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We achieve a group theoretical quantization of the flat Friedmann-Robertson-Walker model coupled to

a massless scalar field adopting the improved dynamics of loop quantum cosmology. Deparemetrizing the

system using the scalar field as internal time, we first identify a complete set of phase space observables

whose Poisson algebra is isomorphic to the suð1; 1Þ Lie algebra. It is generated by the volume observable

and the Hamiltonian. These observables describe faithfully the regularized phase space underlying the

loop quantization: they account for the polymerization of the variable conjugate to the volume and for

the existence of a kinematical nonvanishing minimum volume. Since the Hamiltonian is an element in the

suð1; 1Þ Lie algebra, the dynamics is now implemented as SU(1, 1) transformations. At the quantum level,

the system is quantized as a timelike irreducible representation of the group SU(1, 1). These representa-

tions are labeled by a half-integer spin, which gives the minimal volume. They provide superselection

sectors without quantization anomalies and no factor ordering ambiguity arises when representing the

Hamiltonian. We then explicitly construct SU(1, 1) coherent states to study the quantum evolution. They

not only provide semiclassical states but truly dynamical coherent states. Their use further clarifies the

nature of the bounce that resolves the big bang singularity.
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I. INTRODUCTION

In the last decade loop quantum cosmology (LQC) has
been established as a promising model of quantum cos-
mology in its attempt to address some of the fundamental
issues of standard cosmology, such as the avoidance of the
initial singularity, origin of inflation, etc. For recent
reviews see [1–3]. The paradigmatic model in LQC is the
flat Friedmann-Robertson-Walker (FRW) model coupled
to a homogeneous massless scalar field, the simplest cos-
mological model with nontrivial dynamics. Actually, ow-
ing to the isotropy and the homogeneity, the model is
constrained by a single global Hamiltonian constraint.
Furthermore, the matter term corresponding to the mass-
less scalar allows us to deparametrize the system, regard-
ing the scalar as the internal time, and easily solve it.
Solutions undergo a singularity at vanishing volume of
the Universe.

In his pioneering works [4–8], Bojowald proposed to
adapt the quantization techniques of loop quantum gravity
[9–11] to construct a singularity-free quantization of this
simplest model. Then, the mathematical structure of LQC
was rigorously established [12,13] and the quantization of
the model was completed [14–16]. The improved dynam-
ics introduced in [16] showed that, as desired, the big bang
singularity is resolved being replaced by a quantum
bounce: choosing as physical observable the volume at a
given value of the internal time, then while the time varies,
the expectation value of the volume in physical states

features a contraction epoch, till it bounces to start expand-
ing. In the moment of the bounce the matter density
reaches a finite maximum value that is of Planck order.
Though the quantization of the model was successfully

completed in [16], it has been further investigated.
Essentially, playing around with the factor ordering ambi-
guity present when symmetrizing the Hamiltonian con-
straint operator, different orderings, with different
advantages with respect to the original ordering of [16],
have been proposed (see e.g. [17–19]), all of them with the
same asymptotic behavior but different at small scales.
These analysis show that the bounce featured by the quan-
tum evolution holds for all choices of factor ordering and is
universal: it happens for all the physical states.
Moreover, following the cosmic recall scenario origi-

nally proposed in [20] and further developed as a generic
feature of loop quantum cosmology in [21], it has been
shown that under certain conditions the bounce preserves
semiclassicality: the expectation value of the volume in
states that are semiclassical at late times follows as time
varies a well-defined trajectory with bounded relative fluc-
tuations. As a result it is possible to derive an effective
classical dynamics generating those trajectories (see e.g.
[22]). Actually, this effective dynamics can be understood
as a consequence of a process of phase space regularization
sometimes called ‘‘polymerization’’: given the basic vari-
able describing the geometry, the volume in the case of the
improved dynamics of LQC, denoted by v, its canonically
conjugate variable b is regularized by the expression
sinð�bÞ=� with � a fixed real parameter with dimension
of a length (usually set to the Planck scale). As a result, the
phase space is described by v and by the exponentiated
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observables e�i�b, instead of b itself. In this regularization
lies the bounce mechanism solving the singularity.1

In this work we look again at the flat FRW model
coupled to a massless scalar, within the improved dynam-
ics of LQC, improving further the quantization. Now we
propose a different and more natural approach, following
group theoretical techniques. Indeed, it is easy to realize
that the Poisson algebra of a basic set of observables
describing the phase space in LQC is isomorphic to the
suð1; 1Þ algebra. This property was already pointed out in
[23], and more recently in [24] in the context of the dipole
cosmology model derived from loop quantum gravity and
spinfoam models [25–27]. In [24], although the suð1; 1Þ
structure was discussed to have a more fundamental role, it
was merely used to deduce the spectrum of the
Hamiltonian. On the other hand, in [23], the suð1; 1Þ group
structure was used in a deeper way to derive the quantum
cosmological evolution. However in that work the advan-
tages of having a consistently quantizable algebra were not
fully exploited, since no use of the group theoretical quan-
tization was employed. Rather, the model was analyzed
from an algebraic point of view: the quantum evolution
was not derived from a process of quantizing the observ-
ables on a Hilbert space, but was described as a set of
coupled classical equations of motion for the expectation
values, fluctuations and correlations of the observables.
This allowed to study the cosmological evolution of the
fluctuations, but did not provide an explicit analysis of the
Hilbert space and quantum states of geometry.

Instead, we here take full advantage of the suð1; 1Þ
algebra structure of the model. We will perform a trans-
parent quantization, simply by representing the set of phase
space observables as self-adjoint operators associated with
the generators of the algebra. In this way, the different
superselection sectors that our quantization features will
correspond to the irreducible representations of the group
SU(1, 1) of the discrete principal series. In comparison
with the standard LQC procedure of e.g. [16–19], several
advantageous novelties follow:

(i) In the usual LQC approach the Hamiltonian operator
suffers from factor ordering ambiguities. Rather, in
our description, the Hamiltonian is an element of the
suð1; 1Þ algebra and thus it is represented without
ambiguity. Moreover, the evolution is simply gener-
ated by SU(1, 1) transformations.

(ii) In LQC the volume variable v lies in the real line. It
is defined from the triad variable through a canoni-
cal transformation and its sign reflects the orienta-
tion of the triad. Strictly speaking, its absolute value
jvj gives the volume (up to a numerical factor).
Then one would wish to restrict to positive values

of v in a way consistent with the dynamics, in order
to avoid unphysical crossovers and interferences
between positive and negative orientation states.
Previous works attained the decoupling of positive
values of v from negative ones either appealing to
parity symmetry [16,17], or proposing a suitable
factor ordering for the Hamiltonian constraint
[18,19]. In our approach this is no longer an issue:
positive (negative) values of v correspond to the
positive (negative) discrete principal series of
SU(1, 1). Therefore positive and negative values
of v are decoupled beforehand, each sector provid-
ing an irreducible representation.

(iii) In LQC the kinematical volume v is discrete, due to
the nature of the loop quantization. Moreover it is
superselected in decoupled sectors. In each sector
the admissible values of v form a lattice of equi-
distant points [16]. Therefore, once v is restricted
to be positive, it features a minimum nonvanishing
value characteristic of the corresponding superse-
lection sector. The studies of the effective dynamics
proposed so far in the literature (see e.g. [16,22])
ignore this fact, and they only take into account the
polymerization of the conjugate variable b, assum-
ing v � 0. In comparison, our approach can be
consistently generalized to account, not only for
the regularization of the variable b, but also for the
regularization of the volume, such that at the clas-
sical level v � vm > 0. Namely, we can really
describe the regularized phase space underlying
LQC accounting for the existence of a minimal
volume directly at the classical level.

(iv) The kinematical minimum volume labels different
superselection sectors in the quantum theory. In the
usual LQC approach this label takes values in a
continuous finite interval. In contrast, in our ap-
proach, the kinematical minimum volume is dis-
crete, since its value is the spin j ¼ ð1þNÞ=2 that
labels the chosen timelike irreducible representa-
tion of the group SU(1, 1). Then, unlike in usual
LQC, the direct sum of our superselection sectors is
still a separable Hilbert space.

(v) So far, in the previous quantization schemes of the
model within LQC, semiclassical states were pro-
vided [16,19,28], but not truly coherent, since those
states changed shape under evolution and did not
saturate the uncertainty relations. In our case,
suð1; 1Þ coherent states will naturally provide ex-
plicit and exact dynamical coherent states. The
analysis of the expectation values and fluctuations
of physical observables in these states confirms once
again the universality of the quantum bounce and
that fluctuations remain bounded. Let us note that in
[23] coherent states were also discussed. Although
not explicitly constructed, the evolution of their

1The regularized algebra generated by v and e�i�b is an
adaptation to this homogeneous situation of the regularized
holonomy-flux algebra employed in loop quantum gravity.

ETERA R. LIVINE AND MERCEDES MARTÍN-BENITO PHYSICAL REVIEW D 85, 124052 (2012)

124052-2



fluctuations and correlations was derived. We will
compare our results with those of [23].

(vi) The group theoretical perspective provides a rigor-
ous setting when analyzing possible generalizations
of the FRW model. If other terms such as curvature
or cosmological constant admit a description in
terms of the elements of the algebra, then they
will also admit an anomaly free quantization.

The structure of the paper is as follows. In Sec. I A we
review the classical flat FRW model in the presence of a
massless scalar and then the corresponding effective model
derived from LQC, regularized by taking into account the
polymerization of b. In Sec. I B we describe the SU(1, 1)
group structure of this effective model and explicitly show
that the evolution is given by SU(1, 1) transformations. In
Sec. I C we modify the previous description in order to take
into account also the regularization of the volume and, in
this way, consider the fully regularized classical model
underlying LQC. This fully regularized model is then
quantized in Sec. I D by considering the timelike represen-
tations of SU(1, 1). We explicitly construct dynamical
coherent states and use them to analyze the quantum
evolution. We also compare our approach with previous
quantizations of the model. In Sec. I E we generalize our
analysis by considering a generic suð1; 1Þ Hamiltonian, in
order to study whether curvature or cosmological constant
can be implemented simply in our framework. Finally we
conclude summarizing the main results of this work.

We detail in two appendices the group theoretical tools
employed in the paper. We review the Schwinger repre-
sentation of the classical suð1; 1Þ algebra in Appendix A.
Then we construct the timelike irreducible representations
of SU(1, 1) and provide coherent states together with their
properties in Appendix B. Finally Appendix C reviews the
classical description of the FRW model with curvature or
cosmological constant.

A. Classical and regularized FRW models

In this section we will briefly review the Hamiltonian
formulation of the flat FRW model in the presence of a
massless scalar. We will start by the classical model within
general relativity. Then, we will review how this classical
dynamics is modified when considering the regularization
employed in loop quantum cosmology.2

1. Standard flat FRW cosmology

The (standard) flat FRW model represents isotropic and
homogeneous solutions of the Einstein equations with flat
spatial sections. Since these spatial sections are noncom-
pact, and the variables that describe the model are spatially
homogeneous, several integrals that appear in the
Hamiltonian framework, such as the symplectic structure

or the spatial average of the Hamiltonian constraint, di-
verge. To avoid these divergences, one usually restricts the
analysis to a finite cell V . Owing to the homogeneity, the
study of this cell reproduces what happens in the whole
Universe.
Thanks to the homogeneity and the isotropy of the

model, the geometry sector of the phase space can be
described by a single pair of canonical variables. Usually
one employs the scale factor a and its canonically con-
jugate momentum �a, such that fa;�ag ¼ 1. On the other
hand, let us denote by � the massless scalar, and by p� its

momentum, such that f�;p�g ¼ 1. Owing to the homoge-

neity, this phase space is only constrained by the scalar or
Hamiltonian constraint, which reads

C ¼ � 2�G

3

�2
a

a
þ p2

�

2a3
¼ 0: (1)

In LQC, following loop quantum gravity, the phase
space of the model was originally described by a real
coefficient c parametrizing the Ashtekar-Barbero connec-
tion (which encodes the extrinsic curvature), and a real
coefficient p parametrizing the densitized triad (which
measures the area), defined such that fc; pg ¼ 8�G�=3,
being � the Immirzi parameter [12]. This set of variables is
related with the previous one by the canonical transforma-
tion

a ¼
ffiffiffiffiffiffiffi
jpj

q
; �a ¼ � 3

4�G�
signðpÞ

ffiffiffiffiffiffiffi
jpj

q
c; (2)

so that the scalar constraint in these variables becomes

C ¼ 1

16�G

�
� 6

�2
c2

ffiffiffiffiffiffiffi
jpj

q
þ 8�G

p2
�

jpj3=2
�
¼ 0: (3)

The improved dynamics scheme [16] proved later that it
is better to describe the geometry in terms of the volume
instead of the area.3 Then, one introduces a variable v
measuring the volume V of the cell under study, V ¼
4�Gjvj, and its canonically conjugate variable b, such
that fb; vg ¼ 1.4 The relation between these variables and
the previous ones is

p ¼ signðvÞð4�GjvjÞ2=3; c ¼ �ð4�GjvjÞ1=3b; (4)

a ¼ ð4�GjvjÞ1=3; �a ¼ �3signðvÞ
�
v2

4�G

�
1=3

b: (5)

2Along this paper we work with units ℏ ¼ c ¼ 1.

