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We use a de Sitter breaking graviton propagator [14,15] to compute the tree-order correlator between

noncoincident Weyl tensors on a locally de Sitter background. An explicit and very simple result is

obtained for any spacetime dimension D, in terms of a de Sitter invariant length function and the tensor

basis constructed from the metric and derivatives of this length function. Our answer does not agree with

the one derived previously by Kouris [26], but that result must be incorrect because it is not transverse and

lacks some of the algebraic symmetries of the Weyl tensor. Taking the coincidence limit of our result

(with dimensional regularization) and contracting the indices gives the expectation value of the square of

the Weyl tensor at lowest order. We propose the next order computation of this as a true test of de Sitter

invariance in quantum gravity.
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I. INTRODUCTION

Students of quantum mechanics are familiar with the
fact that charged particle wave functions couple to the
electromagnetic vector potential, not to the field strength
tensor. Hence the undifferentiated vector potential in a
fixed gauge is, in some ways, observable. This point was
crushingly demonstrated by the famous Aharonov-Bohm
effect, in which a charged particle is made to interfere with
itself in passing around a solenoid, despite the field
strength being zero throughout the support of the particle’s
wave function [1].

Specialists in quantum field theory on curved space
are engaged in a similar debate concerning inflationary
gravitons. Matter fields couple to the metric, not to the
curvature. There is no gauge in which this can be avoided.
Hence one would think it obvious that the undifferentiated
graviton field in a fixed gauge must be observable. Indeed,
strenuous efforts [2–5] are under way to measure the tensor
power spectrum, which is the expectation value of the
conformally rescaled graviton field in transverse-traceless
and synchronous gauge, taken long after the time tk of the
first horizon crossing,

�2
hðkÞ �

k3

2�2
lim
t�tk

Z
d3xe�i ~k� ~xh�jhttijðt; ~xÞhttijðt; ~0Þj�i: (1)

Mathematical physicists have for years disputed this
conclusion because it conflicts with their belief in the
de Sitter invariance of free gravitons on de Sitter back-
ground. (The de Sitter geometry is the most highly accel-
erated inflation consistent with classical stability.) The
Bunch-Davies mode sum for the graviton propagator is
formally de Sitter invariant, but infrared divergent.
Regulating the infrared divergence breaks de Sitter invari-
ance [6]. However, the infrared divergence is only

logarithmic, so the derivatives needed to turn a graviton
field into a linearized curvature render the mode sum for
the linearized Weyl-Weyl correlator infrared finite and
de Sitter invariant. Mathematical physicists therefore
find it attractive to argue that the graviton propagator is
unobservable—in spite of current efforts [2–5] to observe
the tensor power spectrum (1)—and insist that only the
correlator of two linearized Weyl tensors is physical. They
sometimes even advance the de Sitter invariance of the
Weyl-Weyl correlator as evidence that free gravitons are
physically de Sitter invariant [7–9].
A digression is necessary at this stage to mention two

recent insights which have dispelled decades of confusion:
(i) There is a topological obstacle that precludes adding

invariant gauge fixing terms to the action on any
manifold, such as de Sitter, which possesses a linea-
rization instability [10]; and

(ii) It is incorrect to subtract off power law infrared
divergences, which is what automatically happens
with any analytic regularization technique, such as
continuation from Euclidean de Sitter space [11].

The first point explains that there is no math error, but
rather a subtle physics problem with gauge fixing in the
many solutions which have been reported for the graviton
propagator with a covariant gauge fixing term [12].
Attempting to ignore this problem produces provably
wrong results in scalar quantum electrodynamics [13],
and would do so as well in quantum gravity.
It is still possible to add noncovariant gauge fixing terms

to the action, or to impose a covariant gauge exactly (as
opposed to on the average with a gauge fixing term). The
propagator was long ago worked out with a noncovariant
gauge fixing term [14,15], and all quantum gravitational
loop corrections on de Sitter have been made using this
solution [16–20]. Enhancing the naive de Sitter transfor-
mation with the compensating gauge transformation
needed to restore the noncovariant gauge condition reveals
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a physical breaking of de Sitter invariance [21]. The propa-
gator has also recently been constructed in a covariant,
exact gauge [22], and that solution shows explicit breaking
of de Sitter invariance as well [23].

The second point of our digression explains the curious
statement in the mathematical literature that exact covariant
gauges are free of infrared problems except for certain
discrete values of the gauge fixing parameters [24]. It has
even been asserted that minimally coupled scalars with
tachyonic masses are infrared finite except for the discrete
values,M2¼�NðNþ3ÞH2, whereH is theHubble parame-
ter [7]. In fact, all tachyonic masses produce infrared diver-
gences. The special thing about the discretevalues is that one
of the power law infrared divergences happens to become
logarithmic for these values, and so is not automatically
subtracted by the analytic regularization technique.1

We come now to the main point of this paper, which is to
evaluate the linearized Weyl-Weyl correlator in the same
noncovariant gauge [14,15] for which all existing quantum
gravitational loop corrections on de Sitter background have
been made [16–20]. We will demonstrate four things:

(i) That our result is both de Sitter invariant and very
simple;

(ii) That the result obtained in 2001 by Kouris [26]
cannot be correct because it possesses neither the
algebraic symmetries of the Weyl tensor nor its
transversality;

(iii) That the de Sitter invariance of our result is a trivial
consequence of the derivatives needed to convert
the graviton field into a linearized curvature and the
disappearance of the constrained parts of the propa-
gator from the linearizedWeyl-Weyl correlator; and

(iv) That a true test of de Sitter invariance lies in eval-
uating the next loop order result for the coincident
Weyl-Weyl correlator with its indices properly
contracted.

Section II deals with the apparatus of perturbative quantum
gravity on a D-dimensional de Sitter background so that
dimensional regularization can be used. The actual compu-
tation is performed in Sec. III. We also discuss the discrep-
ancy between the earlier result [26] and ours. In Sec. IV we
explain what the Weyl-Weyl correlator tells one and what it
does not. We also compare it to the expectation value of the
stress tensor of a massless, minimally coupled scalar, both at
the free level (which produces a de Sitter invariant result)
and with a quartic self-interaction (which shows de Sitter
breaking).

II. QUANTUM FIELD THEORY ON DE SITTER

The purpose of this section is to describe the formalism
for making perturbative quantum gravity computations on
de Sitter background. We begin with the open conformal
coordinate system which must be used if de Sitter is to fit
into the larger context of inflationary cosmology. We then
present the graviton propagator in our noncovariant gauge
[14,15]. The section closes with a discussion of the tensor
basis employed to express the linearized Weyl-Weyl cor-
relator in a manifestly de Sitter invariant form.

