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We will present a complete set of equations, in the form of an Einstein-Bianchi system, that describe the

evolution of generic smooth lattices in spacetime. All 20 independent Riemann curvatures will be evolved

in parallel with the leg lengths of the lattice. We will show that the evolution equations for the curvatures

forms a hyperbolic system and that the associated constraints are preserved. This work is a generalization

of our previous paper [L. Brewin, Phys. Rev. D 85, 124045 (2012)] on the Einstein-Bianchi system for the

Schwarzschild spacetime to general 3þ 1 vacuum spacetimes.
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I. INTRODUCTION

In a series of papers we have shown that the smooth
lattice method works remarkably well for simple space-
times such as the Schwarzschild spacetime in various
slicings [1,2], the maximally sliced Oppenheimer-Snyder
spacetime [3], the vacuum Kasner cosmologies [4] and
for constructing Schwarzschild initial data [5]. The
equations are simple and require little computational so-
phistication to achieve stable and accurate results. The real
test of the method however must be in the context of
generic spacetimes. This paper is a first step in that
direction.

The logic behind the smooth lattice approach is quite
simple. Assume we are given a smooth spacetime and that
a large number of vertices (i.e., spacetime events) have
been scattered throughout the spacetime. A lattice in the
smooth spacetime can then be built by connecting, using
geodesic segments, each vertex to its local set of neighbors.
This construction is far from unique, there being great
freedom to distribute the vertices as well as the choices
made in connecting local pairs of vertices. Whatever
choices are made the result will be taken as a lattice
approximation to the original spacetime. Later we shall
revise this construction along the lines of a semidiscrete
approximation where a three-dimensional lattice evolves
smoothly with time. But for the moment we will focus on
this four-dimensional lattice. The data on the lattice divides
naturally into two kinds: first, a table of vertices and the
connections between them, and second, a list of geodesic
distances between pairs of connected vertices (i.e., the legs
of the lattice). In short, the topology of the spacetime is
encoded in the connectivity matrix of the vertices while the
metric is approximated by the geodesic lengths assigned to
the legs of the lattice. The question that (should) spring to
mind is: Given the leg lengths on a lattice, how do we
compute the Riemann curvatures? We will return to this
important question in just a moment, but for now let us
suppose we have a suitable algorithm by which we can
accurately compute the Riemann curvatures. It is then a

simple matter to impose the vacuum Einstein equations1

which in turn will impose constraints2 on the leg lengths.
This furnishes us with a discrete set of equations for the leg
lengths. Solving these equations will yield a discrete solu-
tion of the vacuum Einstein equations.
The lattice as described above is (almost) identical to

that used in the Regge calculus [6]. One obvious differ-
ence is that, unlike the Regge calculus, we do not demand
that the lattice be built from a collection of nonintersect-
ing 4-simplicies (though we do not preclude such con-
structions). A far more significant difference lies in the
nature of the metric on the lattice in the neighborhood of
any point. In the Regge calculus the local metric is
required to be piecewise flat whereas in our approach
we employ a locally smooth metric (as described below).
This is an important difference, with a smooth metric we
are able to use many of the tools of differential geometry
that are not readily available in the Regge calculus (with-
out the use of generalized functions). For example,
bounded point estimates of the Riemann curvatures are
simply not possible in the Regge calculus (where the
curvatures behave like delta functions). This was in fact
one of the motivations that lead to the development of the
smooth lattice method.
We now return to the question of how to recover the

Riemann curvatures from a smooth lattice given the set of
leg lengths. In one of our earlier papers [5] we argued that
if the lattice was sufficiently well refined then a local
Riemann normal coordinate frame could be constructed
in the neighborhood of any vertex extending to include, at
least, the immediate neighboring vertices. We called this
neighborhood the computational cell for the vertex (for
lattices built from 4-simplicies this would consist of the
4-simplicies attached to the vertex). In this computational

1For pure pedagogy we will restrict the discussion to vacuum
spacetimes.

2This is not to be confused with any constraints that may exist
at the continuum level, for example, the Arnowitt-Deser-Misner
(ADM) constraints.
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cell we can expand the metric as a power series [7] around
the central vertex

g��ðxÞ ¼ g�� � 1
3R����x

�x� þOðL3Þ; (1.1)

where L is a typical length scale for the computational
cell. The requirement that the legs are geodesic segments
leads, after some detailed calculations [7], to the following
equation:

L2
ij ¼ g���x

�
ij�x

�
ij � 1

3R����x
�
i x

�
i x

�
j x

�
j þOðL5Þ; (1.2)

where �x�ij :¼ x�j � x�i . The approach advocated in [5]

was to use this equation to extract the Riemann curvatures
from the lattice. This may sound simple but there are a
number of troubling issues.

The first issue concerns the coordinates. How do we
compute coordinates for each vertex? Some can be set by
simple gauge transformations (e.g., the origin can be tied to
the central vertex) while the remainder must be computed
from the lattice data (i.e., the leg lengths). This forces us to
view the above Eq. (1.2) as a coupled system for the
curvatures and the coordinates.

The second issue is one of accountancy: Do we have
enough equations to compute the curvatures and the coor-
dinates? For most lattices (in 3 and higher dimensions) the
legs out number the coordinates x

�
i and curvatures R����.

As an example, the computational cell used in our earlier
paper [5] contained 78 legs and 19 vertices. Thus we had
78 equations for 6 curvatures and 57 coordinates (of which
6 can be freely chosen). There are at least two ways to
handle this over supply of information. We can either form
linear combinations of the above Eq. (1.2) to produce a
reduced system in which the number of equations matches
the number of unknowns. Or we can include a sufficient
number of higher order terms in the Taylor series so as to
produce a consistent set of equations. This later approach
has the possible benefit of producing higher order approx-
imations for the R���� but at considerable extra expense.

In both instances we still have a large coupled nonlinear
system of equations to solve at each vertex and at each time
step. This is a considerable computational challenge.

