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We study the four-dimensional Einstein-Yang-Mills black hole in the presence of a Dirac fermion field.

Assuming a spherically symmetric, static, asymptotically flat black hole spacetime, we consider both

massless and massive fermion fields. The ð4þ 1Þ-dimensional Einstein-Yang-Mills system effectively

reducing to the Einstein-Yang-Mills-Higgs-dilaton model was also taken into account. One finds that the

fermion vacuum leads to the destruction of the black holes in question.
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I. INTRODUCTION AND NOTATION

Gravitational collapse is one of the most important
issues of general relativity and its extension to higher
dimensional spacetime connected with M/string theory
schemes of unification of all known forces of nature. One
expects that a newly born black hole emerging from the
gravitational collapse of a massive star will settle down to
the stationary axisymmetric or static spacetime. The
uniqueness theorem (or classification) of nonsingular black
hole solutions states that a stationary axisymmetric solu-
tion of Einstein-Maxwell (EM) electrovacuum equations is
isometrically diffeomorphic to the domain of outer com-
munication of Kerr-Newman spacetime [1].

On the other hand, the complete classification of
n-dimensional charged black holes both with nondegener-
ate and degenerate components of the event horizon was
given in Refs. [2]. Partial results for the very nontrivial case
of the n-dimensional rotating black hole uniqueness theo-
rem were provided in [3]. The aforementioned studies also
comprise the case of extremal axisymmetric black holes,
both in EM theory and the low-energy limit of the string
theory (the so-called EMAD gravity) and supergravity
theories [4]. As far as the uniqueness theorem of non-
Abelian black holes is concerned, the situation is far
more complicated (see [5] and references therein). It turns
out that any static solution of Einstein-Yang-Mills (EYM)
equations ought to either coincide with the Schwarzschild
one or possess some nonvanishing Yang-Mills (YM)
charges. But this was discovered not to be the case when
static black hole solutions with vanishing charges were
discovered [6]. They were asymptotically indistinguish-
able from Schwarzschild black holes. Moreover, in
Ref. [7] it was shown that static black holes of the consid-
ered class with magnetic charge need not even be axially
symmetric. In light of the above, one can remark that the
non-Abelian black holes reveal considerably more com-
posed structure compared to the EM ones.

Recently, studies of fermions in various backgrounds
have attracted more attention. Exact solutions of the
Dirac equation in curved spacetime may be a useful tool
for investigations of physical properties of the considered
spacetimes. Dirac fields were elaborated [8] in the context
of the EYM background found in Ref. [9], in the near-
horizon limit of the Kerr black hole [10], in Bertotti-
Robinson spacetime [11], in spacetimes of black holes
with nontrivial topology of the event horizon [12], in the
vicinity of black holes with topological defects [13], and in
the spacetime of black strings [14]. The intermediate and
late-time decays of massive Dirac fermions in various
black hole spacetimes were also elaborated [15–18].
Another tantalizing problem is the behavior of black

holes and the surrounding matter fields. Depending on
the matter model in question, black holes may allow the
nontrivial fields to exist outside the event horizon. Are
there any configurations of matter fields that can destroy
the emerging black hole? This question was tackled in
Refs. [19]. In Ref. [20] it was revealed that the Reissner-
Nordström (RN) solution with both electric and magnetic
charges can be destroyed in the presence of a massless
Dirac fermion field. On the other hand, it was revealed [21]
that the only black hole solutions of four-dimensional
spinor Einstein-dilaton-Yang-Mills field equations of mo-
tion were those for which spinors vanished identically
outside the black hole. This means that Dirac fermion
fields either enter the black hole in question or escape to
infinity. Recently, it was shown [22] that a matter configu-
ration composed of a perfect fluid could not be at rest
outside a four-dimensional black hole in asymptotically
flat static spacetime.
In this paper we use the bosonization technique by

which the fermionic degrees of freedom can be described
by a scalar field. We shall elaborate the problem of the
influence of Dirac fermion fields on YM black holes. In
our considerations we assume that the black hole in ques-
tion is spherically symmetric and static. We take into
account the ordinary four-dimensional, static, spherically
symmetric, asymptotically flat EYM black hole and
the four-dimensional Einstein-Yang-Mills-Higgs-dilaton
(EYMHd) system deduced from a five-dimensional EYM
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model, while the Dirac fermion field will be treated in an
s-wave sector.

The organization of this paper is as follows. In Sec. II we
briefly review the basic facts concerning four-dimensional
EYM black holes and the Dirac fermion system. Then, we
consider the massless as well as massive fermion cases and
their influence on the black holes. Their asymptotical
behaviors will also be discussed. Section III will be de-
voted to the backreaction process of Dirac fermions on YM
fields. In Sec. IV we shall elaborate the ð4þ 1Þ-EYM
system which effectively reduces to EYMd field equations,
where neither the matter fields nor the line element coef-
ficients depend on the fifth dimension. We conclude our
investigations in Sec. V.