A. Open conformal coordinates

We view de Sitter from the perspective of inflationary
cosmology, as but a special case of the much larger class of
homogeneous, isotropic, and spatially flat geometries. This
means we do not want to work on the full de Sitter mani-
fold but rather on the so-called ‘‘cosmological patch’’
which is spatially flat. It is convenient to use conformal
coordinates x� ¼ ð�; ~xÞ with
�1<�<0; �1<xi<þ1 for i¼1; . . . ;D�1: (2)

As the name suggests, the metric in these coordinates is
conformal to that of flat space,

ds2 ¼ a2ð�d�2 þ d~x � d~xÞ where a � � 1

H�
: (3)

The parameter H is known as the Hubble constant, and is
related to the cosmological constant by � ¼ ðD� 1ÞH2.
Although conformal coordinates do not cover the full
de Sitter manifold, � ¼ const does represent a Cauchy
surface, so information from the larger manifold can only
enter the cosmological patch as initial value data.
The symmetry group of coordinate transformations

which preserve the de Sitter metric plays a central role in
our analysis. In open D-dimensional conformal coordi-
nates the de Sitter group consists of 1

2DðDþ 1Þ transfor-
mations which can be arranged as follows in four parts:
(1) Spatial translations, which comprise (D� 1) trans-

formations parametrized by a constant vector �i,

�0 ¼ �; x0i ¼ xi þ �i: (4)

(2) Spatial rotations, which comprise 1
2 ðD� 1ÞðD� 2Þ

transformations parametrized by the rotation matrix
Rij,

�0 ¼ �; x0i ¼ Rijxj: (5)

(3) Dilatations, which comprise one transformation pa-
rametrized by a constant C,

�0 ¼ C�; x0i ¼ Cxi: (6)

(4) Spatial special conformal transformations, which
comprise (D� 1) transformations parametrized by
the constant vector �i,

1Mathematical physicists occasionally ask what is wrong with
the de Sitter invariant solutions one gets from subtracting off
power law infrared divergences. The result is a solution to the
propagator equation which is not a propagator in the sense of
being the expectation value of the time-ordered product of two
fields in the presence of any normalizable state. Such solutions
abound, for example, i=2 times the sum of the advanced and
retarded Green’s functions [25].
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�0 ¼ �

1�2 ~�� ~xþ�2x�x�
; x0i¼ xi��ix�x�

1�2 ~�� ~xþ�2x�x�
:

(7)

The symmetries of cosmology are 1 and 2; symmetries 3
and 4 only appear in the de Sitter limit of maximal
acceleration.

It is convenient to represent de Sitter invariant propaga-
tors between points x� and x0� using the de Sitter length
function yðx; x0Þ,

yðx; x0Þ � aa0H2½k ~x� ~x0k2 � ðj�� �0j � i"Þ2�: (8)

Except for the factor of i" (whose purpose is to enforce
Feynman boundary conditions) the de Sitter length func-
tion can be expressed as follows in terms of the geodesic
length ‘ðx; x0Þ from x� to x0�:

yðx; x0Þ ¼ 4sin2ð12H‘ðx; x0ÞÞ: (9)

We should mention that mathematical physicists prefer a
different de Sitter function z ¼ 1� 1

4 y, because it gives

simpler formulas for propagators in terms of hypergeomet-
ric functions. The advantage of our length function yðx; x0Þ
is that it vanishes at coincidence (that is, x� ¼ x0�), which
is quite important when renormalizing explicit loop
computations.

B. The graviton propagator

We define the graviton field h��ðxÞ by conformally

transforming the full metric g��ðxÞ and then subtracting

off the background,

g��ðxÞ � a2~g�� � a2ð��� þ �h��ðxÞÞ: (10)

Here ��� is the D-dimensional, spacelike signature

Minkowski metric, and �2 � 16�G is the loop counting
parameter of quantum gravity. The gravitational
Lagrangian is

L � 1

16�G
ðR� ðD� 2Þ�Þ ffiffiffiffiffiffiffi�g

p
: (11)

Subtracting off a surface term and expanding in powers of
the graviton field gives a form from which the perturbative
interactions can be read off [14],

L� surface ¼
�
D

2
� 1

�
HaD�1

ffiffiffiffiffiffiffi�~g
p

~g�	~g��h�	;�h�0

þ aD�2
ffiffiffiffiffiffiffi�~g

p
~g
�~g�	~g��

�
1

2
h
�;�h�	;�

� 1

2
h
�;�h	�;� þ 1

4
h
�;�h��;	

� 1

4
h
�;�h�	;�

�
: (12)

Note that ~g�� and
ffiffiffiffiffiffiffi�~g

p
are infinite order in the graviton

field,

~g�� ¼ ��� � �h�� þ �2h��h�� þOð�3Þ; (13)

ffiffiffiffiffiffiffi�~g
p ¼ 1þ 1

2�hþ 1
8�

2h2 � 1
4�

2h��h�� þOð�3Þ: (14)

Note also that we follow the usual conventions whereby a
comma denotes ordinary differentiation, h � ���h��, and

graviton indices are raised and lowered using the
Minkowski metric, h�� � ���h�� and h�� �
�����	h�	.

The quadratic part of the invariant Lagrangian is

Lð2Þ
inv¼

�
1

2
h�	;�h�	;��1

2
h��

;�h;�þ1

4
h;�h;�

�1

4
h�	;�h�	;��

�
D�2

2

�
Hah0�h;�

�
aD�2: (15)

To this we add the noncovariant gauge fixing term

LGF ¼ �1
2a

D�2���F�F�;

F� � ��	ðh��;	 � 1
2h�	;� þ ðD� 2ÞHah���

0
	Þ:

(16)

Note that it respects de Sitter symmetries 1–3, breaking
only the spatial special conformal transformations.
Because space and time are treated differently in our
coordinate system and gauge, it is useful to have an ex-
pression for the purely spatial parts of the Lorentz metric
and the Kronecker delta,

���� � ��� þ �0
��

0
� and ��

�
� � �

�
� � �

�
0 �

0
�: (17)

The quadratic part of gauge fixed Lagrangian can be par-
tially integrated to take the form 1

2h
��D��

�	h�	, where

the kinetic operator is

D��
�	�

�
1

2
���

ð� ���
	Þ�1

4
����

�	� 1

2ðD�3Þ�
0
��

0
��

�
0�

	
0

�
DA

þ�0
ð� ��

ð�
�Þ�

	Þ
0 DBþ1

2

�
D�2

D�3

�
�0
��

0
��

�
0�

	
0DC; (18)

and the three scalar differential operators are

DA � @�ðaD�2���@�Þ; (19)

DB � @�ðaD�2���@�Þ � ðD� 2ÞH2aD; (20)

DC � @�ðaD�2���@�Þ � 2ðD� 3ÞH2aD: (21)

The graviton propagator in our gauge takes the form of a
sum of constant index factors times scalar propagators
[14,15],

i½����	�ðx; x0Þ ¼
X

I¼A;B;C

½��T
I
�	�i�Iðx; x0Þ: (22)

The three scalar propagators invert the various scalar
kinetic operators,

DI � i�Iðx; x0Þ ¼ i�Dðx� x0Þ for I ¼ A; B;C; (23)

and we will give explicit expressions for them. The index
factors are
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½��T
A
�	� ¼ 2 ���ð� ��	Þ� � 2

D� 3
���� ���	; (24)

½��T
B
�	� ¼ �4�0

ð� ���Þð��0
	Þ; (25)

½��T
C
�	�¼ 2

ðD�2ÞðD�3Þ½ðD�3Þ�0
��

0
�þ����

�½ðD�3Þ�0
��

0
	þ��	�: (26)

It is straightforward to verify that the graviton propagator
(22) indeed inverts the gauge-fixed kinetic operator,

D��
�	 � i½�	�
��ðx; x0Þ ¼ �ð


� ��Þ
� i�Dðx� x0Þ: (27)