3In this way, the polymeric representation of the resulting
algebra leads to a quantum evolution in agreement with general
relativity at semiclassical scales and introducing important quan-
tum effects only at Planck scales. In turn, the ‘‘old dynamics,’’ in
which the polymeric representation is carried out using the
variables p and c, led to the possibility of having important
quantum effects at classical scales [14,15].

4Note that, according with these definitions, v and b�1 have
dimensions of length. Then V ¼/ Gv has correctly the dimen-
sion of a volume.
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Therefore, the Hamiltonian constraint is given by

C ¼ � 3

2
b2vþ p2

�

8�Gv
¼ 0: (6)

It is obvious to realize that p� is a constant of motion, since

it Poisson commutes with the Hamiltonian constraint.
Then we can deparametrize the system by regarding � as
an internal time and p� as the (physical) Hamiltonian

which generates evolution in the time �. In view of the
constraint we have

p� ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G

p
bv � H�: (7)

We obtain two branches of solutions. Let us first consider

the negative branch. We define the time parameter � �ffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G

p
� for convenience, then the equations of motion

have a very simple form,

@�v ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G

p fv;H�g ¼ vð�Þ;

@�b ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G

p fb;H�g ¼ �bð�Þ; (8)

with solution

vð�Þ ¼ vð�oÞe���o ; bð�Þ ¼ bð�oÞe�ð���oÞ: (9)

As shown on Fig. 1, the solutions correspond to a Universe
expanding from a vanishing volume at � ! �1 to an
infinity volume at � ! 1. In consequence, the matter
density �� ¼ p2

�=2V
2 / p2

�=v
2 diverges at initial time

� ! �1, which corresponds to the initial big bang singu-
larity. Then the volume grows as the scalar field grows too.
The negative branch is the time reversal of the positive
branch. Thus it consists in solutions contracting from
infinite volume to vanishing volume, where a big crunch
singularity is formed.

It is convenient for some purposes to switch back to
proper time t for which the evolution is given by taking the
constraint C as the Hamiltonian. Then the equation of
motion of � in terms of the proper time t is given by
d�=dt ¼ f�;Cg, so that the relation between the proper
time and the internal time is

dt ¼ 4�G

p�

vd� ¼ 1

p�

ffiffiffiffiffiffiffiffiffiffi
4�G

3

s
vd�: (10)

Considering the negative branch, this is easily integrated,
setting �0 ¼ 0 for simplicity’s sake:

t ¼ v0

p�

ffiffiffiffiffiffiffiffiffiffi
4�G

3

s
e� ¼ 1

p�

ffiffiffiffiffiffiffiffiffiffi
4�G

3

s
v; (11)

so that the internal time evolution � 2 R is mapped onto
positive proper time t 2�0,þ1½ and the initial proper time
t ¼ 0 corresponds to � ! �1 and vanishing volume, that
is to the big bang singularity.
Interestingly, the expansion rate in internal time is constant,

since @�v ¼ v. But converting this back to proper time, we
recover the standard Hubble expansion rate given by:

@ta

a
¼ 1

3

@tv

v
¼ 1

3

@�v

v

d�

dt
¼ � p�ffiffiffiffiffiffiffiffiffiffiffiffiffi

12�G
p 1

v
¼ b: (12)

In particular, this allows to recover the standard Friedmann
equation: �

@ta

a

�
2 ¼ 8�G

3
�: (13)

2. Effective FRW cosmology from LQC

LQC successes in solving the cosmological singularity
essentially owing to a process of regularization. Indeed, the
basic observables describing the geometry are chosen to be
the variable v and the exponentials ei�b, with fixed length
scale �, instead of b itself.5 Then b is regularized by the
expression [16]

10 5 5 10
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1500
v

10 5 5 10
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1000

1500

b

FIG. 1 (color online). Plots of the volume v (on the left) and of its conjugate momentum b (on the right) evolving as functions of the
internal time �, for �o ¼ 0, for the negative branch: the Universe starts with a big bang at � ! �1 to expand to infinite volume
� ! þ1.

5Unlike in a standard Schrödinger quantization, in LQC
the Hilbert space is not the space of smooth functions of the
configuration variable b, square integrable with respect to the
Lebesgue measure. Rather, the Hilbert space of LQC is the Bohr
compactification of the real line [12,13]. A basis of this space is
provided by the almost periodic functions of b, whose elements
are linear combinations of exponentials ei�b with � 2 R. Hence,
they describe the configuration space. The regularization of the
curvature tensor later requires to fix the value of � to a constant
of Planck order [16].
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sinð�bÞ
�

¼ ei�b � e�i�b

2i�
; (14)

and thus the regularized Hamiltonian is given by

H�
eff � p� ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffi

12�G
p sinð�bÞ

�
v: (15)

Considering the negative branch, the equations of motion
now are

@�v ¼ cosð�bÞv; @�b ¼ � sinð�bÞ
�

; (16)

with solution

vð�Þ ¼ vo coshð�� �oÞ;
bð�Þ ¼ 1

�
arccos½tanhð�� �oÞ�; (17)

where �o and vo are constants of integration.
Note that these solutions are invariant under time rever-

sal, and therefore in this case positive and negative
branches merge in a unique branch of solutions. As we
can see on Fig. 2, these solutions correspond to a Universe
that contracts from infinite volume at � ! �1 till it

reaches a minimum volume vð�oÞ ¼ �p�=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G

p
, and

then starts expanding till infinite volume at � ! þ1.
Therefore the Universe suffers a bounce at � ¼ �o. The
matter density,

��ð�Þ ¼
p2
�

2½4�Gvð�Þ�2 ¼
3

8�G�2

1

cosh2ð�� �oÞ
; (18)

reaches a nondivergent maximum at the bounce, given by

��ð�oÞ ¼
p2
�

2½4�Gvo�2
¼ 3

8�G�2
� �c: (19)

This maximal density is universal (independent of the
momentum of the field) and of Planck order, inasmuch as
� is of Planck order as well. The usual value employed in

the literature is � ¼ ffiffiffiffi
�

p
� being � :¼ 4

ffiffiffi
3

p
��l2Pl and l2Pl

the Planck length (see e.g. [2] for the explanation of how
the value of � is chosen). In conclusion, the singularities

present in the standard model are resolved here by a
bounce mechanism. Note that in the low extrinsic curvature
regime, bð�Þ ! 0, approached in the limits � ! �1, we
have vð�Þ ! voe

��, so that the solutions tend, respec-
tively, to the expanding and contracting solutions of the
standard model reviewed in the previous subsection, and
thus this effective dynamics is in agreement with general
relativity in the semiclassical regime, far away from the
bounce.
Similarly to before for the classical FRW Universe, we

can easily switch back to proper time:

dt ¼ 1

p�

ffiffiffiffiffiffiffiffiffiffi
4�G

3

s
vd� ) t ¼ vo

p�

ffiffiffiffiffiffiffiffiffiffi
4�G

3

s
sinh�; (20)

where we have set �o ¼ 0 for simplicity’s sake. Now real
internal time � 2 R maps onto real proper time t 2 R and
we do not have a singularity anymore at t ¼ 0 but simply
the bounce. Finally this allows us to compute the modifi-
cation of the Friedmann equation:

@ta

a
¼ 1

3

@�v

v

d�

dt
¼ p�ffiffiffiffiffiffiffiffiffiffiffiffiffi

12�G
p cos�b

v
)

�
@ta

a

�
2

¼ 8�G

3
�

�
1� �

�c

�
; (21)

where �c is the maximal/critical density defined above.
The new factor on the right hand side is the leading-order
modification of the Friedmann equations in loop quantum
cosmology.
In the following, to simplify the notation, we will absorb

the factor � by means of the canonical transformation

v ! v0 ¼ v

�
; b ! b0 ¼ �b (22)

and redefine the dimensionless variables v � v0 and
b � b0.

B. Group structure of effective FRW cosmology

1. The suð1; 1Þ algebra governing the dynamics

As we have seen in the previous section, in LQC the
physical phase space (after deparametrization) is described
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FIG. 2 (color online). Plots of the volume v (on the left) and of its conjugate momentum b (on the right) evolving as functions of the
internal time �, for �o ¼ 0, for the effective loop quantum dynamics of flat FRW cosmology: the Universe starts with an infinite
volume at � ! �1, contracts and bounces to expand again to infinite volume at � ! þ1.
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by the basic variables v and e�ib. Combining the above
basic variables, let us consider the set of observables

Jz ¼ v; Kþ ¼ veib; K� ¼ ve�ib; (23)

or alternatively the set of real observables

Jz ¼ v; Kx ¼ 1

2
ðKþ þ K�Þ ¼ v cosb;

Ky ¼ 1

2i
ðKþ � K�Þ ¼ v sinb:

(24)

Using fb; vg ¼ 1, it is straightforward to realize that the
Poisson algebra of these observables is a sl2 � suð1; 1Þ
Lie algebra:

fJz; K�g ¼ �iK�; fKþ; K�g ¼ 2iJz; (25)

fJz;Kxg¼Ky; fJz;Kyg¼�Kx; fKx;Kyg¼�Jz: (26)

The above isomorphism between the Poisson algebra of
observables with the suð1; 1Þ algebra induces an isomor-
phism between the group of canonical transformations on
the phase space and the group of SU(1, 1) transformations.
Let us check that indeed the SU(1, 1) transformations can
be seen as canonical transformations on phase space. Given
the 2� 2 matrix

M � Jz K�
Kþ Jz

 !
¼ v ve�ib

veib v

 !
; (27)

whose determinant is the Casimir of the suð1; 1Þ algebra
C � J2z � K2

x � K2
y ¼ J2z � KþK�; (28)

the transformations generated by a generic SU(1, 1) ele-
mentU readM ! ~M ¼ UMUy, sinceC ¼ det ~M ¼ detM.
See also Appendix A, where we explicitly show that M
lives in the adjoint representation. Parametrizing U as

U ¼ � �

� ��

 !
; with j�j2 � j�j2 ¼ 1; (29)

it is easy to check that the above transformation induces the
following transformation on the phase space variables6:

v ! ~v ¼ vj�þ �eibj2; (30)

eib ! ei
~b ¼ ��eib þ ��

�þ �eib
; (31)

which is canonical since f~b; ~vg ¼ 1, as we wanted to prove.
The key point of our approach is that the Hamiltonian,

Heff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G

p
Ky, is simply an element of the suð1; 1Þ

algebra. Then the evolution is just given by the SU(1, 1)
transformations generated byKy. This simple structure will

furthermore hold at the quantum level when properly
quantizing the suð1; 1Þ structure without anomaly.
A remark is that while the observable e�ib corresponds

to the holonomy variable in the context of loop quantum
gravity/cosmology, our new observables ve�ib have a
similar interpretation as a T1-loop, that is a holonomy
around a closed loop with one triad insertion (see e.g.
[29] for a review of the loop algebra underlying loop
quantum gravity).

2. Integrating the equations of motion
as SU(1, 1) transformations

To compute the evolution, we can use the fundamental
representation of SU(1, 1) in terms of 2� 2 matrices with
the algebra generators given by the Lorentzian Pauli
matrices (see Appendix A for more details). Then the
evolution is given by SU(1, 1) transformations ei�Heff ¼
ei�	y � U�, where we have used � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

12�G
p

�.
Computing the exponential we get

U� ¼
cosh�2 sinh�2
sinh�2 cosh�2

 !
: (32)

Then we can derive the trajectories for Jz, K�, or equiv-
alently for v and b, by acting on the matrixM and comput-

ing Mð�Þ � U�Mð0ÞUy
� . While the matrix M lives in the

adjoint representation, it is possible to introduce spinorial
variables that live in the fundamental representation. It is
much easier to integrate the equation of motion in these
variables and they will also be more convenient when
defining and studying coherent states at the quantum level.
As explained in more details in Appendix A 3, from

canonical complex variables z0;1, one gets a representation
of the suð1; 1Þ algebra:

Jz ¼ 1

2
ðjz0j2þjz1j2Þ; Kþ ¼ �z0 �z1; K� ¼Ky

þ ¼ z0z1:

(33)

The advantage of this approach is that the spinor z, with
components z0 and �z1 now lives in the fundamental repre-
sentation of SU(1, 1), namely, SU(1, 1) transformations
represented as 2� 2 matrices act on z simply by matrix
multiplication.
From the 3-vector ðKx; Ky; JzÞ 2 R3, one can recon-

struct uniquely the spinor z 2 C2 up to a global phase.

The only constraint is that the Casimir C ¼ ~J2 has to be
positive or equal to 0. As shown in the previous section, our
loop cosmology phase space has a vanishing suð1; 1Þ
Casimir and can thus be recast in these terms. Solving
for Jz ¼ v and Kþ ¼ veþib, we easily get:

z0 ¼ ffiffiffi
v

p
e�iðb=2Þei’; z1 ¼ ffiffiffi

v
p

e�iðb=2Þe�i’; (34)

where ’ is an arbitrary phase. Because of the square-roots,
we see that the constraint that the volume v is positive,
v � 0, is directly encoded at the kinematical level in the

6Let us notice that the transformation eib ! ei
~b is a Möbius

transformation, which is a conformal transformation on the
Riemann sphere and seems related to the Witt algebra generated
by the observables veinb for n 2 Z generalizing our suð1; 1Þ
observables.
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phase space structure defined in terms of these spinorial
variables. These definitions can be generalized to the case
of a nonvanishing suð1; 1Þ Casimir C> 0 and we will see
later that it corresponds to the existence of a nonzero
minimal volume.