II. FOUR-DIMENSIONAL EINSTEIN-YANG-MILLS
BLACK HOLE AND DIRAC FERMIONS

In this section we shall focus on static spherically sym-
metric solutions of EYM field equations. In the case under
consideration the line element can be provided by

ds2 ¼ �A2ðrÞdt2 þ B2ðrÞdr2 þ C2ðrÞd�2; (1)

where d�2 is a metric on the S2-sphere. In what follows it
will be convenient to introduce the tortoise coordinate
defined as dr� ¼ B

A dr. Just the underlying metric yields

ds2 ¼ �A2ðrÞdt2 þ A2ðrÞdr2� þ C2ðrÞd�2: (2)

The main topic of our research will be the influence of
Dirac fermion fields on the EYM black hole. Fermions
under consideration will be described by the Dirac equa-
tion provided by

i��D�c �mc ¼ 0; (3)

where the covariant derivative D� implies

D� ¼ r� � i�H�: (4)

� is the gauge coupling constant, while the components of
the Yang-Mills field have the forms

H� ¼ ei�Hi; Hi ¼ ain
k�k þ 1� KðrÞ

2�C
�ijkn

j�k; (5)

where ai is the electric and K the magnetic part of the
Yang-Mills vector. na is the unit normal vector, while �a is
a generator of the SUð2Þ group. On the other hand, ei� are

basis one-forms defined by g�� ¼ ei�e
j
��ij, where �ij is

the metric tensor for Minkowski spacetime. The gamma
Dirac matrices in a flat spacetime are defined by the
relations

�0 ¼ 0 1

1 0

 !
; �i ¼ 0 �i

��i 0

 !
; (6)

where �i are the usual Pauli matrices. It turns out that the
Dirac operator takes the form

��D� ¼ 0 Dþ

D� 0

 !
; (7)

where by D� we have denoted the following relation:

D� ¼ A�1@t � i�

�
½�0a0 ��1a1� �n � ���K� 1

2�C
�n � ��� ��

�

þ� �� � �nA�1@r� � �� � �n
�
A�1C�1@r�C

þ 1

2
A�1A�1@r�A

�
�C�1DS2 : (8)

Because of the fact that we restrict our attention to the
s-wave sector, it can be spanned by two states 	1 and 	2 ¼
�ana	1 which are the hedgehog spinor ansatz [23].
Moreover, they will obey the properties

�� � �n	1=2 ¼ 	2=1; DS2	1=2 ¼ �	2=1; (9)

ð �n � ��� ��Þ	1=2 ¼ �2i	2=1; �nð ��þ ��Þ	 ¼ 0: (10)

In terms of its components, the spinor c can be written as

c ¼ c L

c R

 !
; c L=R ¼ fL=Rðrr� ; tÞ	1 þ gL=R	2: (11)

By virtue of the above, the Lagrangian for two-component
left- and right-handed spinors is

L F ¼ i �c RD
þc R þ i ��LD

�c L �m �c Rc L �m �c Lc R:

(12)

On this account we can integrate over the angular degrees
of freedom in the Dirac fermion action. From now on we
will work with curved two-dimensional spacetime: ds2 ¼
�A2dt2 þ A2dr2�. Latin letters from the beginning of the
alphabet will refer to the curved spacetime, i.e., a ¼ t, r�,
while those from the end of the alphabet are bounded with
the flat spacetime, i.e., i ¼ 0, 1. In this spacetime the
nonzero component of the spin connection is !01 ¼
@r� lnAdt, while the covariant derivative of the spinor field

has the form ra ¼ @a þ 1
2!

ij
a �i�j. In our considerations,

we introduce two-dimensional spinors FL=R ¼ fL=R
gL=R

� �
,

and we use the symmetric form of the Dirac operator

��D
$

� ¼ 1
2 ½�� ~D� � ��DQ ��. It enables us to rewrite the

action for fermion fields in the form

SF ¼ 4

Z

dt
Z

A2L2
Fdr�; (13)

as well as their Lagrangian, which implies the following:
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Lð2Þ
F ¼iC2 �FRD