The A-type propagator obeys the same equation as that
of a massless, minimally coupled scalar. It has long been
known that no de Sitter invariant solution exists [27]. If one
elects to break de Sitter invariance while preserving homo-
geneity and isotropy—this is known as the ‘‘E(3)’’ vacuum
[28]—the solution takes the form [29]

i�Aðx; x0Þ ¼ Aðyðx; x0ÞÞ þ k lnðaa0Þ; (28)

where the constant k is

k � HD�2

ð4�ÞðD=2Þ
�ðD� 1Þ

�ðD2Þ
: (29)

The function AðyÞ is

AðyÞ¼ HD�2

ð4�ÞðD=2Þ

�
�

�
D

2
�1

��
4

y

�ðD=2Þ�1þ�ðD2þ1Þ
D
2�2

�
4

y

�ðD=2Þ�2

þA1�
X1
n¼1

�
�ðnþD

2þ1Þ
ðn�D

2þ2Þðnþ1Þ!
�
y

4

�
n�ðD=2Þþ2

��ðnþD�1Þ
n�ðnþD

2Þ
�
y

4

�
n
��
; (30)

where the constant A1 is

A1¼�ðD�1Þ
�ðD2Þ

�
�c

�
1�D

2

�
þc

�
D�1

2

�
þc ðD�1Þþc ð1Þ

�
:

(31)

It should be noted that AðyÞ obeys the differential equation
ð4y� y2ÞA00ðyÞ þDð2� yÞA0ðyÞ ¼ ðD� 1Þk: (32)

The B-type and C-type propagators are both de Sitter
invariant,

i�Bðx;x0Þ¼Bðyðx;x0ÞÞ; i�Cðx;x0Þ¼Cðyðx;x0ÞÞ: (33)

Rather than give the series expansion for BðyÞ we present
its relation to AðyÞ [9],

BðyÞ ¼ � ½ð4y� y2ÞA0ðyÞ þ kð2� yÞ�
2ðD� 2Þ : (34)

For CðyÞ it is more convenient to give the derivative [9],

C0ðyÞ ¼ A0ðyÞ � 1

4

�
D� 3

D� 2

�
½ð4y� y2ÞA0ðyÞ þ kð2� yÞ�:

(35)

Of course our propagator breaks the 4th part of the
de Sitter group (spatial special conformal transformations)
because the gauge condition breaks it. However, the propa-
gator also breaks the 3rd part of the de Sitter group
(dilatations), which is preserved by the gauge condition.
This is evident from the de Sitter breaking second term of
the A-type propagator (28), which is needed to reproduce
the famous result for the coincidence limit of the massless,
minimally coupled scalar propagator [30],

lim
x!x0

i�Aðx; x0Þ ¼ H2

4�2
lnðaÞ þ divergent constant: (36)

The absence of dilatation invariance implies a physical
breaking of de Sitter invariance by free gravitons. Kleppe
proved this by concatenating a naive de Sitter transforma-
tion with the compensating gauge transformation needed to
restore the gauge condition [21].

C. Tensor basis

Because yðx; x0Þ is de Sitter invariant, so too are cova-
riant derivatives of it. With the metrics g��ðxÞ and g��ðx0Þ,
the first three derivatives of yðx; x0Þ furnish a convenient
basis of de Sitter invariant bi-tensors [13],

@yðx; x0Þ
@x�

¼ Haðy�0
� þ 2a0H�x�Þ; (37)

@yðx; x0Þ
@x0�

¼ Ha0ðy�0
� � 2aH�x�Þ; (38)

@2yðx; x0Þ
@x�@x0�

¼ H2aa0ðy�0
��

0
� þ 2a0H�x��

0
�

� 2a�0
�H�x� � 2���Þ: (39)

Here and subsequently we define �x� � ���ðx� x0Þ�.
Acting covariant derivatives generates more basis tensors,
for example [13],

D2yðx; x0Þ
Dx�Dx�

¼ H2ð2� yÞg��ðxÞ;
D2yðx; x0Þ
Dx0�Dx0�

¼ H2ð2� yÞg��ðx0Þ:
(40)

The contraction of any pair of the basis tensors also pro-
duces more basis tensors [13],

g��ðxÞ @y
@x�

@y

@x�
¼H2ð4y�y2Þ¼g��ðx0Þ @y

@x0�
@y

@x0�
; (41)

g��ðxÞ @y
@x�

@2y

@x�@x0	
¼ H2ð2� yÞ @y

@x0	
; (42)
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g�	ðx0Þ @y

@x0	
@2y

@x�@x0�
¼ H2ð2� yÞ @y

@x�
; (43)

g��ðxÞ @2y

@x�@x0�
@2y

@x�@x0	
¼ 4H4g�	ðx0Þ �H2 @y

@x0�
@y

@x0	
;

(44)

g�	ðx0Þ @2y

@x�@x0�
@2y

@x�@x0	
¼ 4H4g��ðxÞ �H2 @y

@x�
@y

@x�
:

(45)

The tensor structure of de Sitter breaking terms requires
derivatives of the quantity uðx; x0Þ � lnðaa0Þ,

@u

@x�
¼ Ha�0

�;
@u

@x0�
¼ Ha0�0

�: (46)

Covariant derivatives of the new tensors involve some extra
identities in addition to those of yðx; x0Þ [11],

D2u

Dx�Dx�
¼ �H2g��ðxÞ � @u

@x�
@u

@x�
;

D2u

Dx0�Dx0�
¼ �H2g��ðx0Þ � @u

@x0�
@u

@x0�
:

(47)

There are also some new contraction identities,

g��ðxÞ @u

@x�
@u

@x�
¼ �H2 ¼ g�	ðx0Þ @u

@x0�
@u

@x0	
; (48)

g��ðxÞ @u

@x�
@y

@x�
¼ �H2

�
y� 2þ 2

a0

a

�
; (49)

g�	ðx0Þ @u

@x0�
@y

@x0	
¼ �H2

�
y� 2þ 2

a

a0

�
; (50)

g��ðxÞ @u

@x�
@2y

@x�@x0�
¼ �H2

�
@y

@x0�
þ 2

a0

a

@u

@x0�

�
; (51)

g�	ðx0Þ @u

@x0�
@2y

@x�@x0	
¼ �H2

�
@y

@x�
þ 2

a

a0
@u

@x�

�
: (52)

Finally, we should explain the relation of our tensor
basis to the one employed by mathematical physicists.
Their literature obviously includes no mention of the
de Sitter breaking tensors @u=@x� and @u=@x0�, however,
there are also significant differences in the de Sitter invari-
ant sector. Our motivation for employing derivatives of the
length function yðx; x0Þ is to simplify loop computations
which involve derivatives of propagators. That is not a
significant consideration for mathematical physicists be-
cause their literature is devoid of such computations; the
only quantum gravitational loop computations so far made
on de Sitter background [16–20] use our propagator. The
issue of greater importance to mathematical physicists is
the geometrical significance of the tensor basis. In place of
@y=@x� and @y=@x0�, they accordingly employ derivatives

of the geodetic length function ‘ðx; x0Þ (which is known as
‘‘�’’ in their literature),

n� � @‘ðx; x0Þ
@x�

¼
@y
@x�

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y� y2

p ; (53)

n�0 � @‘ðx; x0Þ
@x0�0 ¼

@y

@x0�0

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y� y2

p : (54)