Another important issue is one of uniqueness: How
many distinct solutions can we find for the x�i and
R����? The equations are nonlinear and thus it is conceiv-

able that more than one solution could be found. Do the
solutions form a continuous family or are there only a finite
set of solutions? How would we choose between these
solutions? In our earlier paper [5] we resolved these prob-
lems by extending the lattice data to include the angles
between each pair of legs attached to the central vertex.
This allowed us to obtain an explicit and unique solution
for all of the coordinates in a computational cell. It also had
the added bonus of decoupling the coordinates from the
curvatures—we could calculate all of the coordinates be-
fore computing the curvatures. The price we paid for this
improvement was a significant increase in the number of

data to be evolved. Where previously we had 78 legs per
computational cell, now we had a further 33 angles.
However, there is a final issue which is much more

serious than those just mentioned. To obtainOðLÞ accurate
estimates for the curvatures, the coordinates must be com-
puted to at leastOðL4Þ accuracy (i.e., the errors must be no
worse thanOðL4Þ). This follows by inspection of Eq. (1.2).
Suppose the error in x

�
i isOðLaÞ for some a > 0. This error

will couple with the first term on the right-hand side of
(1.2) to introduce an error of OðLaþ1Þ. But the curvature
terms are OðL4Þ and will dominate the error term only
when a � 4. Admittedly this is a somewhat naive analysis
as it takes no account of the smoothness of the underlying
geometry which might ensure that various lower order
terms cancel (see, for example, the role smoothness plays
in establishing the truncation errors in centered finite-
difference approximations). But in the absence of an ex-
plicit algorithm we are unable to demonstrate that such
cancellations do occur.3 The upshot is that if we persist
with any of the variations suggested above we must design
a solution strategy that guarantees, without invoking
smoothness, that the errors in the coordinates are no worse
than OðL4Þ. Despite our best efforts, we have not found a
reliable solution to this problem.
These issues are not altogether new nor surprising and

have proved to be a niggling concern throughout the devel-
opment of the smooth lattice method. The only working
solution that we have found (there may be others) is to
surrender some (or all) of the main Eq. (1.2) in favor of the
Bianchi identities. In all of our papers [1–5] we used a
combination of the Bianchi identities and the geodesic
deviation equation in 1þ 1 spacetimes. The results were
very encouraging. This was a hybrid scheme4 and we
attributed its success to the introduction of the Bianchi
identities. This is the motivation for the present paper:
Can we use the Bianchi identities to compute all of the
Riemann curvatures in a 3þ 1 spacetime? We should
emphasize that there is one important difference between
what we propose here and our previous work. In this paper
we will use the full set of Bianchi identities to evolve all 20
independent Riemann curvatures. In contrast, in our 1þ 1
experiments we used one Bianchi identity to compute one
spatial curvature (i.e., a purely three-dimensional compu-
tation within one Cauchy surface).
Why should we believe that this use of the Bianchi

identities will overcome the issues described above?
Simply, it allows us to use lower order approximations
for the vertex coordinates (even flat space approximations)
without compromising the quality of the estimates of the
curvatures. We will return to this point after we have
presented the full set of evolution equations.

3Though the introduction of angles does produce an explicit
algorithm its analysis is too unwieldily to be of any use.

4The geodesic deviation equation arises as a continuum limit
of the smooth lattice equations [5].
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Earlier in this section we gave a brief construction for a
four-dimensional lattice while noting that we would later
move to a three-dimensional lattice that evolves smoothly
with time. There are at least two way to make this tran-
sition, either as the result of a continuous time limit of the
four-dimensional lattice or by starting afresh and building
a three-dimensional lattice approximation to a typical
Cauchy surface. In either case what we obtain is a smooth
three-dimensional lattice composed of a large set of verti-
ces each locally connected to their nearby neighbors by
short geodesic segments. These ideas were originally de-
veloped in [4] but were given a better mathematical basis in
[8]. The evolution of the three-dimensional lattice begins
with initial data for the leg lengths and their first time
derivatives followed by rules for the lapse and shift func-
tions and finally a set of evolution equations. This brings
the method much closer to a traditional Cauchy evolution
problem.

In this paper we will focus on the evolution equations
leaving the issue of constructing initial data to another
occasion. In Sec. III we will present evolution equations
for the leg lengths and the first time derivatives. As this
draws upon material developed previously in [4,8], we will
only cover this aspect very briefly. In Secs. IV and V we
will develop the evolution equations for the Riemann
curvatures and demonstrate that they preserve the con-
strains (of Einstein’s equations). In the following sections
we will show how the coordinates of the vertices and
the remaining source terms (e.g., the Hessian) can be
computed.

It should be emphasized that even though we are em-
ploying a three-dimensional lattice evolving smoothly in
time, all of the quantities that we employ (i.e., the coor-
dinates, the geodesic leg lengths, the Riemann curvatures)
are all set in four dimensions. Thus there are 20 indepen-
dent Riemann curvatures (rather than 6). Also note that the
geodesic that connects a pair of vertices is a geodesic of the
spacetime not of the 3-metric intrinsic to a typical Cauchy
surface.

II. NOTATION

A typical computational cell will be denoted by�. This
will be a compact subset of the spacetime manifold.
The central vertex of the cell will be denoted by O and
the subset of � obtained by the intersection of � with the
particular Cauchy surface that contains O will be denoted
by !. We will describe ! as the floor of �. As � has a
finite extent there will be an image of ! that defines the
future end of �. We will refer to this as the roof of �. We
will have little to reason to refer to the past end of � but
calling it the basement seems consistent.