$þ
ðt;r�ÞFR�C2K

C
�FR�

2FR

�C2� �FRð�iaiÞþ�1FRþiC2A�1@r� lnð
ffiffiffiffi
A

p
CÞ �FR�

1FR

þiC2 �FLD
$þ

ðt;r�ÞFLþC2K

C
�FL�

2FL

�C2� �FLð�iaiÞ��1FL�iC2A�1@r� lnð
ffiffiffiffi
A

p
CÞ �FL�

1FL

�mC2 �FRFL�mC2 �FLFR; (14)

where we have denoted D�
ðt;r�Þ ¼ A�1½�0@t � �1@r� � and

ð�iaiÞ� ¼ �0a0 � �1a1. We are now in a position to
approach the question of the equations of motion for the
above system. Namely, the Dirac equations for the two-
dimensional fermions are provided by the relations

iDþ
ðt;r�ÞFR � K

C
�2FR � ð��iaiÞþ�1FR þ iA�1@r�

� lnð ffiffiffiffi
A

p
CÞ�1FR þ i

1

2AC2
@r�C

2�1FR �mFL ¼ 0;

(15)

iD�
ðt;r�ÞFL þ K

C
�2FL � ð��iaiÞ��1FL

� iA�1@r� lnð
ffiffiffiffi
A

p
CÞ�1FL

� i
1

2AC2
@r�C

2�1FL �mFR ¼ 0: (16)

A. Massless Dirac fermions

In this subsection we shall focus our attention on mass-
less right-handed spinors. We examine relation (15), which
in two-dimensional spacetime ðt; r�Þ may be rewritten as
follows:

i�araFR � ��aBa�
1FR � V�2FR

þ 2i�r�@r� lnCFR ¼ 0; (17)

where we set V ¼ K
C with Ba ¼ eiaai being the electric part

of the Yang-Mills field. It can be readily found, by the
direct computation, that the term�iai will now be replaced
by �aBa. Further, in order to get rid of the @r� lnC factor,

one can rescale spinors in the following way:

GR � i�3e2
R

@r� lnCdr�FR: (18)

It will be useful to choose the new basis for flat gamma
matrices,

~� 0 ¼ �i�3; ~�1 ¼ ��2; (19)

f~�a; ~�bg ¼ 2�ab; �00 ¼ �1 ¼ ��11; (20)

~� 3 ¼ ~�0 ~�1 ¼ �1; ~�L=R ¼ 1
2ðI � ~�3Þ: (21)

On this account equations of motion yield

i~�araGR þ �~�aBa ~�
3GR � V ~�3GR ¼ 0: (22)

It can be deduced that they may be derived from the
Lagrangian of the form

LFR ¼ �i �GR ~�
araGR � �Ba

�GR ~�
a ~�3GR

þ V �GR ~�LGR � V �GR ~�RGR: (23)

LFR can be examined by means of the bosonization tech-
nique; i.e., the fermionic degrees of freedom can be de-
scribed by a scalar field propagating in ðt; r�Þ spacetime
(see, e.g., [24]). One bosonizes the above Lagrangian by
the following formulas:

jaR � �GR ~�
aGR ¼ 1ffiffiffiffi



p "abrb�R;

ja3R � �GR ~�
a ~�3GR ¼ 1ffiffiffiffi



p ra�R;

�GR ~�LGR ¼ be2i
ffiffiffi



p
�R;

�GR ~�RGR ¼ b�e�2i
ffiffiffi



p
�R;

(24)

where b and b� are constants depending on the normaliza-
tion of the current �G�L=RG. For the sake of brevity, we set
b ¼ b�. Thus the bosonized Lagrangian is provided by

LBR ¼ � 1

2
ra�Rra�R � �Ba

1ffiffiffiffi



p ra�R

þ Vbðe2i ffiffiffi
p �R � e�2i
ffiffiffi



p
�RÞ; (25)

while the equation of motion for �R yields

rara�R þ �ffiffiffiffi



p raB
a þ 4ib

ffiffiffiffi



p
V cosð2 ffiffiffiffi



p

�RÞ ¼ 0: (26)

Let us proceed to analyze the left-handed Dirac spinors.
One can use the following substitution in order to get rid of
the @r� lnC term,

GL ¼ i�3e2
R

@r� lnCdr�FL: (27)

We also choose the gamma matrix basis in the form

~�0¼�i�3; ~�1¼þ�2; ~�3¼ ~�0 ~�1¼��1: (28)

Having all the above in mind, the equation of motion for
GL spinors implies

i~�araGL � �Ba ~�
a ~�3GL � V ~�3GL ¼ 0: (29)

On the other hand, the Lagrangian for GL spinors can be
written as

LFL ¼ �i �GL ~�
araGL þ �Ba

�GL ~�
a ~�3GL

þ V �GL ~�LGL � V �GL ~�RGL: (30)