(Note the mathematical physics notation in which un-
primed indices belong to the tangent space at x� and
primed indices belong to the x0� tangent space.) In place
of the mixed second derivative @2y=@x�@x0�, mathematical
physicists prefer the parallel transport matrix,

g��0 ¼ � 1

2H2

�
@2y

@x�@x0�0 þ 1

4� y

@y

@x�
@y

@x0�0

�
: (55)

III. DOING THE MATH

The purpose of this section is to perform the actual
computation. We begin by exploiting conformal invariance
to write the Weyl-Weyl correlator as a series of permuta-
tions and traces of four ordinary derivatives of the graviton
propagator. We then express the index factors of the gravi-
ton propagator using the tensor basis of the previous sec-
tion. The next step is to reduce the four ordinary derivatives
of the various scalar propagator functions to a standard
form based on the same tensor basis. The final step is to
note that the standard permutations and traces remove all
the noncovariant tensors, leaving only a linear combination
of three de Sitter invariant tensors times exceptionally
simple scalar factors. We also compare with the result of
Kouris [26], and we take the coincidence limit using di-
mensional regularization.

A. Exploiting conformal invariance

Recall the relation (10) between the conformally trans-
formed metric ~g�� and the full metric g�� ¼ a2~g��. Let

C
�
� and ~C
�
� stand for the Weyl tensors constructed

from each metric, with their indices raised and lowered by
the appropriate metric. Because the Weyl tensor is con-
formally invariant with one index raised we have

C

��	 ¼ ~C


��	 ) C
��	 ¼ a2 ~C
��	: (56)

As a consequence the correlation function of two Weyl
tensors takes the form

h�jC
�
�ðxÞC���	ðx0Þj�i
¼ a2a02h�j ~C
�
�ðxÞ ~C���	ðx0Þj�i: (57)

The advantage of conformal invariance becomes appar-
ent when we express the Weyl tensor in terms of the
Riemann tensor (R�

	���@��
�
�	þ��

�
�


�	��$�)

and its traces R�� � R�
��� and R � g��R��,
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C
�
�¼R
�
�� 1

D�2
ðg

R���g
�R�
þg��R



�g�
R
�Þþ 1

ðD�2ÞðD�1Þðg

g���g
�g�
ÞR:
(58)

Of course the same relation (58) gives the conformally
transformed Weyl tensor in terms of the conformally trans-
formed metrics and curvatures. But whereas the de Sitter
background of g�� is curved, the background value of the

conformally transformed metric is flat ~g��¼���þ�h��.

This makes it very simple to extract the linearized piece,

~R
�
�ðxÞ¼��

2
ðh��;

�h�
;
�þh

;���h
�;�
ÞþOð�2Þ:

(59)

It remains to describe the index algebra needed to
convert the quadruply differentiated propagator into the
linearized Weyl-Weyl correlator

�2

4
@
@
@

0
�@

0
�i½����	�ðx; x0Þ

! h�j ~C
�
�ðxÞ ~C���	ðx0Þj�i þOð�4Þ: (60)

We distinguish two steps:
(i) Riemannization, in which the linearized (and con-

formally transformed) Riemann-Riemann correlator
is formed; and

(ii) Weylization, in which the traces are subtracted to
give the linearized Weyl-Weyl correlator.

It is useful to define Riemannization generally for any
8-index bi-tensor ‘‘seed’’ with the same algebraic symme-
tries as the quadruply differentiated propagator on the left-
hand side of (60). From expression (59) we infer

Riem½ðseedÞ
�
����	�
� R
�
�

���� �R���	
��c! � ðseedÞ������c!; (61)

where

R
�
�
���� � ��


�
�

�

�
��

�
� � ��


�
�
��

�
��

�

 þ ��

��
�
��

�

��




� ��
��

�

�

�

��

�: (62)

Weylization can be defined similarly on any 8-index bi-
tensor seed with the algebraic symmetries of the product of
two Riemann tensors,

Weyl½ðseedÞ
�
����	�
� C
�
�

���� � C���	
��c! � ðseedÞ������c!: (63)

From expression (58) we infer

C 
�
�
���� � ��


�
�
��

�

�

�
� � ½�

�

�
��

�
� � �
��

�
��

�



þ ����
�

��


 � ��
�
�

��

��
���

D� 2

þ ½�

��� � �

���� ������

ðD� 2ÞðD� 1Þ :
(64)

The operations of Riemannization and Weylization give
a simple form for the linearized Weyl-Weyl correlator,

h�jC
�
�ðxÞC���	ðx0Þj�i

¼ �2

4
a2a02WeylðRiem½@
@
@0�@0�i½����	�ðx; x0Þ�Þ

þOð�4Þ: (65)

From expression (22) for the graviton propagator, and the
fact that the index factors ½��TI

�	� are constant in our

gauge, we can write

a2a02@
@
@0�@0�i½����	�ðx; x0Þ
¼ X

I¼A;B;C

a2a02½��TI
�	� � @
@
@

0
�@

0
�i�Iðx; x0Þ: (66)

In the next two subsections we will derive expressions for
first a2a02½��TI

�	� and then @
@
@
0
�@

0
�i�Iðx; x0Þ.

Several comments are in order before we close this
subsection. First, Riemannization is the ‘‘standard permu-
tation’’ defined decades ago in a study of invariant Green’s
functions [31]. A result from that work which will facilitate
subsequent analysis is that the Riemannization of any seed
which is symmetric on the index pairs ð
; 
Þ, ð�; �Þ,
ð�;�Þ, and ð�; 	Þ will possess all the algebraic symmetries
of a Riemann tensor at each point,

R
�
�¼�R�

�¼�R
��
¼R
�
�¼R

���R
��
:

(67)

The second point is that the Weyl tensor possesses the
additional algebraic symmetry of being traceless on any
two indices, and the additional differential symmetry of
being transverse,

D
C
�
� ¼ 0: (68)

Of course it is the full covariant derivative operator that
appears in (68), but the covariant derivative of the de Sitter
background must annihilate the linearized Weyl-Weyl cor-
relator. Third, every factor of the Minkowski metric in (64)
is accompanied by an inverse metric, so we could just have
easily expressed this tensor in terms of the de Sitter back-
ground metric,

�

�
�� ¼ a2�

 � 1

a2
��� � g

ðxÞ � g��ðxÞ: (69)

Our final point is evident in the last equation: because we
no longer need the full metric g�� ¼ a2ð��� þ �h��Þ, we
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will henceforth employ the symbol ‘‘g��’’ to denote the

de Sitter background metric, g�� � a2���.