Then, starting with an initial spinor zð0Þ at � ¼ 0, the
evolution is simply given by:

zð�Þ ¼ z0ð�Þ
�z1ð�Þ

 !
¼ U�xzð0Þ ¼ U�zð0Þ:

From the expressions of Jz and Kx in terms of z, we deduce
their evolution:

Jzð�Þ ¼ Jzð0Þ cosh�þ Kxð0Þ sinh�;
Kxð�Þ ¼ Jzð0Þ sinh�þ Kxð0Þ cosh�: (35)

As expected, this is simply the action on the 3-vector
ðKx; Ky; JzÞ of the pure boostU� ¼ ei�	y in the ðz; xÞ plane.
We can reabsorb the initial conditions Jzð0Þ and Kxð0Þ in a
different origin point for the time:

Jzð�Þ ¼ Jz½zð�oÞ� coshð�� �oÞ;
Kxð�Þ ¼ Jz½zð�oÞ� sinhð�� �oÞ: (36)

The component Kx vanish at �o while Jz reaches its mini-
mal value. Converting back into our standard cosmological
variables, using the definitions Jz ¼ v and Kx ¼ v cosb,
we obtain

vð�Þ¼vocoshð���oÞ; cosbð�Þ¼ tanhð���oÞ: (37)

As it should be, these trajectories coincide with the ones
previously given in (17) and the time origin �o corresponds
to the minimal value of the volume and to the cosmological
bounce.

Through this analysis, we see that the simple hyperbolic
trajectories for the volume v is somehow due to the
‘‘hidden’’ suð1; 1Þ structure of our space of observables
and to the fact that the Hamiltonian is simply a boost
generator in this framework.

C. Group structure of the fully
regularized FRW cosmology

The above description of the effective dynamics under-
lying LQC only takes into account the regularization of the
variable b. However, LQC also introduces a regularization
of the volume as a consequence of a superselection of the
kinematical Hilbert space. Let us be more explicit. In LQC
the geometry sector of the kinematical Hilbert space, H g,

turns out to be Bohr compactification of the real line
[12,13]. In momentum representation, and denoting by
j
i the basis states,7 then H g is the completion of the

space spanned by the states j
 2 Ri in the discrete norm

h
0j
i ¼ �
0;
 (here �
0;
 denotes the Kronecker delta).

It turns out that H g can be written as the direct sum of

an infinite number of superselected sectors: H g ¼
	"Hþ

" 	H�
" , where each sector H�

" is the space
spanned by the states j
i with support in the lattices of
constant step L�

" ¼ f�ð"þ 4nÞ; n 2 N; " 2 ð0; 4�g (see
e.g. [19]). The different values of �" label inequivalent
quantum theories in which the physical Hilbert space turns
out to be precisely any of the superselection sectors. In
conclusion, the momentum space is spanned by the states
j
 ¼ �"� 4ni, so that j
j displays a minimum value ".
Our description of the regularized phase space using the

SU(1, 1) structure can be easily generalized to account for
the existence of a nonzero minimal volume at kinematical
level, v � vm > 0. This is achieved through a simple
regularization of the volume, roughly switching v byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � v2

m

p
. This can be taken into account by a basic

modification of the set of observables. We now define:

Jz ¼ v; Kþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 �v2

m

q
eib; K� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 �v2

m

q
e�ib;

(38)

with fixed vm > 0. As easily checked, these observables
still form a suð1; 1Þ algebra, and obviously assume that
v � vm. Considering these observables as fundamental,
we can invert this definition and compute v and b in terms
of the 3-vector ðKx; Ky; JzÞ:

v¼Jz; sinb¼ Kyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2�v2

m

p ; cosb¼ Kxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2�v2

m

p : (39)

The norm of the 3-vector defines the suð1; 1Þ Casimir,

which is now strictly positive, C ¼ ~J2 ¼ v2
m > 0.

Similarly as before, we choose the Ky boost generator as

our effective Hamiltonian driving the dynamics of this
fully regularized model:

p� ¼ ~Heff �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � v2

m

q
sinb ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

12�G
p

Ky; (40)

which takes directly into account the minimal kinematical
volume vm. Evolution will be given by SU(1, 1) trans-
formations on our initial data and will always respect the
kinematical constraint v � vm, which has been encoded
into the observables and the dynamics of the model.
To integrate the equations of motion as SU(1, 1) trans-

formations, it is convenient to introduce the spinor variable
as before. From their definition (33) and the new expres-
sions for the suð1; 1Þ generators, we define:
z0¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vþvm

p
e�iðb=2Þei’; z1¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v�vm

p
e�iðb=2Þe�i’; (41)

where ’ is once again an irrelevant arbitrary phase and
where the modulus of the two spinor components are now
slightly different and depend on the value of the minimal
kinematical volume. Actually, one defines the following
quantity:

7According with our convention when defining v, we have

 ¼ 2v, being 
 the usual volume variable employed in the LQC
literature.
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LðzÞ � 1

2
ðjz0j2 � jz1j2Þ ¼ vm > 0: (42)

The spinor z ¼ ðz0; �z1Þ then lives in the fundamental rep-
resentation of SU(1, 1). It transforms as z ! Uxz ¼ Uz
for SU(1, 1) and the spinor pseudonorm LðzÞ actually turns
out to be a SU(1, 1)-invariant.

Then we get the evolution of our spinor by simply acting
on it with our evolution matrixU� 2 SUð1; 1Þ. From there,
computing the evolution of the various variables is rather
direct and we obtain

vð�Þ¼vocoshð���oÞ; cosbð�Þ¼vo sinhð���oÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ð�Þ�v2

m

p ; (43)

where the volume vo at the bounce point �o is determined
by the parameters p� and vm of this fully regularized

model via

vo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
�

12�G
þ v2

m

s
� vm: (44)

This dynamical minimal volume depends on the actual
trajectory through the parameter p�, but is always larger

than the postulated kinematical minimal volume.
Moreover, we see that only the trajectory for b is modified,
but as before the low curvature regime b ! 0 is reached as
� grows to �1, so that this regularized dynamics is in
agreement with general relativity far away from the
bounce.

The matter density now reads

��ð�Þ ¼ 3

8�G�2

 p2

�

p2
� þ 12�Gv2

m


 1

cosh2ð�� �oÞ
: (45)

As before, it reaches a nondivergent maximum at the
bounce:

��ð�oÞ ¼ 3

8�G�2

 p2

�

p2
� þ 12�Gv2

m

�p��vm

3

8�G�2
: (46)

This value now depends in general on the value of the
momentum of the scalar field, though this dependence is
negligible in the case p2

� � 12�Gv2
m. Moreover, in this

regime the maximum is of Planck order. Note that in the
case vm ¼ 0we recover the effective dynamics of previous
sections.

D. Loop quantum FRW cosmology by
group theoretical quantization

1. Quantizing the effective dynamics
and superselection sectors

Now that we have made explicit the suð1; 1Þ structure of
the (fully) regularized phase space of the FRW model
coupled to a massless scalar within LQC, we can quantize
the model simply by considering the irreducible represen-
tations of the group SU(1, 1).

As we have seen before, in our model the Casimir is
positive, and therefore among all the irreducible represen-
tations of SU(1, 1) we are interested in those of the discrete
principal series (timelike representations). In order to de-
rive them we employ the spinor formulation of the suð1; 1Þ
algebra, as described in Appendix B. Writing the suð1; 1Þ
generators in terms of the canonical complex variables z0;1

as introduced above in (33), we quantize the system as a
pair of harmonic oscillators: raising z0;1 to annihilation
operators while their complex conjugate �z0;1 become cre-
ation operators. The suð1; 1Þ generators Jz andK� are then
quadratic in those basic operators. We obtain a hugely
reducible representation of SU(1, 1). It is however easily
realized that the SU(1, 1) Casimir depends on the differ-
ence of energy between the two oscillators. Fixing this
energy, we finally obtain the whole discrete principal series
of SU(1, 1) representations. The derivation of these repre-
sentations has been detailed in Appendix B 1. Let us
summarize here their main properties.
The generators Jz, Kx and Ky are promoted to Hermitian

operators satisfying the suð1; 1Þ commutation relations, or
equivalently expressed in terms of Jz and K�:

½Jz; K�� ¼ �K�; ½Kþ; K�� ¼ �2Jz;

Jyz ¼ Jz; K� ¼ Ky
þ: (47)

To characterize the irreducible representations, one diago-
nalizes the operator L, related with the Casimir operator
C ¼ J2z � 1

2 ðKþK� þ K�KþÞ through the expression

C ¼
�
Lþ 1

2

��
L� 1

2

�
: (48)

In our method, L has a discrete spectrum (see Appendix B 1
for more details) and we are exploring the eigenvalues of
the Casimir operators belonging to its discrete spectrum.
Consequently the eigenvalues of L label the timelike irre-
ducible representations of SU(1, 1).
We use the usual SU(1, 1) basis diagonalizing both the

Casimir and the operator Jz. The basis states are then
labeled by a spin j giving the eigenvalue of L and by the
magnetic moment giving the value of Jz. The action of the
suð1; 1Þ generators on this orthonormal basis is:

Ljj;mi ¼
�
j� 1

2

�
jj; mi; (49)

Cjj; mi ¼ jðj� 1Þjj;mi; Jzjj; mi¼ mjj; mi;
Kþjj; mi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm� jþ 1Þðmþ jÞ

q
jj;mþ 1i;

K�jj; mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm� jÞðmþ j� 1Þ

q
jj;m� 1i: (50)

We obtain two types of representations: the discrete posi-
tive series with 1

2 � j � m ¼ jþN; and the negative one

with � 1
2 � j � m ¼ j�N. In both cases jjj is any posi-

tive half-integer. Thus the irreducible representations of
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spin j � 1
2 live on the Hilbert spaces spanned by the basis

states jj;mi with m � j, V j
þ � L

m�j Cjj; mi, and the

irreducible representations of spin j � � 1
2 live on the

Hilbert spaces dual to the previous ones, V j� �L
m��j Cjj; mi ¼ �V j

þ. As it is usually done in LQC, we

will restrict our study to the sector with positive eigenval-
ues of Jz ¼ v, namely, we will only consider the irreduc-
ible representations of positive spin.

We see that as in usual LQC, the kinematical volume, in
our case denoted by m, presents a minimum m ¼ j that
labels the different superselection sectors. In our case this
minimum turns out to be discretized in the quantum theory

since it takes values in the discrete set N
2 þ 1

2 . Then our

approach features superselection sectors labeled by a
countable parameter.

2. Quantum evolution and coherent wave packets

Let us now look into the dynamics at the quantum level.
Our Hamiltonian is the boost generator Ky. As is

well-known its spectrum is the whole real line and we
can construct its eigenvectors in the considered represen-
tation (see Appendix B 7 for more details). We would like
however to focus here on the construction of coherent
states, with good semiclassical properties and whose shape
is preserved under evolution.

One of the beauties of our SU(1, 1) quantization consists
in the simplicity of providing such states that are coherent
under evolution. In fact, the evolution operators, given
by U� ¼ ei�Ky , are SU(1, 1) group elements. Therefore
SU(1, 1) coherent states provide dynamical coherent states.

As we define and review in Appendix B, SU(1, 1)

coherent states in the V j
þ representation, have the explicit

expression

jj; zi � X1
m2jþN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ jþ 1Þ!

ðm� jÞ!ð2jþ 1Þ!

s

�
�
1

�z0

�
mþjþ2ðz1Þm�jjj;mi; (51)

These coherent states are labeled by a classical spinor
z 2 C2, whose components z0 and �z1 are arbitrary complex
numbers verifying jz0j> jz1j. They provide an over-

complete basis for the physical Hilbert space V j
þ, as we

show in Sec. B 3.
Their key property is that they transform covariantly

under SU(1, 1), i.e. the action of SU(1, 1) transformations
on those states act directly on their label:

Ujj; zi ¼ jj; Uxzi ¼ jj; Uzi: (52)

Thanks to this, it is straightforward to compute their quan-
tum evolution. The coherent states will follow the classical
trajectory computed earlier as a SU(1, 1) flow. Only their
fluctuations around the classical expectation value will
evolve. Explicitly, starting from an initial state jj; zð0Þi

characterized by the initial conditions z0;1ð0Þ given at
some initial time � ¼ 0, the evolved state at time � is
simply given by jj; zð�Þi ¼ jj; U�xzð0Þi. Here

U� ¼
cosh�2 sinh�2
sinh�2 cosh�2

 !
; and zð0Þ ¼ z0ð0Þ

�z1ð0Þ

 !
; (53)

therefore the evolved coherent state jj; zð�Þi is labeled by
the spinor

zð�Þ ¼ z0ð�Þ
�z1ð�Þ

 !
¼ z0ð0Þ cosh�2 þ �z1ð0Þ sinh�2

z0ð0Þ sinh�2 þ �z1ð0Þ cosh�2

 !
: (54)

Now we only have to specify a suitable initial spinor
zð� ¼ 0Þ and we will have the whole quantum evolution
described in terms of coherent states.
The physical meaning of these coherent states is given

by the expectation values of physical observables, which
determine on which phase space point these states are
peaked, and by the fluctuations of the observables, which
determine how semiclassical the states are. As computed in
Appendix B 2, the expectation values of the suð1; 1Þ gen-
erators are:

h ~Ji � hj; zj ~Jjj; zi
hj; zjj; zi ¼ j

~JðzÞ
LðzÞ ; (55)

where we remind the definition of the SU(1, 1)-invariant
LðzÞ � ðjz0j2 � jz1j2Þ=2> 0 and the coherent state norm is
shown to be hj; zjj; zi ¼ 1=ð2LðzÞÞ2j. Following the analy-
sis of the classical case presented in Sec. I C, the norm of

these expectation values ~J as a 3-vector gives the value of
the minimal kinematical volume:

v2
m ¼ h ~Ji2 ¼ j2

~JðzÞ2
LðzÞ2 ¼ j2 ) vm ¼ j; (56)

as we expect since the minimal kinematical volume at the
quantum level in the irreducible representation of spin j is
actually the spin j itself by definition of the Hilbert space.