Replacing the fermionic degrees of freedom by the boson-
ization substitution given by the relations
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jaL � �GL ~�
aGL ¼ 1ffiffiffiffi



p "abrb�L;

ja3L � �GL ~�
a ~�3GL ¼ 1ffiffiffiffi



p ra�L;

�GL ~�LGL ¼ be2i
ffiffiffi



p
�L;

�GL ~�RGL ¼ b�e�2i
ffiffiffi



p
�L;

(31)

we achieve the bosonized Lagrangian for the scalar fields,

LBL ¼ � 1

2
ra�Lra�L þ �Ba

1ffiffiffiffi



p ra�L

þ Vbðe2i ffiffiffi
p �L � e�2i
ffiffiffi



p
�LÞ: (32)

Accordingly, the equation of motion implies the following:

rara�L � �ffiffiffiffi



p raB
a þ 4bi

ffiffiffiffi



p
V cosð2 ffiffiffiffi



p

�LÞ ¼ 0:

(33)

One can remark that the only difference between relations
for �L and �R is the sign of the term containing Ba.
However, in Ref. [25] it was pointed out that, in order to
have the finite Yang-Mills black hole mass, one needs
Ba ¼ 0. By virtue of this argument we can readily verify
that equations of motion for right- and left-handed fermion
fields are identical. Therefore, in what follows, we restrict
our attention to only one equation of motion.

Having in mind the arguments quoted above, we com-
mence with the asymptotic behavior analysis of field �R.
From the point of view of demanding asymptotical flatness
of the black hole solution in question, one has that gtt 	
grr 	 1, r	 r�, and C ¼ r, as the r coordinate tends to
infinity. This enables us to write the underlying equation of
motion in the form

�@2t �R þ @2r��R þ 4ib
ffiffiffiffi



p Kð1Þ
r�

cosð2 ffiffiffiffi



p
�RÞ ¼ 0; (34)

where we set V 	 Kð1Þ
r�

,Kð1Þ ¼ �1. In order to satisfy our

demands about finiteness of �R as r� tends to infinity, the
last term in relation (34) vanishes. Thus, we arrive at the
equation

� @2t �R þ @2r�� ¼ 0; (35)

with the regular solution provided by

�R ¼ de�i!ðt�r�Þ; (36)

where d is an arbitrary constant. The obtained solution is
time dependent and admits the nonzero fermion current at
infinity, i.e., rj�R � 0.

Let us refine our study to the near-horizon geometry of a
YM black hole surrounded by Dirac fermion fields. In the
vicinity of the event horizon one achieves

A2 ¼ N2e�ðrhÞ; A2 ¼ N2e�ðrhÞ; N2 ¼ 2ðr� rhÞ;
(37)

where  is the surface gravity and e�ðrhÞ is a constant factor.
Taking the usual change of variables r� rh ¼ ��1, we
obtain that

r� ¼ �c�; (38)

where c ¼ 1

2e
ffiffiffiffiffiffi
�ðrhÞ

p . Exploring these relations we can re-

write the equation of motion in the form

� @2t �R þ c2@2��R þ i
8b

ffiffiffiffi



p
KðrhÞe

ffiffiffiffiffiffiffiffi
�ðrhÞ

p

rh�

� cosð2 ffiffiffiffi



p
�RÞ ¼ 0: (39)

By the same reasoning as we followed in deriving Eq. (35),
we conclude that, by dropping the last term in the above
relation, the solution implies

�R ¼ c1e
�i!ðt�ð1=c2Þ�Þ; (40)

where we have set c1 as an integration constant. Summing
it all up, we conclude that the asymptotic analysis of scalar
field equations being bosonized Dirac fermions leads to the
time-dependent plane wave solutions. This contradicts the
static nature of the considered YM black hole. On this
account it is impossible to obtain a static spherically sym-
metric YM black hole solution surrounded by a Dirac
fermion vacuum.

B. Massive Dirac fermions

In this subsection we are mainly concerned with the
massive Dirac case. In what follows we take into account
the following ansatze for FL and FR:

FL ¼ i�3FR � e�
R

2@r� lnCdr�G;

FR ¼ �i�3e�
R

2@r� lnCdr�G:
(41)

Because of the fact that the left-handed fermions can be
expressed in terms of a linear combination of the right-
hand ones, we will use only the right-hand part of the
original fermionic Lagrangian supplemented by the appro-
priate mass term. Namely, we obtain the equations of the
form

i�araFR � K

C
�2FR � ��aBa�

1FR þ 2iA�1@r�

� lnðCÞ�1FR �mi�3FR ¼ 0: (42)

On this account it is customary to write the following
relations for G-fermions:

i~�araG� V ~�3Gþ �~�aBa ~�
3G�mG ¼ 0; (43)

where ~� are gamma matrices written in the basis which
is chosen as in the massless right-handed case. We also
have that V ¼ K

