous and
isotropic universe, thus the brane-world scenario may be
helpful to stabilize the models in this gravity theory.
For the volcano-like potential, there exists just one bound
zero mode (massless graviton observed on the brane)
and a set of continuous massive modes. The normalized
zero mode provides the four-dimensional gravitational
fields in the low-energy effective theory. As shown in
Eq. (43), GR is indeed recovered on the brane, and
hence, it ensures the theory does not violate experimental
observations.

As � is a dimensionless parameter, b	 E�2
Pl and

�	 E�3
Pl , the scalar vacuum energy density is fixed as

V0 	 E5
Pl. On the other hand, when y ! �1, namely,

away from the scalar source, the system approaches AdS
vacuum. We notice that the constant V0 ¼ � �

b� in the

scalar potential solution (23) cancels out the � term in
the EiBI action (1), thus the effective five-dimensional
cosmological constant can be easily read from Eq. (7) as
�5 ¼ � 3

2b . It is consistent with the statement that the

geometry of the bulk is an asymptotically AdS space-
time (R ! �5=b). Although the five-dimensional cosmo-

logical constant�5 is huge, the brane is still effectively flat
(four-dimensional Minkowski space-time).
The parameter b is set to be small enough, while the

Ricci tensor RMN is proportional to 1=b, thus the expansion
(5) is invalid, and the EiBI theory deviates fromGR. On the
other hand, owing to the connection constituted by the
auxiliary metric which deviates greatly from the space-
time metric when the background scalar included, the
potential of the Schrödinger equation is distinct from the
one achieved in the brane model based on GR. And, it just
emerges as one apparent feature of the deviation. Since the
Schrödinger equation determines the mass spectrum of KK
gravitons, and further, effective Newtonian potential be-
tween two particles located on the brane is generated by
exchange of the zero mode and massive KKmodes [22,46],
the corrections of Newtonian potential should be different.
The explicit potential correction is left for future works.
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