We will assume throughout this paper that the vertex
world lines are normal to the Cauchy surfaces (i.e., zero
drift, in the language of [4], or in more common language,
the shift vector vanishes at the central vertex). This may

seem restrictive but in our experiments to date it has
worked very well.
Within�we will employ two sets of vectors essential to

the evolution of the lattice. The first set will be an ortho-
normal tetrad, denoted by ea, a ¼ 1, 2, 3, 4, tied to the
worldline of O and aligned so that e1 is the tangent vector
to the worldline of O. As we have assumed that the drift
vector is everywhere zero this also ensures that e1 is the
future pointing unit normal to ! at O. Following conven-
tion, we will write n� as the unit normal to ! (though as
just noted, this is identical to e1). The second set of vectors
will be based on the set of radial legs attached to O. Each
leg will be of the form (oi) and we will use vi to denote the
vector that joins (o) to (i). Note that the vi are neither unit
nor orthogonal. Latin characters will always be used to
denote tetrad indices while the spacetime indices will be
denoted by Greek letters. Latin characters will also be used
as vertex labels and where confusion might arise we will
use subsets of the Latin alphabet with a; b; c; . . . h reserved
for frame components while i, j, k, l,mwill be reserved for
vertex labels. Obviously this distinction will only be im-
posed for equations that contain both types of index.
Each cell will carry a Riemann normal coordinate

(RNC) frame, with coordinates x� ¼ ðt; x; y; zÞ, tied to
the central vertex and aligned with the tetrad. Note that
this gives precedence to the tetrad over the coordinates.
Coordinate components will be written as R�� or for

specific components as, for example, Rtx while for frame
components we will use scripts characters Rab. The coor-
dinates for a typical vertex (i) will often be written as x

�
i

but on occasion we will have need to talk about the
particular values for the x

�
i in which case we will write

ðt; x; y; zÞi or even xti, x
z
i , etc.

Each RNC framewill be chosen so that atO the metric is
diagonal, ðg��Þo ¼ diagð�1; 1; 1; 1Þ. Both spacetime and

tetrad indices will be raised and lowered, at O, using the
metric diagð�1; 1; 1; 1Þ. With these choices we see that
the future pointing unit normal to the Cauchy surface at
the central vertex O is just ðn�Þo ¼ ð1; 0; 0; 0Þ� while
ðn�Þo ¼ ð�1; 0; 0; 0Þ. We also see that the tetrad ea has

components e�a ¼ ��
a in this RNC frame. Note that

e�ae�
b ¼ �a

b, e�ae
a
� ¼ ��

�, e
�
1¼n� and e�

1 ¼ �n�.

III. EVOLVING THE LEG LENGTHS

The legs of the lattice are required to be short geodesic
segments. Thus it should come as no surprise that the
evolution of the leg lengths can be obtained from the
equations for the second variation of arc length. In an
earlier paper [8] we showed that, for sufficiently short
legs, these equations, for zero shift, can be written as
follows:

dL2
ij

dt
¼ �2NK���x

�
ij�x

�
ij þOðL3Þ; (3.1)
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d

dt

�
1

N

dL2
ij

dt

�

¼ 2Nj���x�ij�x
�
ij

þ 2NðK��K
�
� � R����n

�n�Þ�x�ij�x�ij þOðL3Þ:
(3.2)

For numerical purposes it is somewhat easier to rewrite
these in the following form:

dL2
ij

dt
¼ �2NPij; (3.3)

dPij

dt
¼ �Nj���x�ij�x

�
ij

� NðK��K
�
� � R����n

�n�Þ�x�ij�x�ij; (3.4)

in which we have introduced the new variables Pij :¼
K���x

�
ij�x

�
ij. The K�� can be obtained by a suitable

weighted sum of Eq. (3.1) as described in Sec. VII A. We
have also dropped the truncation terms as these are not
used during a numerical integration.

Clearly, the evolution of the leg lengths requires a
knowledge of the Riemann curvatures and to that end we
now present the evolution equations for those curvatures.

IV. EVOLVING THE RIEMANN
CURVATURES PART 1

We know that there are only 20 algebraically indepen-
dent Riemann curvatures in 4 dimensions. So which should
we choose? By a careful inspection of the algebraic sym-
metries of R���� we settled upon the following

Rxyxy;Rxyxz;Rxyyz;Rxzxz;Rxzyz;Ryzyz;

Rtxxy;Rtyxy;Rtzxy;Rtxxz;Rtyxz;Rtzxz;Rtyyz;Rtzyz;

Rtxtx;Rtyty;Rtztz;Rtxty;Rtxtz;Rtytz:

(4.1)

A. Bianchi identities

Our aim is to use the Bianchi identities to obtain evolu-
tion equations for the Riemann curvatures. We begin by
writing down the Bianchi identities at the central vertex,
where the connection vanishes,

0 ¼ R����;� þ R����;� þ R����;�; (4.2)

along with a contracted version of the same equation,

0 ¼ g��R����;� � R��;� þ R��;�: (4.3)

This pair of equations, along with the vacuum Einstein
field equations, and a judicious choice of indices will
provide us with all of the required evolution equations.
This leads to the following 14 differential equations:

0 ¼ Rxyxy;t � Rtyxy;x þ Rtxxy;y; (4.4)

0 ¼ Rxyxz;t � Rtzxy;x þ Rtxxy;z; (4.5)

0 ¼ Rxyyz;t � Rtzxy;y þ Rtyxy;z; (4.6)

0 ¼ Rxzxz;t � Rtzxz;x þ Rtxxz;z; (4.7)

0 ¼ Rxzyz;t � Rtzxz;y þ Rtyxz;z; (4.8)

0 ¼ Ryzyz;t � Rtzyz;y þ Rtyyz;z; (4.9)

0 ¼ Rtxxy;t þ Rxyxy;y þ Rxyxz;z; (4.10)

0 ¼ Rtyxy;t � Rxyxy;x þ Rxyyz;z; (4.11)

0 ¼ Rtzxy;t � Rxyxz;x � Rxyyz;y; (4.12)

0 ¼ Rtxxz;t þ Rxyxz;y þ Rxzxz;z; (4.13)

0 ¼ Rtyxz;t � Rxyxz;x þ Rxzyz;z; (4.14)

0 ¼ Rtzxz;t � Rxzxz;x � Rxzyz;y; (4.15)

0 ¼ Rtyyz;t � Rxyyz;x þ Ryzyz;z; (4.16)

0 ¼ Rtzyz;t � Rxzyz;x � Ryzyz;y: (4.17)

There are of course 20 independent R����, 14 of which

are subject to the above evolution equations while the
remaining 6 can be obtained from the vacuum Einstein
equations

0 ¼ Rxx ¼ �Rtxtx þ Rxyxy þ Rxzxz; (4.18)

0 ¼ Ryy ¼ �Rtyty þ Rxyxy þ Ryzyz; (4.19)

0 ¼ Rzz ¼ �Rtztz þ Rxzxz þ Ryzyz; (4.20)

0 ¼ Rxy ¼ �Rtxty þ Rxzyz; (4.21)

0 ¼ Rxz ¼ �Rtxtz � Rxyyz; (4.22)

0 ¼ Ryz ¼ �Rtytz þ Rxyxz: (4.23)

Though these are not differential equations they do, none
the less, provide a means to evolve the 6 curvatures
Rtxtx, Rtxty � � �Rtytz.