Then let us notice that the expectation values h ~Ji are
invariant under rescaling of the spinor z. This is actually
a property of the coherent states themselves (see Appendix
for more details). We are thus free to fix the pseudonorm
LðzÞ of the spinor as we want. For convenience, in order to
match the description of the classical dynamics in terms of
spinors and to get rid of the normalization factors j=LðzÞ,
we will fix without loss of generality:

LðzÞ ¼ vm ¼ j: (57)

Now, in order to extract the meaning of these expecta-
tion values, we focus on the complete set of physical
observables formed by the volume operator V ¼ 4�G�Jz
and by the momentum of the scalar field p� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

12�G
p

Ky.

Since both observables are suð1; 1Þ elements, we already
have their expectation values from the formula above. We
can start with a coherent state labeled by the spinor zð0Þ
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peaked on a fixed value of p� and a given arbitrary volume

V. Then we evolve this initial quantum state with U� ¼
ei�Ky 2 SUð1; 1Þ. This leads to the coherent state jj; zð�Þi
with the spinor zð�Þ given explicitly by:

z0ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vð�Þ þ vm

q
e�ibð�Þ=2ei’;

z1ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vð�Þ � vm

q
e�ibð�Þ=2e�i’; (58)

with vð�Þ and bð�Þ determined in (43) and (44). Here ’ is
an arbitrary irrelevant phase, which neither evolves nor
affects the physical expectation values of our observables.
Checking the expectation values on these coherent states
jj; zð�Þi, we get as wanted:

h ~Ji¼ðvð�Þcosbð�Þ;vð�Þsinbð�Þ;vð�ÞÞ; )hp�i¼p�;

hVð�Þi¼Vð�Þ¼4�G�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
�

12�G
þv2

m

s
coshð���oÞ: (59)

The expectation values of the physical observables follow
exactly the classical trajectory. First note that the field
momentum p� is of course a constant of motion. Then

the behavior of the volume confirms that the Universe
undergoes a quantum bounce at � ¼ �o, and that this
bounce is universal regardless of the particular values of
the spinor components labeling the coherent states.

Next we would like to check the quantum fluctuations
around the classical trajectory. Since our physical observ-
ables—volume and momentum—are suð1; 1Þ generators,
we also know their uncertainties (see Appendix B 2):

�p�

hp�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hK2

yi � hKyi2
q

hKyi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2vm

�
1þ 12�Gv2

m

p2
�

�vuut
�V

hVi ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hJ2z i � hJzi2

q
hJzi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2vm

�
1�

�
4�G�vm

Vð�Þ
�
2
�s
:

(60)

We see that the evolution of the expectation value and
fluctuation of the volume are symmetric around the bounce.
Moreover, keeping in mind that vm ¼ j, the relative fluc-
tuation varies from a minimum value at the bounce to a

maximum value equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2jÞp

, approached in the limits
� ! �1 where the expectation value of the volume tends
to infinity. This explicitly shows that the relative fluctuation
in the volume displays a universal (state-independent)
bound that only depends on the representation.
Furthermore, the larger j is, the smaller the fluctuations
are, both in the volume and in the momentum of the field.

In conclusion, the SU(1, 1) coherent states, that we
propose here, provide good coherent semiclassical states

for the Hamiltonian H½v; b� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � v2

m

p
sinb ¼

p�=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G

p
for arbitrary values of the parameters p�

and vm.

We can also look at the evolution of the matter density
�� ¼ p2

�=ð2V2Þ ¼ 3K2
y=ð8�G�2J2z Þ. However the matter

density operator is not as neat as the volume operator. It is
not linear in the suð1; 1Þ generators and it will thus suffer
from factor ordering ambiguities since Jz and Ky do not

commute. Moreover its exact action on (coherent) states is
a priori not obvious. Nevertheless, since our coherent
states are semiclassical and properly peaked on the classi-
cal trajectory, we can approximate the expectation value of
the density on these states by its classical value:

h��ð�Þi  3

8�G�2

hK2
yi

hJ2z i
¼ ��ð�Þ; (61)

given in (45). Provided that the relative fluctuations of ��,

p� and V are small, we can do the following approxima-

tion to compute the relative fluctuation of the matter
density on coherent states:

���

h��i 
���

��

¼ 2

�
�p�

p�

� �V

V

�
 2

�
�p�

hp�i �
�V

hVi
�
: (62)

The result is

���

h��i ð�Þ 
ffiffiffiffiffiffi
2

vm

s � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
� þ 12�Gv2

m

p2
�

vuut
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 12�Gv2

m

p2
� þ 12�Gv2

m


 1

cosh2ð�� �oÞ

vuut �
:

(63)

This fluctuation reaches its maximum at the bounce:

���

h��i ð�oÞ 
ffiffiffiffiffiffi
2

vm

s � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
� þ 12�Gv2

m

p2
�

vuut �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
�

p2
� þ 12�Gv2

m

vuut �
;

(64)

and tends to a minimum value in the limits � ! �1:

���

h��i !�!�1
ffiffiffiffiffiffi
2

vm

s � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
� þ 12�Gv2

m

p2
�

vuut � 1

�
: (65)

For large values of the field momentum p2
� � 12�Gv2

m,

the coherent states will have minimal spread in p� and the

uncertainty on the matter density will vanish.
Finally we would like to point out that our analysis is

valid for strictly positive values of the minimal volume
vm > 0 and we do not have well-defined coherent states in
the special case of vanishing vm.

3. Comparison with other LQC Hamiltonians
and operator orderings

Here, we have identified and discussed the SU(1, 1)
structure of the flat FRW model in loop cosmology. The
group theoretical quantization ensures that the SU(1, 1)
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structure is preserved at the quantum level without anom-
aly. This fixes all the ordering ambiguities appearing in the
definition of the suð1; 1Þ operators at the quantum level
and in particular entirely determines the Hamiltonian op-
erator. This is an improvement with respect to the usual
LQC context, where we find various proposals for the
Hamiltonian constraint operator, whose exact behaviors
at small scales are different.

To summarize our proposal, our Hilbert space is any of
the timelike irreducible representations of the group

SU(1, 1) with spin j positive (for instance): V j
þ. A basis

for this Hilbert space is provided by the eigenstates jj; mi
(with m ¼ jþN) of the Casimir L, defined such that
Ljj; mi ¼ ðj� 1=2Þjj; mi. Our basic operators are also Jz
representing the volumev, with diagonal action on the basis
states: Jzjj;mi ¼ mjj;mi, andK� representing the observ-

ables
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � v2

m

p
e�ib, with action on basis states given by

Kþjj; mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm� jþ 1Þðmþ jÞ

q
jj; mþ 1i;

K�jj; mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm� jÞðmþ j� 1Þ

q
jj; m� 1i: (66)

Moreover, the Hamiltonian operator is

H ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G

p
Ky ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G

p
2i

ðKþ � K�Þ: (67)

In LQC the set of basic operators are v and the holonomies
e�ib, which act on the volume eigenstates by translation of
�1 units, respectively. We would like to note that in our
approach although those holonomies are not basic opera-
tors, they can be defined as well, in the following way:

ĉeib :¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jz � L� 1

2

q Kþ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Jz þ Lþ 1
2

q ;

d̂e�ib ¼ d̂
eib

y ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jz þ Lþ 1

2

q K�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Jz � L� 1
2

q :

(68)

We recover the expected action de�ibjj;mi ¼ jj;m� 1i,
thanks to the nontrivial regularization of the inverse volume
1=v ¼ 1=Jz.
We can square our Hamiltonian operator to get the

gravitational part of the Hamiltonian constraint operator,
that we will denote by �ðjÞ. Let us note that its action on
the basis states jj; mi is given by

�ðjÞjj; mi ¼ �3�G½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 1� jÞðmþ jÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 2� jÞðmþ 1þ jÞ

q
jj; mþ 2i � 2ðm2 � j2 þ jÞjj; mi

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm� 1þ jÞðm� jÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm� 2þ jÞðm� 1� jÞ

q
jj; m� 2i�: (69)

Let us compare it with the various proposals for FRW in
LQC. In concretewewill consider theAshtekar-Pawłowski-
Singh prescription [16], the solvable LQC prescription
(sLQC) [17], the Martı́n–Benito-Mena Marugán-Olmedo
prescription (MMO) [18], and the solvable MMO prescrip-
tion (sMMO) [19]. For a comparison between themwe refer
the reader to [19]. We summarize here how the Hilbert
space and the geometry term of the Hamiltonian constraint
operator look like in each case. In all these cases the Hilbert
space is either H�

" , the space spanned by the basis states
j
i with 
 2 L�

" :¼ f�ð"þ 4nÞ; n 2 Ng and normaliz-
able with respect to the discrete inner product, or H " ¼
Hþ

" 	H�
4�". Generically, the geometry term of the

Hamiltonian constraint operator reads

�j
i ¼ � 3�G

4
½fð
þ 2Þj
þ 4i � foð
Þj
i

þ fð
� 2Þj
� 4i�: (70)

Each prescription is characterized by the specific form of
the functions fð
Þ and foð
Þ, though all of them agree in the
large 
 limit. Moreover, in all the cases the operator is
essentially self-adjoint [30]:

(i) Ashtekar-Pawłowski-Singh:

fð
Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð
þ 2Þ�ð
� 2Þ

q
j
jjj
þ 1j � j
� 1jj;

(71)

foð
Þ¼�ð
Þ½ð1��
;�4Þj
þ2jjj
þ3j�j
þ1jj
þð1��
;4Þj
�2jjj
�1j�j
�3jj�;

�ð
Þ¼
� 4
27j
j jj
þ1jð1=3Þ�j
�1jð1=3Þj�3 if 
�0;

0 if 
¼0:

(72)

This prescription is defined in the Hilbert spaceH ",
namely, it does not decouple the semiaxis 
 > 0
from the semiaxis 
 < 0.

(ii) sLQC:

fð
Þ¼ j
j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j
þ2jj
�2j

p
; foð
Þ¼2
2: (73)

This prescription does not involve corrections com-
ing from the inverse volume operator and then it is
simpler and indeed leads to an analytically solvable
quantum model. As the previous prescription, nega-
tive and positive semiaxis are not decoupled, and
then the Hilbert space is H ".
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(iii) MMO:

fð
Þ ¼ 1

9
gð
þ 2Þgð
� 2Þg2ð
Þsþð
Þs�ð
Þ; (74)

foð
Þ ¼ 1

9
g2ð
Þf½gð
þ 2Þsþð
Þ�2 þ ½gð
� 2Þs�ð
Þ�2g;

gð
Þ ¼

8>>><>>>:
��������
��������1þ 1




��������1=3�
��������1� 1




��������1=3
���������1=2

if 
 � 0;

0 if 
 ¼ 0

; s�ð
Þ ¼ signð
� 2Þ þ signð
Þ: (75)

This prescription takes into account the sign of 
 in the
factor ordering to explicitly decouple the negative semiaxis
from the positive one. The Hilbert space is then eitherH�

"

or Hþ
" . Usually one just considers Hþ

" .
(iv) sMMO:

fð
Þ ¼ 1

4
j
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j
þ 2j
� 2j

p
sþð
Þs�ð
Þ;

foð
Þ 14 jvj½j
þ 2js2þð
Þ þ j
� 2js2�ð
Þ�: (76)

This prescription combines the simplicity of sLQC
with the decoupling of MMO of the positive semi-
axis from the negative one, then one can define the
operator � in the Hilbert space Hþ

" for which

 > 0.

It is straightforward to realize that our operator for the
irreducible representation j ¼ 1 exactly matches the
sMMO prescription (for the sector " ¼ 2 strictly speak-
ing).8 This hints that the deep reason behind the solvability
of sLQC (apparently unnoticed by its authors) is in fact its
SU(1, 1) structure, which automatically provides a self-
adjoint representation for the Hamiltonian and allows to
fully and exactly integrate the evolution at the quantum
level.

Moreover, in standard LQC the parameter " labeling
different superselection sectors does not have any classical
counterpart. Indeed, the resulting classical effective dy-
namics does not distinguish this minimum kinematical
volume. In this sense, our approach is more general since
at the classical level it allows to distinguish different values
of the minimum volume vm ¼ j. Then our proposed clas-
sical regularized (effective) dynamics is controlled by both
vm and �. In that sense, it is also cleaner since it automati-
cally takes care of the restriction to the positive volume
sector or more generally to the v � vm sector, which is
now encoded directly in the definition of the classical
phase space and of Hilbert space by the simple requirement
of working with an irreducible timelike representation of
SU(1, 1).