C . Hence, the effective Lagrangian for

G-fermions will be provided by the expression
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LGF ¼ �i �G~�araG� �Ba
�G~�a ~�3G

þ ðV þmÞ �G~�LGþ ðm� VÞ �G~�RG: (44)

Next, as in the preceding sections, we try the bosonization
scheme,

ja � �G~�aG ¼ 1ffiffiffiffi



p "abrb�;

ja3 � �G~�a ~�3G ¼ 1ffiffiffiffi



p ra�;

�G~�LG ¼ be2i
ffiffiffi



p
�;

�G~�RG ¼ b�e�2i
ffiffiffi



p
�:

(45)

When we set b ¼ b�, we are able to find the Lagrangian for
the scalar field,

LGB ¼ � 1

2
ra�ra�� �ffiffiffiffi



p Bara�

þ ðV þmÞbe2i ffiffiffi
p � þ ðm� VÞbe�2i
ffiffiffi



p
�; (46)

where b is constant. On the other hand, the equation of
motion for the � field implies

rara�þ �ffiffiffiffi



p raB
a þ 2ib

ffiffiffiffi



p fV½e2i ffiffiffi
p � þ e�2i
ffiffiffi



p
��

þm½e2i ffiffiffi
p � � e�2i
ffiffiffi



p
��g ¼ 0; (47)

which can be rewritten in a more compact form,

rara�þ �ffiffiffiffi



p raB
a þ 4ib

ffiffiffiffi



p fV cosð2 ffiffiffiffi



p
�Þ

þ im sinð2 ffiffiffiffi



p
�Þg ¼ 0: (48)

Applying the same analysis as in the preceding section
leads us to the conclusion that in the near-horizon limit the
bosonization field � will be given in the form of a plane
wave. Namely, it will be described by

� ¼ d1e
�i!ðt�ð1=c2Þ�Þ; (49)

where d1 is an integration constant while c is the same
constant as in the massless case. On the other hand, in the
limit when r� ! 1, the underlying equation of motion
may be written as

� @2t �þ @2r��� 4b
ffiffiffiffi



p
m sinð2 ffiffiffiffi



p

�Þ ¼ 0; (50)

where due to the previously quoted arguments, we have
omitted Ba. Because of the fact that V 	 1=r, the term with
the cosine function tends to zero. We attain just the form of
the well-known sine-Gordon equation, the solution of
which implies

� ¼ 2ffiffiffiffi



p arctan

�
e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8b
mÞ=ð1�v2Þ

p
ðr��vtÞ

�
; (51)

where v is an integration constant. From the above relation
it can be inferred that the fermion current tends to zero as
r� ! 1. To conclude this section, we remark that if we put
Ba ¼ 0, we obtain the time-dependent Dirac fermions as
well as, through equations of motion, the time-dependent

YM fields and the coefficients of the studied line element.
All of the above contradicts our primary assumptions about
the staticity of the system in question.

III. BACKREACTION ON YANG-MILLS FIELDS

If one considers a spherically symmetric spacetime
being a Lorentz manifold on which the SOð3Þ group acts
like isometry in such a way that all group orbits are
S2-spheres, the spacetme in question may be locally writ-
ten as a warped product of a two-dimensional Lorentz
manifold and two-sphere with the standard metric on it
[26–28]. It is convenient to rederive the field equations in
the spherically symmetric case by varying the effective
two-dimensional action. Putting in the EYM action the
ansatz for the YM gauge fields and the line element de-
scribing the symmetry in question, one can obtain the
two-dimensional Lagrangian, which yields

L YM ¼ �C2

4
fabf

ab � jdKj2 � 1

2C2
ðjKj2 � 1Þ2; (52)

where the covariant derivative and the strength of Ba are
given by the relations

d ¼ ra � iBa; fab ¼ raBb �rbBa: (53)

The subscript a denotes t, r� coordinates. Equations of
motion in the presence of the bosonized massless fermions
are provided by

ra½C2fab� � 2jKj2Bb � �jb3R þ �jb3L ¼ 0; (54)

raraK � 2

C2
KðjKj2 � 1Þ þ 2KBaB

a

þ b

C
½e2i ffiffiffi
p �R � e�2i

ffiffiffi



p
�R þ e2i

ffiffiffi



p
�L � e�2i

ffiffiffi



p
�L �

¼ 0; (55)

where ja3R ¼ �GR ~�
a ~�3GR and ja3L ¼ �GL ~�

a ~�3GL. They can

be reduced to the forms

ra½C2fab� � 2jKj2Bb � �ffiffiffiffi



p ½rb�R �rb�L� ¼ 0;