The important point to note about this system of equa-
tions is that it is closed; there are 20 evolution equations for
20 curvatures. The source terms, such as Rxyxy;x, could be

computed by importing data from the neighboring cells, by
an appropriate combination of rotations and boosts, and
using a suitable finite-difference approximation (see
Sec. VII for more details). In this way the lattice serves
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as a scaffold on which source terms such as these can be
computed.

B. Constraints

In deriving the 20 evolution equations of the previous
section we used only 6 of the 10 vacuum Einstein equa-
tions. Thus the 4 remaining vacuum Einstein equations
must be viewed as constraints. These equations are

0 ¼ Rtt ¼ Rtxtx þ Rtyty þ Rtztz; (4.24)

0 ¼ Rtx ¼ Rtyxy þ Rtzxz; (4.25)

0 ¼ Rty ¼ �Rtxxy þ Rtzyz; (4.26)

0 ¼ Rtz ¼ �Rtxxz � Rtyyz: (4.27)

Finally, we have the following 6 constraints that arise
from the Bianchi identities:

0 ¼ Rxyxy;z þ Rxyyz;x � Rxyxz;y; (4.28)

0 ¼ Rxyxz;z þ Rxzyz;x � Rxzxz;y; (4.29)

0 ¼ Rxyyz;z þ Ryzyz;x � Rxzyz;y; (4.30)

0 ¼ Rtyxy;z þ Rtyyz;x � Rtyxz;y; (4.31)

0 ¼ Rtzxy;z þ Rtzyz;x � Rtzxz;y; (4.32)

0 ¼ Rtxxy;z þ Rtxyz;x � Rtxxz;y: (4.33)

Note that the last equation refers to Rtxyz and as this is not

one of our chosen 20 curvature terms it should be replaced
with Rtxyz ¼ Rtyxz � Rtzxy.

So all up we have 20 evolution equations assembled
from the 14 differential Eqs. (4.4), (4.5), (4.6), (4.7), (4.8),
(4.9), (4.10), (4.11), (4.12), (4.13), (4.14), (4.15), (4.16), and
(4.17) and 6 algebraic Eqs. (4.18), (4.19), (4.20), (4.21),
(4.22), and (4.23) plus 10 constraints comprising 4 Einstein
Eqs. (4.24), (4.25), (4.26), and (4.27) and 6 Bianchi iden-
tities (4.28), (4.29), (4.30), (4.31), (4.32), and (4.33). This is
a such a simple system that it allows simple questions to be
explored and answered with ease. The questions that we
will address are:

(1) Are the constraints preserved by the evolution
equations?

(2) Do the evolution equations constitute a hyperbolic
system?

For both questions the answer is yes and we shall now
demonstrate that this is so.

C. Constraint preservation

In the following discussion wewill assume that, by some
means, we have constructed an initial data set for the

20 R����. That is, the 20 R���� are chosen so that the

10 constraints (4.24), (4.25), (4.26), (4.27), (4.28), (4.29),
(4.30), (4.31), (4.32), and (4.33) vanish at the central vertex
of every computational cell in the lattice.
We will also need the trivial result that

R ¼ 2ðRxyxy þ Rxzxz þ RyzyzÞ; (4.34)

which follows directly from Eqs. (4.18), (4.19), (4.20), and
(4.24).
Consider now the constraint 0 ¼ Rtz. By assumption,

this constraint is satisfied on the initial slice. To demon-
strate that it continues to hold throughout the evolution we
need to show that 0 ¼ Rtz;t. From (4.27) this requires us to

show that 0¼Rtxxz;tþRtyyz;t. Using (4.13) and (4.16) we

see that

Rtxxz;t þ Rtyyz;t ¼ �Rxyxz;y � Rxzxz;z þ Rxyyz;x � Ryzyz;z;

however on the initial slice we also have, by assumption,
(4.28)

0 ¼ Rxyxy;z þ Rxyyz;x � Rxyxz;y;

which when combined with the previous equation leads to

Rtxxz;t þ Rtyyz;t ¼ �ðRxyxy þ Rxzxz þ RyzyzÞ;z:
But by Eq. (4.34) we see that the right-hand side is just
�R;z=2 and as R ¼ 0 across the initial slice we also have

that 0 ¼ R;z at every central vertex. This completes the

proof. The two other constraints, 0 ¼ Rty and 0 ¼ Rtx, can

be dealt with in a similar fashion.
All that remains is to show that 0 ¼ Rtt is conserved. We

proceed in a manner similar to the above. First we use
Rtt ¼ Rxyxy þ Rxzxz þ Ryzyz and then use Eqs. (4.4), (4.7),

and (4.9), to compute the time derivative

ðRxyxy þ Rxzxz þ RyzyzÞ;t ¼ Rxyxy;t þ Rxzxz;t þ Ryzyz;t

¼ Rtyxy;x � Rtxxy;y þ Rtzxz;x

� Rtxxz;z þ Rtzyz;y � Rtyyz;z

¼ Rtx;x þ Rty;y þ Rtz;z;

where the last line arose by inspection of Eqs. (4.25), (4.26),
and (4.27). But 0 ¼ R�� at every central vertex on the initial

slice. Thus 0 ¼ R��;i, i ¼ x, y, z on the central vertexwhich

in turn shows that 0 ¼ Rtt;t on the initial slice.