The SU(1, 1) structure allows us to go further than
previous analyses when studying the quantum dynamics

of the model. In fact, we have exact and closed formulas
for truly dynamical coherent states and not merely semi-
classical states. As a result our work further clarifies
whether the bounce preserves or not semiclassicality.
This issue, sometimes called ‘‘cosmic forgetfulness’’ or
‘‘cosmic recall,’’ has generated important discussions in
the literature. We find results supporting that semiclassical
states at any time remain semiclassical during the whole
evolution (cosmic recall) [20,21,28,31], or confronting
results pointing out that states semiclassical at late times
can have been highly quantum before the bounce (cosmic
forgetfulness) [23,32–34].
Among these studies, only Bojowald attempted to ex-

ploit the SU(1, 1) structure in order to analyze the evolu-
tion of quantum states [23]. He derived the equations of
motion of the expectation values and variances of quantum
states. Then imposing the condition of saturating the un-
certainty relations, he obtained two classes of semiclassical
states: a first family with bounded fluctuations before and
after the bounce (recall states), to which our coherent states
belong, and a second family of states semiclassical at late
times but with important quantum fluctuations before the
bounce (forgetful states). Our coherent state construction
confirms explicitly the existence of states from the first
family, with good semiclassical properties before and after
the bounce, and although our intuition is that there does not
exist any forgetful coherent state saturating the uncertainty
relations in our Hilbert space, our present analysis does not
allow us to check such a claim. We would like nevertheless
to point out a major difference between our approach and
the construction introduced by Bojowald. Indeed a ‘‘reality
condition’’ J2z � K�Kþ ¼ 0 was imposed in [23]. First, it
looks very similar to fixing the SU(1, 1) Casimir J2z �
ðK�Kþ þ KþK�Þ=2 to a vanishing value. This is precisely
the case which we avoid in our construction, where we
focus on timelike representations of SU(1, 1) which corre-
spond to strictly positive values of the Casimir. Thus the
null-like case such as considered in [23] might be qualita-
tively different. Coherent states for null-like representa-
tions are actually much subtler to construct (issue of
vanishing norm states) and our definitions presented here
can not be applied in a direct way. Second the constraint
J2z � K�Kþ ¼ 0 is not SU(1, 1)-invariant and therefore8We remind that according with our conventions 
 ¼ 2 m.
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not preserved under evolution. Although it might finally
turn out that changing this into a Casimir constraint does
not affect the existence of recall/forgetful states as derived
in [23], this seems to be a crucial ingredient of the defini-
tion of the quantum theory.

On the other hand, the obvious advantage of our ap-
proach is that we do build explicitly the coherent states
minimizing the uncertainty relations and whose shape is
stable under evolution. Therefore we always have under
control the spread and expectation values of observables in
the quantum states, which are explicitly and exactly com-
putable. Our results confirm the universality of the quan-
tum bounce and that relative fluctuations of the volume are
bounded, confirming previous results on semiclassical
states [20,21,28,31].

E. Beyond the pure Ky Hamiltonian

From the group theoretical perspective it is natural to
wonder about the physical meaning of a generic
Hamiltonian living in the suð1; 1Þ algebra. It may happen
that other suð1; 1Þ elements have a geometrical interpreta-
tion such as a curvature term or a cosmological constant.
We are going to investigate this possibility in this section.
The advantage of this method is that as long as the
Hamiltonian is a suð1; 1Þ Lie algebra element we can
describe the evolution by finite SU(1, 1) transformations
and use the SU(1, 1) coherent states to describe the semi-
classical regime of the theory. However, as soon as we
depart from a suð1; 1Þ Hamiltonian, the new interaction
terms will induce evolution outside SU(1, 1) and our set of
coherent states will not be stable anymore under the
dynamics.

1. suð1; 1Þ Hamiltonian with Kx term

Let us consider the introduction of a Kx term in our
suð1; 1Þ Hamiltonian for the regularized model:

Hreg ¼ Ky þ �Kx; � ¼ constant: (77)

Using Kx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � v2

m

p
cosb and Ky ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � v2

m

p
sinb we

can write

Hreg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ �2Þðv2 � v2

mÞ
q

sin~b; with

~b ¼ bþ arccos
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
p :

(78)

We see that the Kx term accounts for a displacement of the
origin of the angle b and a rescaling of the time variable, so
that its effect on the evolution is physically irrelevant.

2. suð1; 1Þ Hamiltonian with Jz term

Let us now consider the introduction of a Jz term in our
suð1; 1Þ Hamiltonian, so that the dynamics for our regu-
larized model is driven by

Hreg ¼ Ky þ �Jz; � ¼ constant: (79)

Assuming that the observables are still given by Jz ¼ v

and Kx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � v2

m

p
cosb, the above Hamiltonian reads

Hreg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � v2

m

q
sinbþ �v: (80)

Let us compare it with the Hamiltonian of the FRW model
coupled to a massless scalar field and with curvature or
cosmological constant, reviewed in Appendix C. In the
regime where we usually compare the effective dynamics
for loop quantum cosmology to the classical FRW setting,
for small b ! 0 and v � vm, our effective Hamiltonian at
leading order is Hreg � �v and matches with the leading

order of the Hamiltonian of the flat FRW model with

negative cosmological constant for � / ffiffiffiffiffiffiffiffiffi��
p

:

HFRW ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 ��

3

s
� v

ffiffiffiffiffiffiffiffiffi
��

3

s
: (81)

However, this matching already breaks down for small
fluctuations away from b ¼ 0 as we can see from comput-
ing the next-to-leading order:

Hregb ! 0� �vþ vb

� HFRW �b!0 v

ffiffiffiffiffiffiffiffiffi
��

3

s
þ vb2

1

2

ffiffiffiffiffiffiffiffiffi
� 3

�

s
;

where the next-to-leading order in b do not match However
this mismatch seems to be a particularity of the regime
b ! 0. For instance, for positive cosmological constant, b
can never reach 0, so this does not seem to be the correct
regime in which to compare the FRW Hamiltonian and our
regularized proposal. Let us consider a regime where b
would be peaked around some constant value up to small
fluctuations. Then the perturbations in b would be con-
trolled by the Hamiltonian expanded around arbitrary
value b0. Taking b ¼ b0 þ �b, we have:

Hreg��b!0 ð�þsinb0Þvþ�bvcosb0�v�b2
sinb0
2

$? HFRW��b!0v
ffiffiffiffiffi
B

p
þv�b

b0ffiffiffiffiffi
B

p þv�b2
1

2
ffiffiffiffiffi
B

p
�
1� b20

2B

�
;

(82)

with B ¼ b20 ��=3. These two expressions match (up to

adjusting the various constants and potentially rescaling
the volume v) and this hints towards a real possibility that
the Jz term in the suð1; 1Þ Hamiltonian allows to take into
account a nonvanishing cosmological constant. In order to
check whether this could be true, let us look in more details
at the equations of motion and the trajectories.
First we compute the equations of motion for our regu-

larized dynamics:
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@�v ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � v2

m

q
cosb; @�b ¼ �þ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 � v2
m

p sinb:

(83)

Differentiating a second time the volume variable, we
derive the corresponding Friedmann equation:

@2�v ¼ ð1� �2Þvþ �Hreg; (84)

where Hreg is obviously a constant of motion. Let us keep

in mind that this is the Friedmann equation in the internal
time (determined by the scalar field) and not in proper
time. Nevertheless, comparing it with the Friedmann equa-
tion for nonzero cosmological constant as given in
Appendix C 1, we see that these crucially differ: the
constant term �Hreg is replaced by a term going in �v3

with nontrivial scaling in the volume v. Therefore we
should expect an important mismatch for large volume,
while the local behavior around a volume extremum (maxi-
mal volume or bounce) would be similar.

We illustrate this by comparing explicitly the trajecto-
ries. For the classical FRW model, we keep the known
trajectories in Appendix C 1. For our regularized
dynamics, the evolution is given by the finite SU(1, 1)

transformations defined by the group elements U� ¼
ei�ðKyþ�JzÞ. Proceeding as before, we act with these 2� 2
matrices on some initial spinorial data zð0Þ, from which we
deduce zð�Þ and thus the trajectories for Jzð�Þ and Kxð�Þ
and finally for the geometric variables v and b using (33).

We distinguish two general different cases: j�j< 1 and
j�j> 1, which correspond to the Hamiltonian being, re-
spectively, a spacelike of timelike vector in the Lie algebra
suð1; 1Þ identified to the 2þ 1 Minkowski space-time
R2;1. We will put aside the critical case j�j ¼ 1 and we
will further restrict ourselves to �> 0 for simplicity’s
sake.

(i) 0<�< 1: spacelike Hamiltonian
In this case the evolution is given by the following
boost transformation

U�¼
cosh~�2þ i�ffiffiffiffiffiffiffiffiffi

1��2
p sinh~�2

1ffiffiffiffiffiffiffiffiffi
1��2

p sinh~�2

1ffiffiffiffiffiffiffiffiffi
1��2

p sinh~�2 cosh~�2� i�ffiffiffiffiffiffiffiffiffi
1��2

p sinh~�2

0B@
1CA;
(85)

where ~� � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
. Applying this matrix on suit-

able initial spinorial data and after a few straightfor-
ward algebraic manipulation, we get the resulting
trajectories (see Fig. 3):

vð�Þ ¼ A coshð~�� ~�0Þ þ B sinhð~�� ~�0Þ
� �

1� �2
Hreg; (86)

cosbð�Þ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vð�Þ2 � v2

m

p ½A sinhð~�� ~�0Þ

þ B coshð~�� ~�0Þ�; (87)

where the constants A and B depend on the initial
conditions at ~� ¼ ~�0 and can be computed from the
initial volume and the value of energy. It is easy to
check that these satisfy the Friedmann equation and
equations of motion given above. Note that these
trajectories reduce to those of Sec. I C for � ¼ 0,
as expected.
The Universe starts with infinite volume at � ! �1,
collapses, bounces and grows back to infinite volume
at � ! þ1.

(ii) �> 1: timelike Hamiltonian
In this case the evolution is given by the following
rotation:

U� ¼
cos~�2 þ i�ffiffiffiffiffiffiffiffiffi

�2�1
p sin~�2

1ffiffiffiffiffiffiffiffiffi
�2�1

p sin~�2

1ffiffiffiffiffiffiffiffiffi
�2�1

p sin~�2 cos~�2 � i�ffiffiffiffiffiffiffiffiffi
�2�1

p sin~�2

0B@
1CA;
(88)

with ~� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p
. The resulting trajectories

are similar to the previous case but replacing the
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FIG. 3 (color online). Plots of the volume v (on the left), of cosb (in the center) and of the conjugate momentum b (on the right)
evolving as functions of the internal time �, for �0 ¼ 0, for explicit values of the parameters: � ¼ 0:5, vm ¼ 1, v0 ¼ 3, b0 ¼ 0:2,
Hreg � 2:062, A� 4:375 and B��3:201.
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hyperbolic functions by trigonometric functions
(see plots below in Fig. 4):

vð�Þ¼Acosð~�� ~�0ÞþBsinð~�� ~�0Þ� �

1��2
Hreg;

(89)

cosbð�Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vð�Þ2�v2

m

p ½Asinð~��~�0Þ�Bcosð~��~�0Þ�;

(90)

where the constants A and B are determined in terms
of the initial conditions v0 and b0, or equivalently in
terms of v0 and the energy Hreg.

In this case, the volume is completely bounded, the
Universe oscillates between a minimal volume (bounce)
and a maximal volume and its motion is periodic.

If one compares these trajectories with the ones of
classical flat FRW cosmology with nonvanishing cosmo-
logical constant, then qualitatively it seems that the case
j�j< 1 corresponds to �> 0 while the case j�j> 1 cor-
responds to a negative cosmological constant �< 0.
Indeed, as described in Appendix C 1, for �> 0, classical
FRW cosmology gives two possible branches: either a
Universe contracting from infinite volume and crashing
to zero volume, or a Universe born in a big bang and
expanding to infinite volume. Here our regularized dynam-
ics has a big bounce which connects the contracting phase
to the expanding phase, without going through a singular-
ity. On the other hand, for �< 0, classical FRW cosmol-
ogy describes a Universe expanding from a big bang, then
reaching a maximal volume before crashing in a big
crunch. Our regularized dynamics once again avoids the
vanishing volume singularity and creates cycles oscillating
between minimal volume and maximal volume.

However, if one now compares the explicit equations of
the trajectories, as given above to the ones for classical
FRW cosmology given in Appendix C 1, one sees that the
formulas do not look the same at all. Indeed, quantitatively,
it is not clear that there is a precise regime where our

regularized SU(1, 1) dynamics matches the classical
FRW models.
We see a few possible reasons for this mismatch and

propose potential ways to remedy them:
(i) The suð1; 1Þ Hamiltonian is just not enough. As we

have seen the Friedmann equations (in internal time)
are just different and they do not seem to match for
large volume. One should probably depart from the
strict SU(1, 1) evolution. In particular, we should
investigate the exact ansatz for the effective dynam-
ics for loop quantum cosmology with cosmological
constant and see how to take it into account in our
framework.

(ii) The choice of the internal time is not the correct one
to compare the classical dynamics to our regularized
model. For instance, the classical FRW cosmology
in proper time seems to match the regularized tra-
jectories in internal time. But we do not yet see a
clear mathematical reason for this nor a physical
motivation for this switch of cosmological clock.

(iii) It is a problem of domain of validity of the regime
in which we compared our Hamiltonian initially:
we were looking at first at small fluctuations in b
around some fixed value b0. After solving explic-
itly the equations of motion, we see that b varies
too much generically in (internal) time and thus
causes some large deviation of the regularized
dynamics from the classical trajectories.
Nevertheless, one could try to identify a precise
regime (possibly looking at the evolution in terms
of a different clock) for intermediate values of the
volume where b does not fluctuate wildly and
where the trajectories would match analytically.