(56)

raraK � 2

C2
KðjKj2 � 1Þ þ 2KBaB

a

� i
2b

C
½sinð2 ffiffiffiffi



p

�RÞ þ sinð2 ffiffiffiffi



p
�LÞ� ¼ 0: (57)

Having in mind Eqs. (26) and (33), in the case when
Ba ¼ 0, one can see that jb3R ¼ jb3L. Thus, Ba ¼ 0 is the

trivial solution of (54). As far as the influence of fermions
on YM fields is concerned, from relation (57) it can be
inferred that the last term is not equal to zero, and this leads
to the conclusion that fermions have influence on the
magnetic part of YM fields. By virtue of the above, we
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observe that there is a nonzero fermion contribution to the
magnetic part of the Yang-Mills field. Since�L and�R are
time dependent, the magnetic part of YM fields, K, is also
time dependent, which in turn means that the coefficients
of the line element in question also depend on time. In the
case when Ba � 0, from Eqs. (26) and (33), one can find
fermion currents jb3R, j

b
3L. On the other hand, inspection of

Eq. (54) reveals the fact that the fermion current causes the
nontrivial solution for Ba. Consequently, the black hole in
question has both magnetic and electric charges. One gets a
dyonic black hole. But this in turn leads to the infiniteness
of the mass of the considered object [25].

As was remarked, taking into account massive fermions,
one has that FL ¼ i�3FR. This fact reduces the number of
independent fields; i.e., instead of�L and�R we have only
one, field �, satisfying the relation

raðC2fabÞ � 2jKj2Bb � �ffiffiffiffi



p rb� ¼ 0: (58)

Hence, we get the black hole with both electric and mag-
netic charges (the dyon). On the other hand, this dyonic
black hole cannot have finite mass [25].

The above analysis reveals the fact that the presence of
the Dirac fermion field leads to the destruction of a static
YM black hole solution. First of all, the scalar which we
get in the bosonization process is time dependent. This in
turn causes the magnetic part of the YM fields as well as
the coefficients of the line element in question to depend
also on time. This destroys our assumption about staticity
of the considered black hole. These conclusions are true
both for massless and massive Dirac fermions. Second, we
can readily see that the presence of the Dirac fermion fields
will provide the existence of the electric part of the YM
fields, which in turn leads to the infiniteness of black hole
mass.

IV. FIVE-DIMENSIONALYANG-MILLS
BLACK HOLE

Studies of spherically symmetric solutions in higher
dimensional theories reveal two ways of research. One is
connected with the assumption that we have spherically
symmetric solutions in n dimensions (this attitude is im-
portant in high-energy problems), and the other is when
one assumes that solutions are spherically symmetric only
in a four-dimensional manifold. The second approach is
importance from the point of view of the present Uni-
verse. These ideas were explored in Refs. [29], where
ð4þ 1Þ-dimensional EYM systems were elaborated. It
turns out that the EYM system reduces to an effective four-
dimensional EYMHd model. The ð4þ nÞ-dimensional
case was considered in Ref. [30], with the assumption
that all of the n-dimensional fields are not dependent on
the extra dimensions. The solutions were spherically sym-
metric in four dimensions, while the additional dimensions
were bounded with a Ricci flat manifold.

Now, we shall proceed to elaborate ð4þ 1Þ-dimensional
EYM theory, where both the matter fields and the line
element coefficients are not dependent on the fifth coor-
dinate. Let us suppose that the five-dimensional metric and
five-dimensional field are parametrized as follows:

ð5Þds2 ¼ gMNdx
NdxM

¼ e��½�A2dt2 þ B2dr2 þ C2d�2� þ e2�ðdx5Þ2;
(59)

Ha
Mdx

M ¼ Ha
�dx

� þ�adx5; (60)

whereM, N ¼ t, r, �, �, x5, a is a group index, and HM is
the five-dimensional Yang-Mills field. On the other hand,
H� denotes the four-dimensional Yang-Mills field compo-

nents and � plays the role of the dilaton [29]. The above
relations allow us to attain an effective four-dimensional
EYMd theory for which the Lagrangian after compactifi-
cation yields

L 4 ¼ a1R� a2r��r��� 1
4e

�Fa
��F

a��

� 1
2e

�2�D��
aD��a; (61)

where a1 and a2 are constants depending on the five-
dimensional gravitational constant, while the covariant
derivative of the Higgs field in the adjoint representation
implies

D��
a ¼ r��

a þ "abcH
b
��

c: (62)

Let us assume further that � ¼ �YðrÞ�ini, where � is the
expectation value of the Higgs field. The matter
Lagrangian written in ðt; r�Þ coordinates is given by