B. Standard form for tensor structures

The de Sitter invariant part of the index factors can be
written in terms of the y-basis introduced in Sec. II C. To
keep the tensor factors dimensionless we employ the no-
tation

Y � � 1

H

@y

@x�
; Y0

� � 1

H

@y

@x0�
(70)

R ��ðx; x0Þ � � 1

2H2

@2y

@x�@x0�
: (71)

The analogous dimensionless de Sitter breaking tensors are

T � � 1

H

@u

@x�
¼ a�0

�; T 0
� � 1

H

@u

@x0�
¼ a0�0

�: (72)

The key to extracting the invariant parts of the various
index factors (24)–(26) is to note that they involve purely
temporal tensors such as �0

� and purely spatial tensors such

as ���� � ��� þ �0
��

0
�. Of course the temporal factors can

be represented using (72). The purely spatial metric can
either involve two indices from the same point, or from
both points. If the indices are from the same point, we can
represent it using the purely spatial tangent matrix intro-
duced in [23],

g?��ðxÞ � g��ðxÞ þT �T � ¼ a2 ����;

g?�	ðx0Þ � g�	ðx0Þ þT 0
�T 0

	 ¼ a02 ���	:
(73)

The case of mixed indices is given by [23],

R?
��ðx; x0Þ � R��ðx; x0Þ þ 1

2
Y�T 0

� þ 1

2
T �Y0

�

þ ð2� yÞ
2

T �T 0
�

¼ aa0 ����: (74)

With these definitions the three tensor factors take the form

a2a02½��TA
�	�

¼R?
��R

?
�	þR?

�	R
?
���

2

D�3
g?��ðxÞg?�	ðx0Þ (75)

a2a02½��TB
�	� ¼ �4T ð�R?

�Þð�T
0
	Þ (76)

a2a02½��TC
�	� ¼ 2

ðD� 3ÞðD� 2Þ ½ðD� 2ÞT �T � þ g���
� ½ðD� 2ÞT 0

�T 0
	 þ g0�	�: (77)

C. Standard form for derivatives

We can perform a similar reduction for the factor
@
@
@

0
�@

0
�i�Iðx; x0Þ in (66). The B-type and C-type propa-

gators are de Sitter invariant functions of yðx; x0Þ, and
taking two mixed derivatives of the A-type propagator
eliminates its de Sitter breaking term. Thus, after acting
these first two derivatives we can write

@
@
@
0
�@

0
�i�Iðx;x0Þ¼@
@

0
�

�
I0ðyÞ @2y

@x
@x0�
þI00ðyÞ @y

@x

@y

@x0�

�
:

(78)

Acting the remaining two derivatives produces noninvar-
iant terms,

@
@
@
0
�@

0
�i�Iðx;x0Þ¼

�
@4y

@x
@x
@x0�@x0�

�
I0ðyÞþ

�
@2y

@x
@x

@2y

@x0�@x0�
þ2

@2y

@x
@x0ð�
@2y

@x0�Þ@x

þ2

@y

@xð

@3y

@x
Þ@x0�@x0�

þ2
@3y

@x
@x
@x0ð�
@y

@x0�Þ

�
I00ðyÞþ

�
4
@y

@xð

@2y

@x
Þ@x0ð�
@y

@x0�Þ
þ @y

@x

@y

@x

@2y

@x0�@x0�
þ @2y

@x
@x

@y

@x0�
@y

@x0�

�
I000ðyÞ

þ
�
@y

@x

@y

@x

@y

@x0�
@y

@x0�

�
I0000ðyÞ: (79)

All noninvariance comes from acting two derivatives at the same spacetime point. We can express these derivatives in
standard form,

@2y

@x
@x

¼ 2H2

�
a0

a
g

ðxÞ þT ð
Y
Þ

�
;

@2y

@x0�@x0�
¼ 2H2

�
a

a0
g��ðx0Þ þT 0

ð�Y
0
�Þ

�
;

@3y

@x
@x
@x0�
¼ 2H3

�
a0

a
g

ðxÞT 0

� � 2T ð
R
Þ�
�
;

@3y

@x
@x0�@x0�
¼ 2H3

�
a

a0
g��ðx0ÞT 
 � 2R
ð�T 0

�Þ

�
;

@4y

@x
@x
@x0�@x0�
¼ 4H4

�
a

a0
T 
T 
g��ðx0Þ þ a0

a
g

ðxÞT 0

�T 0
� � 2T ð
R
Þð�T 0

�Þ

�
:

(80)
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D. The final result

Most of the subsequent analysis was made using the
symbolic manipulation program MATHEMATICA, but it is of
course advantageous to simplify even computer calcula-
tions to make them run more efficiently and transparently.
It is evident that Riemannizing and then Weylizing our
original seed (66) will produce a huge number of terms,
many of which are permutations and traces of the same
seed tensor times some function of y. Rather than process
this unwieldy form all the way through Weylization, we
expressed the Riemannized result as a linear combination
of the rather small number of tensors which possess the
algebraic symmetries of the product of two Riemann ten-
sors. It turns out there are only nine independent invariant
tensors with these symmetries [31]. There are many more
noninvariant tensors, but very few of these actually occur.

A further simplification is to break the Riemannized

result into those terms RðgÞ

�
����	 which contain one or

more factors of the de Sitter metric and those RðngÞ

�
����	

which do not,

�2

4
a2a02Riem½@
@
@0�@0�i½����	�ðx; x0Þ�

¼ RðngÞ

�
����	 þ RðgÞ


�
����	: (81)

This is useful because Weylization can only change the
metric terms. Of course there is the additional advantage
that the number of independent tensors needed to represent
the nonmetric terms is smaller. Without the metric there are
only three invariant tensors with the algebraic symmetries
of a product of two Riemann tensors [31]. We can represent
them by Riemannizing the seeds,

	ð1Þ

�
����	¼2

@2y

@x
@x0ð�
@2y

@x0�Þ@x

� @2y

@x�@x0ð�
@2y

@x0	Þ@x�
;

(82)

	ð2Þ

�
����	¼8

@y

@xð

@2y

@x
Þ@x0ð�
@y

@x0�Þ
� @2y

@x�@x0ð�
@2y

@x0	Þ@x�
;

(83)

	ð3Þ

�
����	 ¼ 2

@y

@x

@y

@x

@y

@x0�
@y

@x0�
� @2y

@x�@x0ð�
@2y

@x0	Þ@x�
:

(84)

Although many de Sitter breaking, nonmetric tensors are
conceivable, it turns out that only three occur. They derive
from Riemannizing the seeds,

	ð4Þ

�
����	 ¼ 2

@u

@x

@u

@x

@u

@x0�
@u

@x0�
� @2y

@x�@x0ð�
@2y

@x0	Þ@x�
;

(85)

	ð5Þ

�
����	¼4

@u

@x

@u

@x

@u

@x0�
@u

@x0�
� @y

@xð�
@2y

@x�Þ@x0ð�
@y

@x0	Þ
;

(86)

	ð6Þ

�
����	 ¼ @y

@x

@y

@x

@y

@x0�
@y

@x0�
� @u

@x�
@u

@x�
@u

@x0�
@u

@x0	
:

(87)

We extracted the corresponding coefficients of seeds

	ð1Þ,	ð2Þ, and	ð3Þ in RðngÞ

�
����	 and they have the wonder-

fully simple forms,

c1¼�2

8
A00ðyÞ; c2¼�2

16
A000ðyÞ; c3¼�2

16
A0000ðyÞ: (88)

Even better are the results we obtained for the coefficients
of the noninvariant tensors (85)–(87),

c4¼� �2

8ðD�3Þ½ð4y�y2ÞA00ðyÞþDð2�yÞA0ðyÞ�ðD�1Þk�;
(89)

c5¼� �2

8ðD�3Þ½ð4y�y2ÞA000ðyÞþðDþ2Þð2�yÞA00ðyÞ
�DA0ðyÞ�; (90)

c6¼� �2

8ðD�3Þ½ð4y�y2ÞA0000ðyÞþðDþ4Þð2�yÞA000ðyÞ
�2ðDþ1ÞA00ðyÞ�: (91)

Note that the coefficient c4 is proportional to the differen-
tial equation (32) satisfied by AðyÞ, while c5 and c6 are
proportional to its first and second derivatives, respectively.
So these three coefficients vanish and we can write,

R ðngÞ

�
����	 ¼ X3

k¼1

ck � Riem½	ðkÞ

�
����	�: (92)

Let us now turn to the Riemannized terms which contain

one or more factors of the de Sitter metric, RðgÞ

�
����	.