(iv) Finally, maybe the Jz term simply does not corre-
spond to the inclusion of a cosmological constant
but of another gravitational source (matter field or
dark energy or . . .). This would require studying the
coupling of various matter fields to the effective
dynamics of loop cosmology.

We postpone a detailed analysis of these alternatives to
future investigation. Our purpose here is to focus on the
SU(1, 1) structure of the effective dynamics for loop
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FIG. 4 (color online). Plots of the volume v (on the left), of cosb (in the center) and of the conjugate momentum b (on the right)
evolving as functions of the internal time �, for �0 ¼ 0, for explicit values of the parameters: � ¼ 3, vm ¼ 1, v0 ¼ 3, b0 ¼ 0:2,
Hreg � 9:562, A��0:586 and B��0:980.
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cosmology and to see how far one can get with it. Since it
seems likely that one has to add interactions which lead to
deviation from the exact SU(1, 1) flow, it seems more
reasonable to leave this for later.

3. Generalizing the Ky Hamiltonian:
accounting for curvature?

We have investigated above the addition of Kx or Jz
terms. We have found theKx term physically irrelevant and
the Jz term potentially related to the inclusion of a cosmo-
logical constant. However, one can naturally wonder if
it is possible to account for nonflat FRW cosmology
with k ¼ �1.

An interesting approach is the possibility of generalizing
further our description without departing from theH ¼ Ky

Hamiltonian. Indeed, it is easy to realize that the set of
observables (38) is not the most general one forming a
closed suð1; 1Þ algebra, but this set can be generalized to

Jz ¼ v; Kþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � v2

m

q
eiðbþc ðvÞÞ;

K� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � v2

m

q
e�iðbþc ðvÞÞ; (91)

for any real function c ðvÞ. It might happen that for a
suitable choice of c ðvÞ, the Hamiltonian

Hreg ¼ Ky ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � v2

m

q
sinðbþ c ðvÞÞ (92)

provides a regularized dynamics for some FRW model.
Actually, for the particular choice, inspired from the mod-
els of effective dynamics for loop quantum cosmology,

c ðvÞ ¼ � k

�ð4�GvÞ1=3 (93)

and in the regime of small b and large v the Hamiltonian
behaves as

Hreg � vb� k

�ð4�GÞ1=3 v
2=3; (94)

which corresponds to a Hamiltonian constraint

p2
� � 12�G

�
b2v2 � 2k

�

bv5=3

ð4�GÞ1=3 þ
k2

�2ð4�GÞ2=3 v
4=3

�
;

(95)

for the case that the geometry is coupled to a massless

scalar field and Hreg ¼ p�=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G

p
. The above expression

almost coincides with the Hamiltonian constraint of the
FRW model with curvature k and without cosmological
constant, as we can see in (C6). Therefore, it is natural to
analyze whether indeedHreg provides a regularized nonflat

FRW model.
Using (35) it is straightforward to get the trajectories,

they are given by

vð�Þ ¼ vð�oÞ coshð�� �oÞ;

bð�Þ ¼ arccos
vð�oÞ sinhð�� �oÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2ð�Þ � v2
m

p þ k

�½4�Gvð�Þ�1=3 (96)

Qualitatively, these trajectories seem to provide a regular-
ized version of the FRW model with nonzero curvature,
avoiding the vanishing volume singularity. On the other
hand, the actual explicit behavior of v and b in terms of � in
our regularized version does not compare at all with the
exact classical FRW trajectories as computed in
Appendix B 2. We do not fully understand this mismatch
and how to exactly resolve this issue. The various alter-
natives that we see are the same as given above in the case
of the Jz term and the cosmological constant.

II. CONCLUSION

In the present work we have carried out a group theo-
retical quantization of the flat FRW model coupled to a
massless scalar field adopting the regularizations em-
ployed in the improved dynamics of LQC, both in the
kinematical volume and in the variable conjugate to it.
This group theoretical quantization lies in the fact that
the set of observables that describes the regularized phase
space close an suð1; 1Þ algebra. The preservation of the
suð1; 1Þ structure at the quantum level provides a quantum
representation of the algebra of classical observables free
of anomalies and free of factor ordering ambiguities. In
particular, it fixes totally the Hamiltonian constraint opera-
tor. The irreducible representations of the group SU(1, 1)
of the discrete principal series provide superselection sec-
tors. In each sector we have explicitly constructed dynami-
cal coherent states to analyze the evolution. We have
shown that, in these coherent states, the volume undergoes
a bounce that cures the classical big bang singularity, and
that the relative fluctuations of the volume remain bounded
along the whole evolution.
Furthermore, we have investigated whether our suð1; 1Þ

framework can be generalized to account for the introduc-
tion of cosmological constant or curvature. Our analysis
shows that the models with curvature or with cosmological
constant are more complicated, and indeed a quantization
of them within the pure suð1; 1Þ structure does not seem
plausible. In order to get a group quantization for those
more general models we would need to depart from the
suð1; 1Þ algebra by considering its enveloping algebra.
Another intriguing feature is the generalization of the

suð1; 1Þ structure of the algebra of observables to more
complicated algebras. For instance, beyond the suð1; 1Þ
algebra, one can consider all the observables Ln ¼ veinb

for n 2 Z, which obviously form a Witt algebra. One can
wonder if this allows to take in account and explicitly solve
a larger class of cosmological Hamiltonians, and whether a
central extension to a Virasoro algebra would have any
physical meaning. Finally, it would be interesting to see if
our group theoretical approach to the loop quantization of
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cosmological models can be pushed further and whether it
is possible to identify relevant Lie algebra structures in the
space of observables for Bianchi models [35] or Gowdy
cosmologies [36,37].
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APPENDIX A: SPINORIAL REPRESENTATION
FOR SU(1, 1)

1. The 2-dimensional representation
and SU(1, 1) matrices

The Lie group SU(1, 1) is defined as the set of 2� 2
matrices U of determinant detU ¼ 1 satisfying U�Uy ¼ �
with:

� ¼ 1 0
0 �1

� �
:

Explicitly, the group elements read:

U ¼ � �
�� ��

� �
; with j�j2 � j�j2 ¼ 1: (A1)

The action of such matrices on complex vector ðx; yÞ 2 C2

conserves the pseudonorm jxj2 � jyj2:
x

y

 !
! U

x

y

 !
¼ � �

�� ��

 !
x

y

 !
;

jxj2 � jyj2 ¼ x

y

 !y
�

x

y

 !
¼ x

y

 !y
Uy�U

x

y

 !
: (A2)

The generators of suð1; 1Þ are the (Lorentzian) Pauli ma-
trices:

	z ¼ 1

2

1 0

0 �1

 !
; 	x ¼ 1

2

0 1

�1 0

 !
;

	y ¼ �i

2

0 1

1 0

 !
: (A3)

Their commutators define the suð1; 1Þ Lie algebra:
½	z; 	x� ¼ þi	y; ½	z;	y� ¼ �i	x;

½	x; 	y� ¼ �i	z:

Then group elements are obtained through exponentiation,
U ¼ expi ~u 
 ~	. More explicitly, we encounter three cases.
If the 3-vector ~u is null, juj2 ¼ u2z � u2x � u2y ¼ 0, then the

matrix ð ~u 
 ~	Þ is nilpotent and the series expansion is
truncated at first order:

juj2 ¼ 0 ) ei ~u
 ~	 ¼ Iþ i ~u 
 ~	: (A4)

If the 3-vector ~u is timelike, we get a trigonometric ex-
pression:

juj2 > 0 ) ei ~u
 ~	 ¼ cos
juj
2
Iþ 2i sin

juj
2

~u

juj 
 ~	: (A5)

For spacelike vectors, we get a similar expression but with
hyperbolic functions.

2. Phase space representation of the suð1; 1Þ lie algebra
Let us start with the four-dimensional phase space de-

fined by two complex variables z0;1 2 C and equipped
with the canonical Poisson bracket:

fz0; �z0g ¼ fz1; �z1g ¼ �i: (A6)

Then we consider the following observables:

Jz ¼ 1

2
ðjz0j2 þ jz1j2Þ; Kþ ¼ �z0 �z1;

K� ¼ z0z1; L ¼ 1

2
ðjz0j2 � jz1j2Þ: (A7)

It is easy to check that the three observables Jz; K� form a
suð1; 1Þ � sl2 Lie algebra while L commutes with all
three of them:

fJz; K�g ¼ �iK�; fKþ; K�g ¼ 2iJ; (A8)

fL; Jzg ¼ fL;K�g ¼ 0: (A9)

Instead of K�, one can use the usual generator of boosts in
the x and y directions:

K� ¼ Kx � iKy; Kx ¼ 1

2
ðKþ þ K�Þ;

Ky ¼ 1

2i
ðKþ � K�Þ; (A10)

which satisfy the following commutation relations:

fJz; Kxg ¼ Ky; fJz; Kyg ¼ �Kx; fKx; Kyg ¼ �Jz:

Noting ~J ¼ ðKx; Ky; JzÞ 2 R2;1 for the 3-vector living

in the three-dimensional Minkowski space of signature
ð� �þÞ, its norm defines the Casimir of the suð1; 1Þ
algebra and is simply expressed in terms of the
L-observable:

C � J2 � K2
x � K2

y ¼ J2z � KþK� ¼ L2; (A11)

so that we only generate timelike or null vectors with C ¼
~J2 � 0. Null vectors ~J2 ¼ 0 correspond to complex varia-
bles with equal norm, jz0j ¼ jz1j.

3. Action of SU(1, 1) transformations

In order to derive the action of finite SU(1, 1) trans-
formations on our variables, let us start by looking at the
action of the suð1; 1Þ generators on z0;1 and �z0;1. They mix
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the variables and their complex conjugate. Nevertheless,
we easily notice that they mix z0 only with �z1 and z1 only
with �z0. It thus seems natural to introduce the following
spinor z 2 C2:

jzi ¼ z0

�z1

� �
; hzj ¼ ð �z0 z1 Þ: (A12)

It is direct to compute the action of the generators on this
complex 2-vector:

f ~J; jzig ¼ i ~	jzi; (A13)

where ~	 are the Lorentzian Pauli matrices defined in (A3).
It is then straightforward to exponentiate the action of the
~J’s and check that the spinor z does belong to this funda-
mental two-dimensional representation of SU(1, 1):

ef ~u
 ~J;:gjzi ¼ Ujzi; U ¼ ei ~u
 ~	 2 SUð1; 1Þ: (A14)

If we switch the role of z0 and z1 and now take the complex
conjugate �z0 in the definition of the spinor, it simply
amounts to taking the complex conjugate of the
spinor jzi and it transforms as in the complex conjugate
representation:

jzi ¼ j�zi ¼ �z0

z1

 !
! ef ~u
 ~J;:gj�zi ¼ �Uj�zi: (A15)

From these finite SU(1, 1) transformation, one can check
directly that LðzÞ ¼ 1

2 ðjz0j2 � jz1j2Þ is indeed conserved:

U ¼ � �

�� ��

 !
2 SUð1; 1Þ; LðUzÞ ¼ LðzÞ;

reflecting the fact that the observable L commutes with the
suð1; 1Þ generators.

Next, we introduce the 2� 2 matrix:

M � Jz K�
Kþ Jz

 !
: (A16)

It admits a simple expression in terms of the spinor z:

M ¼ jzihzj � LðzÞ�: (A17)

From the law of transformation of the spinor and the facts
that LðzÞ is invariant under SU(1, 1) and that U�Uy ¼ �
for any matrix in SU(1, 1) by definition, one find that M
lives in the adjoint representation9:

ef ~u
 ~J;:gM ¼ UMUy; U ¼ ei ~u
 ~	: (A18)

APPENDIX B: TIME-LIKE REPRESENTATIONS
OF SU(1, 1) AND COHERENT STATES

1. Deriving unitary representations
from Harmonic oscillators

Let us quantize the phase space defined above and thus
promote the complex variables z0;1 and their complex
conjugate �z0;1 to, respectively, annihilation operators a, b
and their corresponding creation operators ay, by, satisfy-
ing the canonical commutation relations:

½a; ay� ¼ ½b; by� ¼ 1; ½a; b� ¼ 0:

Following this simple quantization rule, we define the
suð1; 1Þ generators:

Jz¼1

2
ðayaþbybþ1Þ; Kþ¼ayby; K�¼ab: (B1)

The þ1 term in Jz comes from properly ordering the
operators, and one checks that these form a suð1; 1Þ
Lie algebra:

½Jz; K�� ¼ �K�; ½Kþ; K�� ¼ �2J:

The Casimir of the algebra admits a simple expression in
terms of the quantized version of L:

C¼J2�1

2
ðKþK�þK�KþÞ¼L2�1

4
¼
�
Lþ1

2

��
L�1

2

�
;

L¼1

2
ðaya�bybÞ: (B2)

Then irreducible representations of SU(1, 1) will be deter-
mined by the value of the operator L, which measures the
(fixed) difference of energy between the two harmonic
oscillators.
Working with the two quantum oscillators, our Hilbert

space is the tensor product of the two Hilbert spaces for the
decoupled oscillators, H HO �H HO. Working with the
standard basis diagonalizing the number of quanta aya
and byb of both oscillators, we can compute the action

of the operators ~J and L:

Ljna; nbiHO ¼ 1

2
ðna � nbÞjna; nbiHO;

Jzjna; nbiHO ¼ 1

2
ðna þ nb þ 1Þjna; nbiHO;

Kþjna; nbiHO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðna þ 1Þðnb þ 1Þ

q
jna þ 1; nb þ 1iHO;

K�jna; nbiHO ¼ ffiffiffiffiffiffiffiffiffiffi
nanb

p jna � 1; nb � 1iHO:
In order to get an irreducible representation of SU(1, 1),
we diagonalize the operator L. This fixes the difference
of energy between the two oscillators, let us say to N ¼
na � nb. Let us start with N � 0. The corresponding
Casimir is C ¼ ðN � 1ÞðN þ 1Þ=4 ¼ jðj� 1Þ with the
spin j � ðN þ 1Þ=2 always larger or equal to 1

2 . The usual

SU(1, 1) basis is defined by diagonalizing the operator Jz.
Its eigenvalue defines the magnetic momentum

9One could have check this by directly computing the Poisson
bracket of M with the suð1; 1Þ generators:

f ~J;Mg ¼ ið ~	M�M ~	yÞ:
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m ¼ ðna þ nb þ 1Þ=2 always equal or larger than the
spin j:

jj;mi¼ jnþN;niHO; with N¼2j�1;

j¼ðNþ1Þ
2

�1

2
; n¼m�j; m¼ jþn� j: (B3)

Thus the irreducible representation of suð1; 1Þ of spin j
lives on the Hilbert space spanned by the basis states jj; mi
with m � j bounded from below, V j

þ � L
m�j Cjj; mi.