L2�dim ¼ �a2C
2ra�ra�� C2

4
e�fabf

ab � e�ðdKÞ2

� 1

2C2
e�ðjKj2 � 1Þ2 � C2

2
e�2�raYraY

� e�2�jKj2Y2: (63)

As far as the five-dimensional fermions are concerned,
after dimensional reduction their action yields

SF4
¼
Z ffiffiffiffiffiffiffiffiffiffiffiffi

�ð4Þg
q

d4x½i �c��D
$

�c þ �2
�c�5e�2��i�

ic �;
(64)

where

�5 ¼ I 0

0 �I

 !
:

One can observe that they gain mass by coupling to the
five-dimensional component of the YM field �i. Namely,
it implies
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�m½ �c Rc L þ �c Lc R� ! �2e
�2� �c R�

i�ic L

� �2e
�2� �c L�

i�ic R; (65)

where �2 is the fermion coupling constant and �i are SUð2Þ
generators. On the other hand,�i resembles Higgs fields in
a four-dimensional background. Massless fermions will be
described by the same equations, and therefore we restrict
our attention to the massive case. Further, we represent
c L=R in terms of 	1=2,

�2e
�2� �c R�

i�ic L ¼ �C2�2�Ye
�2� �FR�

1FL: (66)

Expressing fermions as two-dimensional ones and integrat-
ing over the angles, we get the effective two-dimensional
Lagrangian given by (14) with the following substitutions:

�m �FRFL ! ��2�e
�2�Y �FR�

1FL;

�m �FLFR ! �2�e
�2�Y �FL�

1FR:
(67)

Bosonization of the Dirac fermion fields will take place as
in the preceding sections. Namely, we introduce G fermi-

ons FL ¼ i�3FR and FR ¼ �i�3e�
R

2@r� lnðCÞdr�G, where
the two-dimensional base of the gamma matrices is chosen
as follows:

~� 0 ¼ �i�3; ~�1 ¼ ��2; ~�3 ¼ ~�0 ~�1: (68)

This leads us to the equation of motion of the form

i~�araG� V 0 ~�3Gþ �~�aBa ~�
3G ¼ 0; (69)

where we set V 0 ¼ K
C þ �2�e

�2�Y. They can be derived

from the effective Lagrangian provided by

LGF ¼ �i �G~�araG� � �G~�aBa ~�
3G

þ V 0 �G~�LG� V0 �G~�RG: (70)

It can be easily verified that using the following bosoniza-
tion formulas,

ja ¼ �G~�aG ¼ 1ffiffiffiffi



p "abrb�;

ja3 ¼ �G~�a ~�3G ¼ 1ffiffiffiffi



p ra�;

�G~�LG ¼ be2i
ffiffiffi



p
�;

�G~�RG ¼ b�e�2i
ffiffiffi



p
�;

(71)

and setting b ¼ b�, the bosonized Lagrangian becomes

LGB ¼ � 1

2
ra�ra�� �ffiffiffiffi



p Bara�

þ V 0b½e2i ffiffiffi
p � � e�2i
ffiffiffi



p
��: (72)

Consequently, the equation of motion for the scalar field�
is given by

rara�þ �ffiffiffiffi



p raB
a þ 2ib

ffiffiffiffi



p
V 0½e2i ffiffiffi
p � þ e�2i

ffiffiffi



p
�� ¼ 0;

(73)

or in a more compact form, it implies

rara�þ �ffiffiffiffi



p raB
a þ 4ib

ffiffiffiffi



p
V0 cosð2 ffiffiffiffi



p

�Þ ¼ 0: (74)

A. Asymptotic analysis of equations of motions

Taking the same change of variable as in the massless
case, namely, r� 	 ��, and noticing that A2 	 ��1, we see
that in the near-horizon limit,� is given by the plane wave
solution. For the finiteness of the black hole mass, we
assume that Ba ¼ 0; then one arrives at

� ¼ e1e
�i!ðt�ð1=c2Þ�Þ; (75)

where e1 is an arbitrary constant while c2 is the same as in
the previously studied massless case. Thus, if we demand
Ba ¼ 0, the regular solution for�must be time dependent.
Now we will look for a solution in the r� ! 1 limit.