Although the list for all possible (invariant and noninvar-
iant) seed tensors is much longer than the first one, it turns
out that they all vanish upon Weylization,

Weyl ðRðgÞ

�
����	Þ ¼ 0: (93)

Hence the final result is just the Weylization of (92).
Expressing the seed tensors (82)–(84) in our standard,
dimensionless form gives
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h�jC
�
�ðxÞ � C���	ðx0Þj�i ¼ �2H4A00ðyÞ �WeylðRiem½½R
�R
� þR
�R
��½R��R�	 þR�	R����Þ
� 2�2H4A000ðyÞ �WeylðRiem½Yð
R
Þð�Y0

�Þ½R��R�	 þR�	R����Þ

þ 1

4
�2H4A0000ðyÞ �WeylðRiem½Y
Y
Y0

�Y0
�½R��R�	 þR�	R����Þ þOð�4Þ:

(94)

A further simplification is to express the result (94) using covariant derivatives (with respect to the de Sitter background)
of the scalar propagator i�Aðx; x0Þ,

h�jC
�
�ðxÞ � C���	ðx0Þj�i ¼ �2

4
WeylðRiem½D
D
D

0
�D

0
�i�A � ½R��R�	 þR�	R����Þ þOð�4Þ: (95)

(The flat space limit is obvious from this form.) The fact that the three algebraically independent tensor factors in
expression (94) can be combined in this way is a consequence of transversality (68). Each of the three tensor factors obeys
all the algebraic symmetries of a product of two Weyl tensors, but only a particular combination of all three obeys
transversality.

Even more simplifications occur in D ¼ 4 dimensions. For example, the general form of A00ðyÞ from definition (30)
contains an infinite series,

A00ðyÞ ¼ HD�2

ð4�ÞðD=2Þ
1

16

�
�

�
D

2
þ 1

��
4

y

�ðD=2Þþ1 þ
�
D

2
� 1

�
�

�
D

2
þ 1

��
4

y

�ðD=2Þ þ X1
n¼1

�ðn� 1Þ�ðnþD� 1Þ
�ðnþ D

2Þ
�
y

4

�
n�2

� ðn� D
2 þ 1Þ�ðnþ D

2 þ 1Þ
ðnþ 1Þ!

�
y

4

�
n�ðD=2Þ��

: (96)

However, only the first two terms survive for D ¼ 4,

lim
D!4

A00ðyÞ ¼ H2

16�2

�
8

y3
þ 2

y2

�
: (97)

E. Comparison with previous results

In 2001, Kouris reported a result for the linearizedWeyl-
Weyl correlator in D ¼ 4 dimensions [26], derived using a
de Sitter invariant propagator in a general gauge [12].
Although the reader will recall from Sec. I that all these
propagators are illegitimate for one reason or another, the
various problems (spurious zero modes and invalid ana-
lytic continuations in the constrained sector) should drop
out of the Weyl-Weyl correlator. However, the Kouris
result does not agree with ours, nor can his result be
correct.

Kouris expressed his answer as a linear combination of
scalar functions (given in Table I) times antisymmetrized
tensor factors (the seeds for which are listed in Table II),

h�jCabcdðxÞ � Ca0b0c0d0 ðx0Þj�iKouris

¼ X7
I¼1

DðIÞ � SðIÞ½ab�½cd�½a0b0�½c0d0� þOð�4Þ: (98)

The problem has to do with the various algebraic and
differential symmetries that the linearized Weyl-Weyl
correlator must obey. We define

Wabcda0b0c0d0 �
X7
I¼1

DðIÞ � SðIÞ½ab�½cd�½a0b0�½c0d0�; (99)

This tensor should be, and is, antisymmetric under inter-
change of ða; bÞ, ðc; dÞ, ða0; b0Þ, and ðc0; d0Þ. However, it
must also be symmetric under the interchange of index
pairs,

Wabcda0b0c0d0 ¼ Wcdaba0b0c0d0 ¼ Wabcdc0d0a0b0 : (100)

Another symmetry inherited from the Riemann tensor is

WaðbcdÞa0b0c0d0 ¼ 0 ¼ Wabcda0ðb0c0d0Þ: (101)

The result must also be traceless within any index group.
That is obviously true on antisymmetric index pairs, but it
must hold as well for different pairs,

gacWabcda0b0c0d0 ¼ 0 ¼ ga
0c0Wabcda0b0c0d0 : (102)

TABLE I. The coefficients DðIÞ of Kouris [26] expressed in
terms of our de Sitter length function yðx; x0Þ. Each term should
be multiplied by �2H6

4�2 .

I DðIÞ

1 �12ð4yÞ3
2 �18ð4yÞ3 � 6ð4yÞ2
3 6ð4yÞ3 þ 6ð4yÞ2
4 �3ð4yÞ3 þ 3ð4yÞ2
5 3

2 ð4yÞ3 þ 3
2 ð4yÞ2

6 3
2 ð4yÞ2

7 � 1
4 ð4yÞ3 þ 3

4 ð4yÞ2
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None of the algebraic symmetries (100)–(102) hold, nor
does the Kouris result obey transversality (68),

DaWabcda0b0c0d0 ¼ 0 ¼ Da0Wabcda0b0c0d0 : (103)

Kouris claimed to have checked (100) and (101) [26]. He
does not seem to have realized that relations (102) and
(103) should hold. His choice of basis tensors is also
peculiar. There are nine distinct invariant tensors with the
algebraic symmetries of two Riemann tensors—antisym-
metry plus relations (100) and (101) [31]. However, Kouris
only used the seven basis seeds listed in Table II. Enforcing

tracelessness (102) should leave just three distinct tensors
[31], and transversality (103) should relate the coefficients
of these.
Of course our result (94) obeys (100)–(103) so it cannot

agree with (98). It is not easy to compare the two results
term wise because Kouris employed the geometrical ten-
sors (53)–(55) of the mathematical physics convention.
However, it is simple enough to compare those terms
which contain four factors of R. In our result (94), with
the Kouris indices, these derive exclusively from the first
term,

�2H4A00ðyÞRiem½½Raa0Rcc0 þRac0Rca0 �½Rbb0Rdd0 þRbd0Rdb0 ��

¼ �16�2H4A00ðyÞ
�
� 1

2H2

�
4
�
2

@2y

@xa�@x0½a0
@2y

@x0b0�@x½c
@2y

@xd�@x0½c0
@2y

@x0d0�@x½b
� @2y

@xa@x0½a0
@2y

@x0b0�@xb
@2y

@xc@x0½c0
@2y

@x0d0�@xd

� @2y

@xa@x0½c0
@2y

@x0d0�@xb
@2y

@xc@x0½a0
@2y

@x0b0�@xd

�
: (104)