A key element in the above proofs was the use of
constraints based on the Bianchi identities. The question
now must be: Do the evolution equations preserve those
constraints? The answer is yes which we will now demon-
strate on a typical case. Consider the constraint (4.28)

0 ¼ Rxyxy;z þ Rxyyz;x � Rxyxz;y:

We know this to be true on the initial slice and we need to
show that the evolution Eqs. (4.4), (4.5), (4.6), (4.7), (4.8),
(4.9), (4.10), (4.11), (4.12), (4.13), (4.14), (4.15), (4.16), and
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(4.17) guarantee that it will be satisfied on all subsequent
slices. The calculations follow a now familiar pattern,

ðRxyxy;z þ Rxyyz;x � Rxyxz;yÞ;t ¼ Rxyxy;tz þ Rxyyz;tx � Rxyxz;ty

¼ ðRtyxy;x � Rtxxy;yÞ;z
þ ðRtzxy;y � Rtyxy;zÞ;x
� ðRtzxy;x � Rtxxy;zÞ;y

¼ 0:

The same analysis can be applied to the remaining con-
straint equations.

D. Hyperbolicity

Our approach to proving hyperbolicity will be quite
simple. We will manipulate the evolution Eqs. (4.4), (4.5),
(4.6), (4.7), (4.8), (4.9), (4.10), (4.11), (4.12), (4.13), (4.14),
(4.15), (4.16), and (4.17) to demonstrate that each of our 20
R���� satisfies the standard second order wave equation.

Let us start with a simple example, Eq. (4.4). We take
one further time derivative, commute the mixed partial
derivatives and then use Eqs. (4.11) and (4.10), to eliminate
the single time derivative. This leads to

0 ¼ Rxyxy;tt � Rxyxy;xx � Rxyxy;yy þ Rxyyz;zx � Rxyxz;zy:

However, we also have 0 ¼ Rxyxy;z þ Rxyyz;x � Rxyxz;y,

which allows us to reduce the last two terms of the previous
equation to just �Rxyxy;zz. Thus we have

0 ¼ Rxyxy;tt � Rxyxy;xx � Rxyxy;yy � Rxyxy;zz:

This is the standard flat space wave equation for Rxyxy. A

similar analysis shows that Rxzxz, Ryzyz, Rxyxz, Rxyyz and

Rxzyz are also solutions of the wave equation.

We now turn to the 8 R���� in which the indices ����

contain just one t. The proof (that each such R���� satisfies

the wave equation) differs from the above only in the way
the Bianchi identities are used. Applying the first few steps
outlined above to Eq. (4.11) leads to

0 ¼ Rtyxy;tt � Rtyxy;xx � Rtyxy;yy � Rtyxy;zz þ Rtyxy;yy

þ Rtxxy;xy þ Rtzxy;zy;

in which we have deliberately introduced the pair of terms
Rtyxy;yy to aid in the following exposition. The last three

terms can be dealt with as follows. First notice that

Rtyxy;yy þ Rtxxy;xy þ Rtzxy;zy ¼ ðRtyxy;y þ Rtxxy;x þ Rtzxy;zÞ;y
¼ ð�R�

txy;�Þ;y
¼ ð�Rty;x þ Rtx;yÞ;y;

where in last line we have used the contracted Bianchi
identity 0 ¼ R�

���;� � R��;� þ R��;�. But we know that

0 ¼ R�� at every central vertex, thus all of its partial

derivatives will be zero and so the each term on the right
hand vanishes leading to our desired result

0 ¼ Rtyxy;tt � Rtyxy;xx � Rtyxy;yy � Rtyxy;zz:

Finally we note that the remaining 6 R����, that is those

that carry two t’s in their indices, are linear combinations
of the previous 14 R����, see Eqs. (4.18), (4.19), (4.20),

(4.21), (4.22), and (4.23), and thus will also be solutions of
the wave equation. Thus we have shown, as claimed, that
all 20 R���� satisfy the wave equation.

V. EVOLVING THE RIEMANN
CURVATURES PART 2

There are two problems in the forgoing analysis. The
first problem is that we chose a unit lapse function when
presenting the evolution Eqs. (4.4), (4.5), (4.6), (4.7), (4.8),
(4.9), (4.10), (4.11), (4.12), (4.13), (4.14), (4.15), (4.16), and
(4.17). We can easily remedy this problem by making a
simple cell dependent transformation dt ¼ Nðt0Þdt0 in
which the lapse N is allowed to vary (discretly) from cell
to cell as well as evolving (smoothly) in time. Note that
transformations of this kind do not disturb the worldline of
the central vertex, it remains normal to the Cauchy surface
and thus the shift vector remains zero on the central vertex.
However, the shift vector for any other vertex of the cell
need not be zero (this applies even prior to the above
transformation). Fortunately this is of no real concern
because all of the equations in this paper only use the
leading order term in the metric and this conicides with
the metric on the central vertex.
The second problem is somewhat more of a challenge. It

stems from the simple fact that each computational cell is
local in both space and time and therefore no single RNC
can be used to track the evolution for an extended period of
time. We will have no choice but to jump periodically to a
new RNC frame. But how might we do this? One approach
goes as follows. Build, on the worldline of a typical vertex,
a pair of distinct but overlapping cells, with one cell lying
slightly to the future of the other. Then evolve the curva-
tures in the frame of one cell into the overlap region
followed by a coordinate transformation to import the
newly evolved curvatures into the frame of the future
cell. This completes one time step of the integration where-
upon the whole process can be repeated any number of
times along the vertex worldline. A useful improvement on
this is to use a local tetrad to construct scalars thus avoiding
the need for explicit coordinate transformations when
passing from one cell to the next. The price we pay for
this is that we have to account for the evolution of the tetrad
along the worldline. As we shall see this is rather easy to do
(essentially we project the tetrad onto the legs of the
lattice). We will explore this method first on a simple
example before presenting the computations for the curva-
ture evolution equations.
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A. A simple example

In this example we will suppose that we have a vector
W� that evolves along the worldline of the central vertex
according to

dW�

dt0
¼ NF�: (5.1)

Our aim is to obtain a related equation that describes the
evolution of the vector along the whole length of the
worldline, not just the short section contained within this
one cell.