Then it is straightforward to compute the action of the
suð1; 1Þ generators:

Jzjj;mi¼mjj;mi;
Kþjj;mi¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm�jþ1ÞðmþjÞ

q
jj;

mþ1i;K�jj;mi¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm�jÞðmþj�1Þ

q
jj;m�1i: (B4)

The representations with negative value of L have the
jn; nþ Ni with fixed N � 0 and n 2 N as basis states.
They lead to isomorphic irreducible representations.

In order to get the highest weight representationsV j� �L
m��j Cjj; mi ¼ �V j

þ, one needs to redefine the suð1; 1Þ
generators in terms of the harmonic oscillator operators.
Indeed redefining the generators as Jz ! �Jz and
K� ! K�, they still satisfy the same commutation rela-
tions, but we now get negative eigenvalues for Jz and
obtain the dual representation.

Using this method, we generate all timelike unitary
irreducible representations of SU(1, 1), with Cþ 1

4 � 0.

It does not however allow us to generate the spacelike
unitary representation with Cþ 1

4 < 0. Anyhow, only the

timelike representations of SU(1, 1) are involved in the
quantization of the effective/regularized LQC dynamics
for FRW cosmology.

2. Defining coherent states

Let us define the following states living in the V j
þ

representation as defined above and labeled by the classical
spinor z 2 C2:

jj; zi � X1
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ NÞ!
n!N!

s �
1

�z0

�
nþNþ1ðz1Þnjnþ N; niHO: (B5)

As we show below, these states are coherent in that they
transform covariantly under SU(1, 1) transformations and
they are semiclassical states peaked on classical phase
space points with minimal uncertainty.

For the special case, where the spinor is trivial, z0 ¼ 1
and z1 ¼ 0, the state reduces to the lowest weight vector:

jj; ðz0; z1Þ ¼ ð1; 0Þi ¼ jN; 0iHO ¼ jj; m ¼ ji: (B6)

In order to compute the norm and expectation values of
those states, we simply need the following Taylor series:

X
n

ðnþ NÞ!
n!N!

Xn ¼ 1

ð1� XÞNþ1
: (B7)

This allows to compute the norm (the series converge when
jz0j> jz1j):

hj; zjj; zi ¼ 1

jz0j2ðNþ1Þ
X
n

ðnþ NÞ!
n!N!

ðjz
1j2

jz0j2Þ
n

¼ 1

ðjz0j2 � jz1j2ÞNþ1
¼ 1

ð2LðzÞÞ2j ; (B8)

which is invariant under SU(1, 1) transformations. Then we
compute the expectation values of the suð1; 1Þ generators:

hj;zjJzjj;zi¼ 1

jz0j2ðNþ1Þ
X
n

ðnþNÞ!
n!N!

ðnþjÞ
�jz1j2
jz0j2

�
n

¼hj;zjj;zijjz
0j2þjz1j2

jz0j2�jz1j2)hJzi¼ j
Jz
L
; (B9)

hj; zjKþjj; zi ¼ �z0

z1
1

jz0j2ðNþ1Þ
X
n

ðnþ NÞ!
n!N!

n

�jz1j2
jz0j2

�
n

¼ hj; zjj; zi 2j�z0 �z1

jz0j2 � jz1j2 ) hKþi ¼ j
Kþ
L

;

(B10)

hj; zjK�jj; zi ¼ z1

�z0
1

jz0j2ðNþ1Þ
X
n

ðnþ NÞ!
n!N!

ðnþ 2jÞ
�jz1j2
jz0j2

�
n

¼ hj; zjj; zi 2jz0z1

jz0j2 � jz1j2 ) hK�i ¼ j
K�
L

:

(B11)

Thus one gets exactly the expected classical vector up to a
simple global rescaling:

h ~Ji ¼ j
~J

L
; (B12)

so that the norm of h ~Ji only depends on the spin j of the
chosen representation:

h ~Ji2 ¼ j2: (B13)

Since ~J2 is the Casimir and its value is already known, this
allows to compute the invariant fluctuation of our coherent
states:

h ~J2i � h ~Ji2 ¼ jðj� 1Þ � j2 ¼ �j; (B14)

which is actually the minimal possible fluctuation for a
timelike representation.10 We can further compute the
fluctuations for the individual components. We get:

10A rough calculation on the standard basis states gives:

hj; mj ~J2jj; mi � hj; mj ~Jjj; mi2 ¼ jðj� 1Þ �m2;

which is obviously minimal for the lowest weight vector m ¼ j.
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hJ2z i � hJzi2 ¼ 2j
jz0j2jz1j2

ðjz0j2 � jz1j2Þ2 ¼
j

2

KþK�
L2

¼ j

2

�
J2z
L2

� 1

�
; (B15)

hK2
xi � hKxi2 ¼ j

2

ðjz0j2 � jz1j2Þ2 þ ð�z0 �z1 þ z0z1Þ2
ðjz0j2 � jz1j2Þ2

¼ j

2

�
K2

x

L2
þ 1

�
; (B16)

hK2
yi � hKyi2 ¼ j

2

ðjz0j2 � jz1j2Þ2 � ð�z0 �z1 � z0z1Þ2
ðjz0j2 � jz1j2Þ2

¼ j

2

�
K2

y

L2
þ 1

�
: (B17)

Furthermore, these coherent states saturate the uncer-
tainty relations. Let us remind that given two self-adjoint
operators A and B they satisfy the following uncertainty
relation:

ðhA2i � hAi2ÞðhB2i � hBi2Þ þ 1

4
h½A; B�i2

�
�
1

2
hABþ BAi � hAihBi

�
2
: (B18)

After a tedious but straightforward calculation one can
indeed check that the above relation, when particularized
to any two of the three operators Jz,Kx andKy, becomes an

identity. Thus our SU(1, 1) coherent states saturates all
uncertainty relations for the suð1; 1Þ generators.

3. Resolution of the identity

These coherent states provide a decomposition of the

identity on the Hilbert space V j
þ., for each fixed value of

L. Indeed, let fix L ¼ l, then the two complex variables are
related to one another by jz0j2 ¼ 2lþ jz1j2. Then we
compute the following integral:

Z
d2z0d2z1�ðL� lÞjj; zihj; zj ¼

Z
d2z0d2z1

X
n;~n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ NÞ!
n!N!

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~nþ NÞ!
~n!N!

s
2�ð2LðzÞ � 2lÞðz1Þnð�z1Þ~n

ð�z0ÞnþNþ1ðz0Þ~nþNþ1
jnþ N; nih~nþ N; ~nj

¼ X
n

ðnþ NÞ!
n!N!

Z
d2z0d2z12�ðjz0j2 � jz1j2 � 2lÞ jz1j2n

j�z0j2ðnþNþ1Þ jnþ N; nihnþ N; nj

¼ ð2�Þ2X
n

ðnþ NÞ!
n!N!

Z
rdr

r2n

ð2lþ r2ÞnþNþ1
jnþ N; nihnþ N; nj

¼ ð2�Þ2l
Nð2lÞNþ1

X
n

jnþ N; nihnþ N; nj: (B19)

Up to the prefactor, which only depends on the choice of
representation (through N) and the specific value of L, we
do have in the end a proper decomposition of the identity

on V j
þ.

4. Action of SU(1, 1) on the coherent states

The key property of these coherent states is that they
transform covariantly under SU(1, 1) transformations and
that their shape remains undeformed under the action of
SU(1, 1). More explicitly, we have:

Ujj; zi ¼ jj; Uxzi; U ¼ ei ~u
 ~J 2 SUð1; 1Þ; (B20)

for arbitrary SU(1, 1) transformations where Uxz is the
action (A14) defined above in Sec. A 3. It is straightfor-
ward to check this property for infinitesimal transformation
around the identity, U� I, then one can exponentiate that
action.

This property ensures that all the coherent states jj; zi
with 2LðzÞ ¼ 1 are obtained from the lowest weight vector
jj; ji by a SU(1, 1) transformation:

jj; ji ¼ jj; ðz0; z1Þ ¼ ð1;0Þi; jj;zi ¼UðzÞjj; ji; with

z0

�z1

 !
¼UðzÞ 1

0

 !
¼ � �

�� ��

 !
1

0

 !
¼ �

��

 !
;

2L¼ jz0j2�jz1j2 ¼ j�j2�j�j2 ¼ 1;

UðzÞ 2 SUð1;1Þ: (B21)

To obtain coherent states with 2L � 1, one needs to check
the scaling properties of L and the coherent states under the
rescaling transformation z ! �z with � > 0. For instance,
we have, Lð�zÞ ¼ �2LðzÞ and:

jj; �zi ¼ ��2jjj; zi:
Thus to get an arbitrary coherent state jj; zi from jj; ji, one
simply has to do a rescaling and a SU(1, 1) transformation
(remember that our coherent states are well-defined only
for jz0j2 > jz1j2 i.e. LðzÞ> 0):

jj; zi ¼ ð ffiffiffiffiffiffi
2L

p Þ�2jU

�
zffiffiffiffiffiffi
2L

p
�
jj; ji: (B22)
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The fact that these states are all obtained from jj; ji
through straightforward SU(1, 1) transformations (up to
an over-all factor) naturally implies that their invariant

uncertainty h ~J2i � h ~Ji2 as computed above is equal to the
uncertainty associated to the state jj; ji, that is �j.

5. Gaussian approximation for the coherent states

For a fixed spinor z, let us look on the coefficients
hj; mjj; zi in terms of m. We will see that for appropriate
spinors, this distribution can be approximated as a phased
Gaussian, making it similar to the standard ansatz for
coherent states.

We fix the representation N and use the Stirling formula
for large n’s:

hnþN;njj;zi¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþNÞ!
n!N!

s
1

ð�z0ÞnþNþ1
ðz1Þn

� 1

ð�z0ÞNþ1
ffiffiffiffiffiffi
N!

p
�
1þN

n

�ð1=4Þ
nN=2

�
z1

�z0

�
n

� 1

ð�z0ÞNþ1
ffiffiffiffiffiffi
N!

p eðN=2Þ logn�nlog; with ¼ �z0

z1
:

The exponent �ðnÞ � N
2 logn� n log has a unique

(complex) extrema:

@n� ¼ N

2n
� log ) n0 ¼ N

2 log
:

At this point, it is convenient to use radial coordinates for
the complex number :

 ¼ Reic ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 2L

p

r
eic ; log � logRþ ic ;

where r and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 2L

p
are respectively the modulus of z1

and z0. Now let us remember that our coherent states are
well-defined for LðzÞ � 0, thus for R> 1. Then for large
values of r, i.e. small values of R ! 1þ, the logarithm logR
becomes small and the extremal value of n grows inversely
to logR and thus becomes large, justifying the Stirling
approximation for the factorials.

Computing the value of the second derivative @2� at the
extremum, we can finally give the stationary point approxi-
mation for our distribution:

hnþN;njj;zi�n�1 e
ðN=2Þðlog N

2log�1Þe�ððlog=NÞ2Þðn�ðN=2logÞÞ2 ;

(B23)

which is a phased Gaussian peaked on the real value
nmax ¼ N logR=2j logj2.