The only one of Kouris’s tensors which has four factors of
R is Sð5Þ

abcda0b0c0d0 . Note that in D ¼ 4 dimensions we can
express his I ¼ 5 coefficient function in terms of A00ðyÞ,

Dð5Þ ¼ 48�2H4 � A00ðyÞ: (105)

Retaining only the part of Sð5Þ
abcda0b0c0d0 which contains four

factors of R gives

Dð5Þ � Sð5Þ½ab�½cd�½a0b0c�½c0d0�

! �48�2H4A00ðyÞ
�
� 1

2H2

�
4 @2y

@xa�@x0½a0
@2y

@x0b0�@x½c

� @2y

@xd�@x0½c0
@2y

@x0d0�@x½b
: (106)

Although the function of y is tantalizingly close, the
numerical coefficients differ even between the parts of

(104) and (106) which have the same tensor structure.
One also sees the absence in (106) of the final two terms
of (104) which are needed to enforce symmetries (100) and
(101).
Two facts about Kouris’s work make us suspect that it

may be resolved after correcting some minor errors:
(i) The factors of (4� y)—which are an artifact of the

cumbersome, de Sitter invariant notation—all cancel
in his final result (98); and

(ii) He claims to have checked relations (100) and (101),
even though they obviously fail for the result he
reported.

We accordingly consulted Kouris’s advisor, A. Higuchi and
he discovered that the following changes need to be made
to Kouris’s result2 [32]:

TABLE II. The seed tensors SðIÞ
abcda0b0c0d0 of Kouris [26], expressed using our standard basis tensors (70) and (71). Terms that drop

after antisymmetrization have been omitted.

I SðIÞ
abcda0b0c0d0

1 1
ð4y�y2Þ2 YaYcY0

a0Y
0
c0 ½gbdgb0d0 � 2Rbb0Rdd0 �

2 1
4y�y2

YaY0
c0Rbb0Rcd0 ½Rda0 � 1

2ð4�yÞYdY0
a0 �

3 1
4y�y2

YcY0
c0gbdga0d0 ½Rab0 � 1

2ð4�yÞYaY0
b0 �

4 1
4y�y2

½gacY0
a0Y

0
c0Rbd0Rdb0 þYaYcga0c0Rb0b0Rd0d0 � � 1

2ð4y�y2Þ ½gacgbdgb0d0Y0
a0Y

0
c0 þYaYcga0c0gb0d0gbd�

5 Rab0Rbc0Rcd0Rda0 � 1
2ð4�yÞ ½Rab0Rbc0 ðRcd0YdY0

a0 þRda0YcY0
d0 Þ� þRcd0Rda0 ðRab0YbY0

c0 þRbc0YaY0
b0 Þ�þ 1

4ð4�yÞ2 ½Rab0Rcd0YbYdY0
a0Y

0
c0 þRbc0Rda0YaYcY0

b0Y
0
d0 �

6 gacgb0d0Rda0Rbc0 þ gacgb0d0 ½� 1
2ð4�yÞ ðRda0YbY0

c0 þRbc0YdY0
a0 Þ þ 1

4ð4�yÞ2 YbYdY0
a0Y

0
c0 �

7 gacgbdga0c0gb0d0

2Starred equation numbers refer to those in [26].
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(i) The tensor factor in (33)* should be

�ðiÞ
abcda0b0c0d¼ 1

2ðSðiÞ½ab�½cd�½a0b0�½c0d0� þSðiÞ½cd�½ab�½a0b0�½c0d0�

þSðiÞ½ab�½cd�½c0d0�½a0b0� þSðiÞ½cd�½ab�½c0d0�½a0b0�Þ:
(107)

(ii) Equations (35), (38), and (39)* should read
respectively,

Sð2Þ
abcda0b0c0d¼ 1

3nanc0 ðgbb0gcd0 þgbd0gcb0 Þgda0 ; (108)

Sð5Þ
abcda0b0c0d ¼ 1

3ðgab0gbc0gcd0gda0 þ gaa0gbb0gcc0gdd0 Þ;
(109)

Sð6Þabcda0b0c0d ¼ �gacgda0gb0d0gbc0 : (110)

(iii) The factor 16G
� in (42)–(48)* should be replaced

by 8G
� .

When this is done, the revised Kouris result agrees with
ours.

F. Coincidence limit

Even had the result of Kouris been correct, it was
unregulated by virtue of being specialized to D ¼ 4 di-
mensions. A simple but powerful application of our for-
malism consists of taking the coincidence limit of the
Weyl-Weyl correlator using dimensional regularization.
To do this we set a0 ¼ a, �x� ¼ 0 and y ¼ 0. It is
straightforward to read off the coincidence limit of each
basis tensor from (37)–(39), (70), and (71),

lim
x0!x

Y�ðx; x0Þ ¼ 1

H
lim
x0!x

@y

@x�
¼ 0; (111)

lim
x0!x

Y0
�ðx; x0Þ ¼ 1

H
lim
x0!x

@y

@x0�
¼ 0; (112)

lim
x0!x

R��ðx; x0Þ ¼ � 1

2H2
lim
x0!x

@2y

@x�@x0�
¼ g��ðxÞ: (113)

Hence the seed tensors 	ð2Þ

�
����	 and 	ð3Þ


�
����	 both

vanish at coincidence and we have,

h�jC
�
�ðxÞ�C���	ðxÞj�i
¼4�2H4A00ð0Þ�WeylðRiem½g
ð�g�Þ
g�ð�g	Þ��Þ

þOð�4Þ: (114)

The coincidence limit of A00ðyÞ is also simple because
we are using dimensional regularization in which any
D-dependent power of zero vanishes. Hence only the
n ¼ 2 term of the infinite series for (96) survives,

A00ð0Þ ¼ HD�2

ð4�ÞðD=2Þ �
1

16

�ðDþ 1Þ
�ðD2 þ 2Þ : (115)

Expanding the Weylized and Riemannized tensor factor
in (114) gives

WeylðRiem½g
ð�g�Þ
g�ð�g	Þ��Þ
¼4g
½�g���g
½�g	��þ4g
½�g	��g
½�g���

�8g
�½�g��½
g��½�g	�½�

þ 24

D�2
ðg
�½
g��½�g��½�g	�½�þg
�½
g��½�g	�½�g��½�Þ

þ 24

ðD�2ÞðD�1Þg
½
g���g�½�g	��: (116)

What we are ultimately interested in is the coincident
Weyl-Weyl correlator with the indices properly contracted.
That is, we contract g
�g��g
�g�	 into (116) to obtain

h�jC
�
�ðxÞC
�
�ðxÞj�i
¼ 4ðD� 3ÞDðDþ 1ÞðDþ 2ÞA00ð0Þ�2H4 þOð�4H8Þ:

(117)