Suppose that we have an orthonormal tetrad ea ¼
e�a@�, a ¼ 1, 2, 3, 4 on ! with e1 aligned to n�@�, the

future pointing normal to !, and that we have aligned the
RNC coordinate axes with the tetrad (note how this gives
precedence to the tetrad over the coordinates). Thus at the
central vertex of � we have

ea¼@a; e�a¼��
a; e�

a¼��
a; n�¼e�1;

�n�¼e�
1; e�ae�

b¼�a
b; e�ae�

a¼��
�;

g��¼diagð�1;1;1;1Þ; gab¼diagð�1;1;1;1Þ:
We now propose the following evolution equations along
the worldline of the central vertex in �:

de�1

dt0
¼ e�iriN;

de�
1

dt0
¼ �e�

iriN; (5.2)

de�i

dt0
¼e�1riN;

de�
i

dt0
¼�e�

1riN; i¼2;3;4; (5.3)

where riN ¼ ð?N;�Þe�i and riN¼ð?N;�Þe�i, i¼2, 3, 4.
What can we say about the evolved data? First, note that
the orthonormal conditions are preserved, that is

de�ae�
b

dt0
¼ 0;

de�ae�
a

dt0
¼ 0:

Thus the tetrad obtained by integrating the above equations
will remain orthonormal along the worldline of the central
vertex. Second, using

ðNn�Þ;� ¼ N;�n
� �?ðN;�Þn� � NK�

� (5.4)

to compute dn�=dt0 ¼ n�;�ðNn�Þ we see that
de�1

dt0
¼ dn�

dt0
;

de�
1

dt0
¼ �dn�

dt0
; (5.5)

which shows that e�1 ¼ n� and e�
1 ¼ �n� everywhere

along the worldline. That is, e�1 remains tied to the world-
line. All that remains is to account for how the tetrad
rotates around the worldline. This we shall do by evolving
the projections of the e�i, i ¼ 2, 3, 4 onto the legs of the
lattice. Let va ¼ v�

a@�, a ¼ 1, 2, 3 be any three distinct

legs of the lattice attached to the central vertex. Now

consider a short time step in which the vector va sweeps
out a short quadrilateral in spacetime (see Fig. 1). The
upper and lower edges will be the past and future versions
of va while the remaining two sides will be generated by
the word lines of the vertices that define va. Since we have
assumed at the outset that all vertices evolve normal to the
Cauchy surface we see that these vertical vectors corre-
spond to Nn�. The important point is that this set of four
vectors forms a closed loop, in short, the vectors va and
Nn�@� commute, thus

v�
a;�ðNn�Þ ¼ v�

aðNn�Þ;�: (5.6)

The left-hand side is simply dv�
a=dt

0, while the right-hand
side can be expanded using (5.4). This leads to

dv�
a

dt0
¼ ðN;�n

� � NK�
�Þv�

a; (5.7)

where we have dropped the term involving n�v
�
a as

5 this

would beOðLmÞwithm � 2while the remaining terms are
all OðLÞ.
We are now ready to construct our scalar evolution

equations. Let W a :¼ W�e
�
a and va

b :¼ v�
ae�

b then

dW a

dt0
¼ dW�

dt0
e�a þW�

de�a

dt0
;

dva
b

dt0
¼ dvu

a

dt0
e�

b þ v�
a

de�
b

dt0
; b ¼ 1; 2; 3; 4

Each of these equations can be recast entirely in terms of
the scalars by first using (5.2), (5.3), and (5.7) to eliminate
the time derivatives on the right-hand side followed by the
substitutions W� ¼ W ae�

a and v�
a ¼ va

beub. This

leads to

dW n

dt0
¼ NF n þW iriN; (5.8)

dW i

dt0
¼ NF i þW nriN; i ¼ 2; 3; 4 (5.9)

FIG. 1. Here we show the evolution of one leg (oa) within one
computational cell. Clearly the four vectors form a closed loop
and thus ðNnÞo�t0 þ v0

a ¼ va þ ðNnÞaÞ�t0 which leads directly
to Eq. (5.6).

5This term is not identically zero because the geodesic that has
v�

a as its tangent is a geodesic of the four-dimensional space-
time; think of a chord connecting two points in one Cauchy
surface.
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dva
1

dt0
¼ 1

N

dN

dt0
va

1; (5.10)

dva
i

dt0
¼�NKi

jva
j; i;j¼2;3;4; a¼1;2;3; (5.11)

where we have introduced the scalars W n ¼ W�n
�,

F n ¼ F�n
�, F i ¼ F�e

�
i, and Ki

j ¼ K�
�e�

ie�j.

These are our final equations. They are valid along the
whole length of the worldline, not just the part contained in
one cell.

Note that Eq. (5.10) is readily integrated leading to
va

1 ¼ CN, where C is a constant of integration. However
we also know that va

1 ¼ �n�v
�
a and as noted above this

last term is OðLm�2Þ and thus C ¼ OðLm�2Þ.
Equation (5.11) describes the motion of the tetrad rela-

tive to the legs of the lattice. As we integrate forward in
time we can use the values of va

i to locate the tetrad within
the computational cell. If we chose to construct an RNC
within the cell then we can go one step further and recover
the values of e�i and the W�.

B. Curvature evolution equations

Now we can return to the task of constructing the
generalised evolution equations for the curvatures. We start
by introducing a pair of relations between the tetrad and
coordinate components of the curvature tensor

Rabcd ¼ R����e
�
ae

�
be

�
ce

�
d

R���� ¼ Rabcde�
ae�

be�
ce�

d

and then forming a typical evolution equation

dRabcd

dt0
¼ dR����

dt0
e�ae

�
be

�
ce

�
d

þ R����

dðe�ae
�
be

�
ce

�
dÞ

dt0
; (5.12)

with each d=dt0 term on the right-hand side replaced by a
suitable combination of the existing evolution equations,
(4.4), (4.5), (4.6), (4.7), (4.8), (4.9), (4.10), (4.11), (4.12),
(4.13), (4.14), (4.15), (4.16), and (4.17) for the curvature
terms and (5.2) and (5.3) for the tetrad terms.