Namely, one has that

� @2t �þ @2r��þ 4ib
ffiffiffiffi



p
m0 cosð2

ffiffiffiffi



p
�Þ ¼ 0; (76)

wherem0 ¼ �2�Y0e
�2�0 , and Y0 and �0 are the asymptotic

values of the Higgs and dilaton fields, respectively. One
can rewrite � as �ðr�Þ ¼ �aðr�Þ � 1

2
ffiffiffi



p 

2 , which leads us

to the following form of the equations of motion,

� @2t �a þ @2r��a � 4ib
ffiffiffiffi



p
m0 sinð2

ffiffiffiffi



p
�aÞ ¼ 0: (77)

As we can see, this is the sine-Gordon equation with
complex coefficients. Its solution yields

�a ¼ 2ffiffiffiffi



p arctan

�
e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8i
bm0Þ=ð1�v2Þ

p
ðr��vtÞ

�
; (78)

where � is an integration constant.

Note that � tends to the constant value �
ffiffiffi



p
4 as r� goes

to infinity. But � itself is not a physical quantity. Physical
quantities are fermion fields, and they are given by deriva-
tives of�. In conclusion, in both cases of massive fermions
(normal and Higgs generated mass) fermionic currents
decay at infinity. The analysis of the fermion backreaction
on the Yang-Mills field goes along the same line as in the
pure four-dimensional case. Conclusions are qualitatively
the same. Namely, time-dependent fermion fields lead to
the destruction of the static ansatz for the Yang-Mills black
hole (massive and massless cases), or massive fermions
lead to the appearance of the nonzero electric part of the
YM field.

V. CONCLUSIONS

In our paper we have considered the influence of the
Dirac fermion field on an EYM black hole. One takes into
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account two cases, i.e., the four-dimensional YM black
hole [25] and the black hole in the five-dimensional gen-
eralization of YM theory. In the latter case the five-
dimensional theory reduces to the four-dimensional
EYMHd model. In both cases we elaborated SUð2Þ YM
theory and treated the Dirac fermion in the s-wave sector.
Assuming a spherically symmetric, static, asymptotically
flat black hole spacetime, we bosonized fermion fields and
studied the equations of motion for the obtained scalar
fields.

In a massless fermion sector we arrived at two scalar
fields, �L and �R, corresponding, respectively, to the left-
and right-handed Dirac fermions. The action governing the
scalar fields differs only by the sign in the term connected
with the electric part of the YM field. Because of the fact
that the finite mass YM black hole configuration exists
only when the electric part of the YM field is equal to zero,
the resulting equations of motion for both scalar fields are
identical. The analysis of �L=R fields in the near-horizon

and near-infinity limits reveals the fact that they are given
by plane wave solutions. This in turn leads to the time
dependence of the magnetic part of the YM field as well as,
through EYM field equations, to the time dependence of
the considered line element coefficients.

The situation is slightly different in the massive fermion
case. First of all, one should recognize two kinds of mass
terms emerging in our considerations. Namely, the ordi-
nary mass term m �c c appears in four-dimensional space-
time, and the mass term connected with the Higgs field
�� �c c appears in the five-dimensional case, which re-
duces effectively to the four-dimensional EYMHd theory.
Before bosonization we use the simplifying assumption
that the right- and left-handed parts of the Dirac fermion
field are connected through the transformation FR ¼
i�3FL. This allows us to express the Dirac fermion field
by only one scalar field �. The next step is to analyze the
behavior of the� field in the near-horizon and near-infinity
limits. It turns out that in the near-horizon limit the solution
is described by a plane wave. This conclusion is true for

both aforementioned masses. On the other hand, as far as
the near-infinity limit is concerned, equations of motion for
the ordinary mass term m �c c reduce to the sine-Gordon
type of equation. This equation has a time-dependent
decaying solution as one approaches the near-infinity limit
(the so-called antikink solution). In the case of the Higgs
generatedmass term �� �c c , the equations in question can
also be changed to the sine-Gordon type of equation but
with a complex coefficient. It can be found that the solution
reduces to the decaying oscillation function plus a nonzero
constant term. Moreover, the presence of the Dirac fermion
field currents will cause a nontrivial value of the electric
part of the YM fields, which in turn leads to the infiniteness
of the black hole mass.
Summing it all up, we remark that the presence of the

Dirac fermion field (fermion vacuum) in the spacetime
of a magnetically charged, spherically symmetric, static,
asymptotically flat YM black hole will lead to the destruc-
tion of this black object. This will happen by destroying the
static ansatz for the black hole with both massive and
massless Dirac fermions. An asymptotical analysis of the
behavior of the fermion fields suggests that the massless
fermions are propagating in the whole spacetime, while
massive Dirac fermions are confined to the near-horizon
region. This conclusion remains true for the effectively
reduced five-dimensional YM theory. In order to have a
static YM black hole, one should have Dirac fermions
which are constant in the domain of outer communication
of the black hole in question, or Dirac fermion fields ought
to enter the black hole (massive Dirac field) or escape to
infinity (massless Dirac fermions). This is the same con-
clusion as conceived in Refs. [21,31].
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