IV. DISCUSSION

Our result for the linearized Weyl-Weyl correlator is
(94). It does not agree with what Kouris obtained [26],
but that result cannot be correct because it lacks some of
the algebraic symmetries of the Weyl tensor and is not
transverse. Higuchi has shown how a series of corrections
to Kouris’s result makes it agree with ours [32]. It has also
been shown that our result follows as well from the re-
cently derived graviton propagator in de Donder gauge
[33]. By taking the coincidence limit of our result (with
dimensional regularization) and contracting the indices we
derived an expression (117) for the expectation value of
C
�
�ðxÞC
�
�ðxÞ at lowest order.
Despite the fact that our propagator shows a physical

breaking of de Sitter invariance [21], the Weyl-Weyl cor-
relator computed from it is completely de Sitter invariant at
linearized order. There are different opinions about why
this happened. Mathematical physicists maintain that it is
because ‘‘free gravitons’’ are de Sitter invariant. They hold
that the de Sitter breaking manifest in our propagator is
merely a gauge artifact which drops out when linearized
gauge invariance is enforced by going to the linearized
Weyl-Weyl correlator [7,8]. We do not agree. We believe
the de Sitter breaking terms dropped out because the
logarithmic infrared divergence from which they derive
is rendered convergent (and hence de Sitter invariant) by
the derivatives needed to convert the graviton field into a
linearized Weyl tensor. This was so obvious that it was
noted even before the computation was begun [9].
At this point we should comment on what one learns

about gravity from the linearized Weyl-Weyl correlator
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versus the undifferentiated propagator. The dynamical
variable of gravity is the metric and, like all local force
fields, it consists of three things:

(i) A pure gauge part, which fixes how we measure
lengths and times;

(ii) A constrained part, which carries the gravitational
response to sources of stress-energy; and

(iii) A dynamical part, which represents gravitational
radiation.

In a gauge such ours [14,15], the graviton propagator
contains all three of these things. By insisting on the
linearized Weyl tensor in order to expunge the pure gauge
part, mathematical physicists have edited out the con-
strained fields and they have also weighted infrared gravi-
ton modes much less strongly than ultraviolet ones. There
is no question that this abandons perfectly physical and
gauge invariant information. For example, the constrained
part of the gauge fixed propagator provides the gravita-
tional response to matter, which comprises all but one of
the classic tests of general relativity. And the canonical
weighting of graviton modes is reflected in the scale in-
variance of the tensor power spectrum (1).

The graviton propagator has recently been derived in the
one parameter family of exact, de Sitter invariant gauges
[34]. In all cases the result breaks de Sitter invariance,
yet the linearized Weyl-Weyl correlator is unchanged. For
essentially half of all gauge parameters, the de Sitter break-
ing of the constrained, spin zero sector actually results from
power law infrared divergences. Antoniadis and Mottola
long ago showed that, incorrectly insisting on a de Sitter
invariant representation for these results in divergences in
physical quantities such as the gravitational response to a
point mass [35]. Yet all of this physical and gauge invariant
information is edited out of the Weyl-Weyl correlator.

It seems clear to us that this controversy over the rele-
vance of the gauge fixed graviton versus the linearized
Weyl tensor is identical to one which was finally settled
for electromagnetism by the Aharonov-Bohm effect [1]. It
is a gauge invariant fact that matter fields couple to the
electromagnetic vector potential, not to the field strength.
This implies that the undifferentiated vector potential is
itself observable in a fixed gauge. Similarly, it is a gauge
invariant fact that matter—and even gravity itself—
couples to the undifferentiated graviton field, not to the
curvature. The same reasoning implies that the undiffer-
entiated graviton field must be observable in a fixed gauge.
Indeed, strenuous efforts [2–5] are underway to measure
the tensor power spectrum (1) which is precisely such an
observable. Concerns over invariance should be resolved in
gravity the very same way as in gauge theories: by noting
that a quantity can always be defined invariantly by spec-
ifying it in a fixed gauge. (For examples, see [36,37].)

An interesting parallel exists with the free massless,
minimally coupled scalar on a nondynamical de Sitter
background,

L ¼ �1
2@�’@�’g

�� ffiffiffiffiffiffiffi�g
p

: (118)

There is no question that this theory breaks de Sitter in-
variance [27,30]. If one defines things so as to preserve the
homogeneity and isotropy of cosmology, then the scalar
propagator is precisely the same as the spatial polarizations
of our graviton field [29],

h�jT½’ðxÞ’ðx0Þ�j�i¼ i�Aðx;x0Þ¼Aðyðx;x0ÞÞþklnðaa0Þ:
(119)

However, because all fields in the stress tensor are differ-
entiated, the expectation value of the free scalar stress
tensor happens to be de Sitter invariant [27],

h�jT��j�i ¼ ð��
��	

� � 1
2g��g

�	Þ lim
x0!x

@�@
0
	i�Aðx; x0Þ

¼ ðD� 2ÞH2A0ð0Þg��: (120)

People who believe passionately in de Sitter invariance
have been known to proclaim this result as evidence that
the de Sitter breaking of the scalar propagator (119) is
‘‘unphysical.’’ However, it is nothing more nor less than
the result of the de Sitter breaking infrared divergence
being logarithmic, so that derivatives eliminate it.
Now add an interaction which involves undifferentiated

scalars,

L ¼ � 1

2
@�’@�’g

�� ffiffiffiffiffiffiffi�g
p � �

4!
’4 ffiffiffiffiffiffiffi�g

p þ counterterms:

(121)

Because the interacting theory contains undifferentiated
scalars, the expectation value of the stress tensor shows
explicit de Sitter breaking [29,38],

h�jT��j�i¼ðD�2ÞH2A0ð0Þg��� �H4

ð4�Þ4
��
2ln2ðaÞ

þ7

2
lnðaÞ

�
g��þ

�
4

3
lnðaÞþ13

18

�
T �T �

�

þOð�2Þ: (122)

de Sitter breaking has also been exhibited for the one-
particle-irreducible (1PI) 2-point function at one and two
loop orders [39], and one can show generally that each
additional power of � in a 1PI function produces up to two
additional de Sitter breaking factors of lnðaÞ [40].
The same sort of de Sitter breaking goes on whenever

one adds interactions which involve undifferentiated
scalars on nondynamical de Sitter background. Explicit,
fully renormalized results exists at one and two loop
orders for scalar quantum electrodynamics [41]—which
shows one factor of lnðaÞ for each factor of the loop
counting parameter e2—and for Yukawa theory [42]—
which shows one factor of lnðaÞ for each additional loop.
Similar results have even been obtained for the nonlinear
sigma model [43].
Let us now take note of the undifferentiated

graviton interactions which abound in the gravitational
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Lagrangian (12). Based on the known relation between
interactions and infrared logarithms, one expects an
additional factor of lnðaÞ for each extra factor of the quan-
tum gravitational loop counting parameter �2 [40]. Which
brings us to the observation that h�jC
�
�ðxÞC
�
�ðxÞj�i
can show de Sitter breaking at order �4. Individual diagrams
certainly make such contributions, but it might be that they
all add up to zero. We propose that this be checked.

It should be noted that the operator C
�
�ðxÞC
�
�ðxÞ is
a scalar, rather than a true invariant. Promoting it to an
invariant requires somehow fixing the observation point
x�, and that would inevitably involve nonlocality.
However, the expectation value of C
�
�ðxÞC
�
�ðxÞ

should serve as a test of the physical de Sitter invariance
of the gauge fixed theory. And this quantity has a priceless
advantage over invariant (and hence nonlocal) observables:
we know how to renormalize it.
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