Rather than working through all 14 equations we will
demonstrate the procedure on just one Eq. (4.4) leaving the
remaining equations (but not their working) to the
Appendix A. So our starting point is

dRxyxy

dt0
¼ dRxyxy

dt0
þ R����

dðe�xe
�
ye

�
xe

�
yÞ

dt0

and using (4.4) we obtain

dRxyxy

dt0
¼ NðRtyxy;x �Rtxxy;yÞ þR����

dðe�xe
�
ye

�
xe

�
yÞ

dt0
:

Finally we use (5.2) and (5.3) to eliminate the time deriva-
tive of e�a, leading to

dRxyxy

dt0
¼NðRtyxy;x�Rtxxy;yÞ
þRtyxyrxN�RtxxyryN

þRtyxyrxN�RtxxyryN: (5.13)

This is as far as we need go, though it is tempting to make
the substitutions Rtyxy ¼ Rabcdet

aey
bex

cey
d and Rtxxy ¼

Rabcdet
aex

bex
cey

d. But that is not really necessary as we

can defer those substitutions until we actually need values
for the stated partial derivatives. This is described in more
detail in Sec. VII.
Note that when introducing the lapse function by the

transformation dt ¼ Nðt0Þdt0 we have not made explicit the
coordinate transformation on the curvatures (though we do
use distinct labels t and t0 in the time derivatives). In this
way we use t0 as an integration parameter on the worldline
of each vertex while retaining the original coordinates t, x,
y, z as the local Riemann normal coordinates [and thus
at any point on the worldline we continue to have ðg��Þo ¼
diagð�1; 1; 1; 1Þ]. We choose to maintain this distinction
between t and t0 not only to keep the equations tidy but also
because it leaves the equations in a simple form well suited
to numerical integrations.
Clearly the above procedure can be applied directly

to each of the remaining 13 curvature evolution equations.
The final results for all 14 equations can be found in
the Appendix A.

C. Hyperbolicity and constraint preservation

It is natural to ask if the new system of evolution
equations are hyperbolic and also, are the new constraints
preserved by the new evolution equations? The answer to
both questions is yes and we will demonstrate this as
follows.
Given that Rabcd ¼ R����e

�
ae

�
be

�
ce

�
d we see that

R abcd;ef ¼ R����;��e
�
ae

�
be

�
ce

�
de

�
ee

�
f

þV abcdefðR;N; @R; @N; @2NÞ;

whereV abcdef is a function of R����, N and the indicated

partial derivatives. Importantly, V abcdef does not contain

any second partial derivatives of the curvatures. We have
previously shown that, at the central vertex, each R����

satisfies a wave equation of the form 0 ¼ g��R����;�� with

g�� ¼ diagð�1; 1; 1; 1Þ. Thus we find that

gefRabcd;ef ¼ gefV abcdefðR; @R;N; @N; @2NÞ;

where gef ¼ diagð�1; 1; 1; 1Þ. It follows that each Rabcd

satisfies a wave equation with source terms and therefore
we have shown that the new evolution equations constitute
a hyperbolic system.
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A similar analysis can be applied to the constraints. We
begin by writing a typical differential constraint (4.28),
(4.29), (4.30), (4.31), (4.32), and (4.33) in the form

0 ¼ W����ð@RÞ;
where the right hand side depends only on the first deriva-
tives of R����. Introducing the lapse function is trivial

(there are no time derivatives, so the equation is un-
changed). If we define the frame components W abcd by

W abcd ¼ W����e
�
ae

�
be

�
ce

�
d

then we find

W abcd;t ¼ W����;�e
�
ae

�
be

�
ce

�
de

�
t

þW����ðe�ae
�
be

�
ce

�
dÞ;t

and as we have previously shown that W���� ¼ 0 and

W����;�¼0 it follows that W abcd¼0 and W abcd;t ¼ 0.

It is easy to see that the same procedure can be applied to
the remaining constraints (4.18), (4.19), (4.20), (4.21),
(4.22), (4.23), and (4.24) with the same outcome. Thus
we have shown that the new constraints are conserved by
the new evolution equations.

VI. COORDINATES

There are at least two instances where the vertex coor-
dinates are required. First, when constructing the trans-
formation matrix used when importing data from
neighboring cells. Second, as part of the time integration
of leg lengths, Eqs. (3.1) and (3.2). They are also required
when computing the extrinsic curvatures VIIA and the
Hessian VII B.

Recall that within each cell we employ two distinct
coordinate frames, one is tied to the tetrad associated
with the central vertex while the other is aligned with the
lattice. Both frames share the central vertex as the origin.
We will describe first how to construct the lattice coordi-
nates, which we will denote by y�, followed by the tetrad
coordinates, denoted by x�. The lattice coordinates are
only ever used in the construction of the tetrad coordinates,
once these are known then the lattice coordinates can be
discarded. Note that terms such as Rxyxy, Kxy;z, etc. are

referred to the tetrad coordinates.
For a large part of this discussion we will be concerned

mainly with the scaling of the coordinates with respect to
the typical lattice scale (e.g., to establish that t ¼ OðL2Þ).
This applies equally well to both coordinate frames and so,
to be specific, we will present the arguments in terms of the
tetrad coordinates. Once we have sorted out these scaling
issues we will compute the lattice coordinates followed by
the tetrad coordinates.

Our first task will be to construct the piece of the Cauchy
surface that is covered by a typical computational cell.
Recall that we view the Cauchy surface to be a smooth
three-dimensional surface that passes through each vertex

of the lattice and that it shares with the lattice, at each
vertex, the same future pointing unit normal and second
fundamental form (the extrinsic curvatures). In our local
Riemann normal coordinates we wish to construct an
equation of the form 0 ¼ �tþ fðxuÞ that passes through
the vertices of this computational cell and with given
extrinsic curvature at the central vertex. For this we use
the familiar definition that �n� ¼ �K�

��x
� for the small

change in the unit normal under a displacement across the
Cauchy surface. If we take the displacement to be from the
central vertex (o) to a nearby vertex (a) then we have

n�a � n�o ¼ �K�
�x

�
a: (6.1)

But we chose the coordinates so that n
�
o ¼ ð1; 0; 0; 0Þ�

while for the surface 0 ¼ �tþ fðxuÞ the unit normal
at (a) is simply n

�
a ¼ g��ð�1; f;uÞ�=M ¼ ð1; f;uÞ�=M,

where M ¼ 1þOðL2Þ is a normalization factor. Thus
we have ð1; f;uÞ� ¼ ð1; 0; 0; 0Þ� � K�

�x
�
a þOðL2Þ and

this is easily integrated to give

ta ¼ �1
2K��x

�
a x�a þOðL3Þ: (6.2)