6. Miscellaneous formula for the coherent states

One can generate the coherent states jj; zi for the repre-
sentation of spin j and N ¼ ð2j� 1Þ from the coherent
states for the null-like representation of spin j ¼ 1

2 and

N ¼ 0:

jj; zi ¼ 1

ð2LðzÞN ffiffiffiffiffiffi
N!

p ðz0ay � �z1bÞN
��������12 ; z

�
: (B24)

One can check this by expanding the binomial and using
the explicit definition of the coherent states in the basis
labeled by the numbers of quanta. The interesting fact is
that the operator ðz0ay � �z1bÞ behaves covariantly under
the action of SU(1, 1) as one can easily see from its

commutation with the generators ~J:

Uðz0ay � �z1bÞU�1 ¼ ðUxzÞ0ay � ðUxzÞ1b: (B25)

7. Spectrum and eigenstates of the boost generator Ky

Let us look at eigenstates of the Lie algebra generators.
The rotation generator Jz gives the total energy of the two
harmonic oscillators a and b. It has a discrete positive
spectrum and is diagonalized by the standard basis jj; mi
with m 2 jþN defined above. On the other hand, the
spectrum of a boost generator is purely continuous and is
the entire real line.
Let us consider Ky, expressed in terms of a and b. It

admits a decoupled expression in terms of new oscillator
operators:

Ky¼ 1

2i
ðayby�abÞ¼ 1

4i
ðcy2�c2�dy2þd2Þa

¼ 1ffiffiffi
2

p ðcþdÞ;

b¼ 1ffiffiffi
2

p ðc�dÞ; ½c;cy�¼½d;dy�¼1; ½c;d�¼0: (B26)

We can thus focus on the c-part of the operator and we
define the Hermitian operator D ¼ ðcy2 � c2Þ=2i. This is
the generator of Bogoliubov transformations on the oscil-
lator c and it maps coherent states to squeezed states:

e�i�Dcei�D ¼ ðcosh�cþ sinh�cyÞ;
e�i�Dcyei�D ¼ ðcosh�cy þ sinh�cÞ: (B27)

Using the standard quantization for the harmonic oscilla-
tor, we represent the creation and annihilation operators as
functions acting on R:

c ¼ 1ffiffiffi
2

p ðxþ @xÞ; cy ¼ 1ffiffiffi
2

p ðx� @xÞ: (B28)

Then the operator D turns out to be simply the dilatation
operator acting on x:

D ¼ i

�
x@x þ 1

2

�
: (B29)

Its spectrum is the real line is its eigenvectors are:

hxj�i � 1

xð1=2Þþi�
; Dj�i ¼ �j�i: (B30)
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One can also consider the eigenvalue problem in the
jna; nbi basis which we used to build the coherent states.
For fixedN ¼ na � nb, let us act withKy on arbitrary states:

Ky

X
n2N

ð�1Þn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N!

n!ðnþ NÞ!

s
�njnþ N; ni

¼ 1

2i

X
n2N

ð�1Þn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N!

n!ðnþ NÞ!

s
� ð�nþ1 � nðnþ NÞ�n�1Þjnþ N; ni: (B31)

Thus the coefficients of the eigenvector with eigenvalue �
satisfy the following second-order recursion relation:

8n�0; �nþ1ð�Þ¼2i��nð�ÞþnðnþNÞ�n�1ð�Þ; (B32)

with initial conditions ��1 ¼ 0 and arbitrary �0. Setting
�0 ¼ 1, the coefficients �nð�Þ will be polynomials of order
n in 2i�. It should be possible to map this recursion relation
onto an orthogonal polynomial problem, but we do not inves-
tigate this direction further since we do not explicitly need the
eigenvectors ofKy but only the coherent states for the purpose

of thework presented here. Nevertheless, the interested reader
can refer to e.g. [38] for more details on the representation
theory of SU(1, 1) and their recoupling.

APPENDIX C: CLASSICAL FRW MODELWITH
CURVATURE AND COSMOLOGICAL CONSTANT

In this Appendix we will review the classical (unregu-
larized) FRW model with intrinsic curvature k ¼ �1
and/or cosmological constant�, and coupled to a massless
scalar field �. In the geometrodynamic variables ða;�aÞ
the scalar constraint reads

C ¼ � 2�G

3

�2
a

a
� 3k

8�G
aþ �

8�G
a3 þ p2

�

2a3
¼ 0: (C1)

The canonical transformation between the above varia-
bles and the coefficients cmeasuring the Ashtekar-Barbero
connection and p measuring the densitized triad in this
general case is given by11

a ¼ ffiffiffiffi
p

p
; �a ¼ � 3

4�G�

ffiffiffiffi
p

p ðc� kÞ; (C2)

thus the constraint in these variables is given by [2]

C ¼ 1

16�G

�
� 6

�2

ffiffiffiffi
p

p ½ðc� kÞ2 þ k�2�

þ 2�p3=2 þ 8�G
p2
�

p3=2

	
¼ 0: (C3)

Introducing as before the canonical transformation to the
(dimensionfull) variables ðv; bÞ given by

p ¼ ð4�GvÞ2=3; c ¼ �ð4�GvÞ1=3b; (C4)

we obtain

C¼�3

2
b2vþ3k

�

bv2=3

ð4�GÞ1=3�
3

8�G�2
ð4�GvÞ1=3ðk2þk�2Þ

þ�

2
vþ p2

�

8�Gv
¼0: (C5)

Now we can deparametrize the system, solving the
Hamiltonian constraint for the momentum of the field:

p2
� ¼ 12�G

�
b2v2 � 2k

�

bv5=3

ð4�GÞ1=3

þ k2 þ k�2

�2ð4�GÞ2=3 v
4=3 ��

3
v2

�
: (C6)

The square root of this expression give us the Hamiltonian
of the system, that generates evolution in the internal time
�. We note that the equation of motion of� in terms of the
proper time t is given by d�=dt ¼ f�;Cg, so that the
relation between the proper time and the internal time is

t ¼ 4�G

p�

Z
vð�Þd�: (C7)

Let us integrate the equations of motion for the simple
cases in which either the curvature or the cosmological
constant vanish.

1. Flat model with cosmological constant

The Hamiltonian particularizes to p� � H� ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

12�G
p

v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � �

3

q
. To simplify the notation we introduce

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G

p
�. The resulting equations of motion are

@�v ¼ � bvffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � �

3

q ; @�b ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 ��

3

s
; (C8)

with a simple Friedmann equation:

@2�v ¼ vþ 8�G�

p2
�

v3: (C9)

We distinguish two kind of solutions depending on the sign
of �:
(i) �> 0: de Sitter Universe

vð�Þ ¼ p�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�G�

p 1

j sinhð�� �oÞj ;

bð�Þ ¼ �
ffiffiffiffi
�

3

s
coshð�� �oÞ:

(C10)

The matter density �� ¼ p2
�=ð2V2Þ reads

��ð�Þ ¼ �

8�G
sinh2ð�� �oÞ: (C11)

There are two branches of solutions (see Fig. 5): for
� 2 ð�1; �oÞ the solutions represent a Universe that

11In the following, for simplicity, we will assume that p is
positive, and therefore also v.
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expands from a big bang singularity till the matter
density vanishes and the volume diverges; for � 2
ð�o;1Þ the solutions represent a Universe that con-
tracts from infinite volume and vanishing density till
a big crunch singularity. From (10) and the trajectory
vð�Þ we obtain that the proper time goes as

t�� ln

��������tanh�� �o
2

��������; (C12)

where the positive sign corresponds to the branch
� 2 ð�o;1Þ and the negative sign corresponds to the
branch � 2 ð�1; �oÞ. Moreover, vðtÞ / j sinhctj,
with c a constant. Therefore in proper time we
have a contracting branch for t 2 ð�1; 0Þ and a
expanding branch for t 2 ð0;1Þ, and the instant
t ¼ 0 leads to a curvature singularity.
A successful regularized dynamics should cure this
singularity matching the two branches in a single one
for the range t 2 ð�1;1Þ, representing a Universe
that contracts till a bouncing point at t ¼ 0 with
positive volume and finite density, where it starts
expanding. Such a bouncing behavior is achieved
by the loop quantization. For this model the loop
quantization has been thoroughly analyzed in [39]
(see also references therein), where the resulting
classical effective dynamics is also reviewed.

(ii) �< 0: anti-de Sitter Universe

vð�Þ ¼ p�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�Gj�jp 1

coshð�� �oÞ ;

bð�Þ ¼ �
ffiffiffiffiffiffiffi
j�j
3

s
sinhð�� �oÞ; (C13)

with matter density

��ð�Þ ¼ j�j
8�G

cosh2ð�� �oÞ: (C14)

These solutions represent a recollapsing Universe
(see Fig. 6): it expands from a big bang singularity
(at � ! �1) till the matter density reaches a mini-
mum value equal to j�j=8�G and the volume

reaches a maximum value equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�G=�

p
p�

(at � ¼ �o), moment at which the Universe starts
contracting till it reaches a big crunch singularity (at
� ! 1).

From (10) and the trajectory vð�Þ we obtain that the
proper time goes as

t� arctanðe���oÞ: (C15)

Moreover, vðtÞ / sin2ct, with c a constant. Therefore in
proper time we also have a recollapsing Universe, that
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FIG. 5 (color online). Plots of the volume v (on the left) and its conjugate momentum b (on the right) evolving as functions of the
internal time �, for �0 ¼ 0, for flat FRW cosmology with positive cosmological constant �> 0. We have two branches: an expanding
one starting with a big bang singularity and a contracting one ending with a big crunch.
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FIG. 6 (color online). Plots of the volume v (on the left) and its conjugate momentum b (on the right) evolving as functions of the
internal time �, for �0 ¼ 0, for flat FRW cosmology with negative cosmological constant �< 0. The Universe starts in a big bang,
expands to maximal volume and collapses again.
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starts at t ¼ 0 in a big bang singularity and dies for a finite
value of the proper time in a big crunch.

A successful regularized dynamics should cure both big
bang and big crunch singularities, smoothing them in terms
of a bounce and making the evolution periodic. This be-
havior is again achieved by the loop quantization, which in
this case has been thoroughly analyzed in [40] (see also
references therein).

2. Curved model without cosmological constant

In this case it is more convenient to solve the equations
of motion for a and �a and then to get the evolution for v
and b employing the canonical transformation

v ¼ a3

4�G
; b ¼ � 4�G

3

�a

a2
þ k

�a
: (C16)

We note that in this case the definition of b involves an
extra term, in comparison with the flat case, that depends
on the Immirzi parameter �. As a consequence, the trajec-
tory for b in time will depend explicitly on �. The
Hamiltonian in ða;�aÞ variables reads

p� � H� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�G

3
�2

aa
2 þ 3k

4�G
a4

s
: (C17)

The resulting equations of motion are

@�a ¼ 4�G

3p�

�aa
2;

@��a ¼ � a

p�

�
4�G

3
�2

a þ 3k

2�G
a2
�
: (C18)

To get the solutions, we first use the conservation of the
momentum p� to get the expression of �a in terms of a

and p�, which allows us to solve the equation of motion for

a, and consequently also the evolution for �a. Considering
only the positive branch for the scale factor a the solutions
are the following, depending on the sign of the curvature:

(i) k ¼ 1:

að�Þ ¼
�
4�G

3

�
1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�

cosh½
ffiffiffiffiffiffiffiffiffi
16�G
3

q
ð���oÞ�

vuut ; (C19)

�að�Þ ¼ �
�

3

4�G

�
3=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�

cosh½
ffiffiffiffiffiffiffiffiffi
16�G
3

q
ð���oÞ�

vuut
� sinh

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
16�G

3

s
ð���oÞ

�
: (C20)

Using � � ffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G

p
� as in previous cases, for vð�Þ

and bð�Þ we obtain:

vð�Þ ¼ 1

4�G

�
4�G

3

�
3=4
�

p�

cosh½23 ð�� �oÞ�
�
3=2

; (C21)

bð�Þ ¼
�

3

4�G

�
1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh½23 ð�� �oÞ�

p�

vuut
�
�
sinh

�
2

3
ð�� �oÞ

�
þ 1

�

	
: (C22)

Therefore, the matter density is given by

��ð�Þ ¼ 1

2p�

�
3

4�G

�
3=2

cosh3
�
2

3
ð�� �oÞ

�
: (C23)

These solutions represent a Universe that expands
from a big bang singularity (at � ! �1) till the
matter density reaches a minimum value equal to
1

2p�
ð 3
4�GÞ3=2 and the volume reaches a maximum

value equal to ð4�G3 Þ3=4p3=2
� (at � ¼ �o), moment at

which the Universe starts contracting till it reaches a
big crunch singularity (at � ! 1). Both the loop
quantization and the resulting effective dynamics
of this model have been studied in [41], see also
[42] for some technical aspects of the quantization.

(ii) k ¼ �1:

að�Þ¼
�
4�G

3

�
1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�

jsinh½
ffiffiffiffiffiffiffiffiffi
16�G
3

q
ð���oÞ�j

vuut ; (C24)

�að�Þ ¼ �
�

3

4�G

�
3=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�

j sinh½
ffiffiffiffiffiffiffiffiffi
16�G
3

q
ð���oÞ�j

vuut
� cosh

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
16�G

3

s
ð���oÞ

�
: (C25)

Using � � ffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G

p
� as in previous cases, for vð�Þ

and bð�Þ we obtain:

vð�Þ ¼ 1

4�G

�
4�G

3

�
3=4
�

p�

j sinh½23 ð�� �oÞ�j
�
3=2

;

(C26)

bð�Þ ¼
�

3

4�G

�
1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j sinh½23 ð�� �oÞ�j

p�

vuut
�
�
cosh

�
2

3
ð�� �oÞ

�
þ 1

�

	
: (C27)

Therefore, the matter density is given by

��ð�Þ ¼ 1

2p�

�
3

4�G

�
3=2
��������sinh

�
2

3
ð�� �oÞ

���������3

:

(C28)
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As in the positive cosmological constant term, there
are two branches of solutions: for � 2 ð�1; �oÞ the
solutions represent a Universe that expands from a
big bang singularity till the matter density vanishes
and the volume diverges; for � 2 ð�o;1Þ the

solutions represent a Universe that contracts from
infinite volume and vanishing density till a big
crunch singularity. For the loop quantization of
this model we refer the reader to .
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