Note that since K�
�n

� ¼ 0we can use this last equation to
compute the time coordinates for each vertex in the com-
putational cell (given the spatial coordinates xua and the
extrinsic curvatures Kuv).
Consider the geodesic segment that joins the central

vertex (o) to a typical nearby vertex (a). Then from the
definition of Riemann normal coordinates we have

x
�
a ¼ m

�
a Loa; (6.3)

where m
�
a is the unit tangent vector to the geodesic at (o).6

Thus it follows that

jx�a j ¼ OðLÞ (6.4)

for each vertex in the computational cell. Combining this
with the above Eq. (6.2) for ta shows that

jtaj ¼ OðL2Þ: (6.5)

This result could also be inferred from the simple obser-
vation that mt ! 0 as L ! 0 (this is a consequence of the
smoothness of the Cauchy surface at (o).
We turn now to the simple question: How accurate do we

need the coordinates to be? That is, if ~x�i are the exact
Riemann normal coordinates for vertex i, then how large
canwe allow jx�i � ~x�i j to be? The answer can be found by a
simple inspection of the evolution Eqs. (3.1) and (3.2). The
truncation terms in those equations are OðL3Þ thus we can
safely get by with OðL2Þ errors in the coordinates, that is

jx�i � ~x
�
i j ¼ OðL2Þ: (6.6)

6Actually, by virtue of the fact that the path is a geodesic
segment expressed in Riemann normal coordinates, the values
for m

�
a are constant along the geodesic.
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The good news is that such coordinates are readily
available—flat space will do. To see that this is so, assume,
for the moment, that we have estimates for the K�� and

then look back at Eqs. (6.2) and (1.2). This is a coupled
system of equations for the coordinates ðt; x; y; zÞ�a for each
vertex in the computational cell. We are fortunate to have
an explicit equation for the time coordinates, namely (6.2).
This allows us, in principle, to eliminate each time coor-
dinate that appears in Eq. (1.2). The result would be a set of
equations for the spatial coordinates xua. In the following
we will not make this elimination explicit but take it as
understood that such a process has been applied. We will
have a little more to say on this matter in a short while.

For a typical vertex (l) we will need to compute three
spatial coordinates and thus we look to the legs of a
tetrahedron. Suppose that the tetrahedron has vertices
(ijkl) and suppose that we have computed, by some means,
the exact Riemann normal coordinates ~x� for vertices
(ijk). The exact coordinates ~x�l for vertex (l) could be

obtained by solving the system of equations

L2
al ¼ g��ð~x�a � ~x

�
l Þð~x�a � ~x�l Þ

� 1
3R����~x

�
a ~x�a~x

�
l ~x

�
l ; a ¼ i; j; k; (6.7)

but we could also construct flat space coordinates x
�
l for

vertex l by solving the system

L2
al ¼ g��ð~x�a � x�l Þð~x�a � x�l Þ; a ¼ i; j; k: (6.8)

From the last equation we conclude that j~x�a � x�l j ¼ OðLÞ
for a � l. Next, make the trivial substitution ~x�l ¼ x�l þ
ð~x�l � x�l Þ in the first term in (6.7), expand and use (6.8) to

obtain

0 ¼ �2g��ð~x�a � x
�
l Þð~x�l � x�l Þ

þ g��ð~x�l � x
�
l Þð~x�l � x�l Þ

� 1
3R����~x

�
a ~x�a~x

�
l ~x

�
l ; a ¼ i; j; k;

and as each ~x
�
a ¼ OðLÞ for a ¼ i, j, k we easily see that

j~xul � xul j ¼ OðL3Þ: (6.9)

The fly in the ointment in the above analysis is the
assumption that we knew the K�� (and thus we could

eliminate the ta). This is not exactly correct for the K��

are found by solving Eq. (3.1) which in turn requires the
coordinates xua which we have yet to compute (at that
stage). Luckily, this is not a major problem. Look carefully
at Eq. (6.7) and recall that g�� ¼ diagð�1; 1; 1; 1Þ. Thus
the t-terms will appear only in the form �ð~ta � tlÞ2 and in
the curvature terms of the form Rtuvwtax

u
ax

v
l x

w
l . The point

to note is that since t ¼ OðL2Þ we see that each of these
terms is OðLnÞ with n � 4 and thus they have no effect on
the above analysis. Thus even though we argued previously
that we should eliminate the ta using Eq. (6.2) the above
argument shows that we can put ta ¼ 0 without harm.

Our final calculation concerns the errors induced in ta
by using the approximate xua and K�� rather than their

exact counterparts. Our analysis is very similar to that
just presented. We start with the two sets of equations,
the approximate and exact equations,

2ta ¼ �Kuvx
u
ax

v
a and 2~ta ¼ � ~Kuv~x

u
a~x

v
a: (6.10)

We will assume that j ~Kuv � Kuvj is at least OðLÞ (this is
one assumption that we will not relax at a later stage). Then
we make the trivial substitution ~xul ¼ xul þ ð~xul � xul Þ as

above to obtain

2~ta ¼ 2ta � ð ~Kuv � KuvÞxuxv � 2 ~Kuvx
u
að~xva � xvaÞ

� ~Kuvð~xua � xuaÞð~xva � xvaÞ: (6.11)

Using xua ¼ OðLÞ, ~xua ¼ OðLÞ and j ~Kuv � Kuvj ¼ OðLÞ
we find that

j~ta � taj ¼ OðL3Þ (6.12)

A. The lattice coordinates

We return now to the concrete question of how to
compute the vertex coordinates within one computational
cell. We will first compute the lattice coordinates y� fol-
lowed by the tetrad coordinates x�. Our present challenge
is to find the solutions of the coupled system of equations

L2
ab ¼ g��ðy�a � y�b Þðy�a � y�bÞ (6.13)

for a suitable subset of the legs (ab) in the computational
cell (equal in number to the number of unknown coordi-
nates). The problem here is that if we treat this as a system
of equations for the spacetime coordinates ðt; x; y; zÞ�a it is
extremely unlikely that we will find any solutions (or if we
do then the numerics will almost certainly be extremely
unstable). The reason is quite simple—the vertices are
assumed to lie within one three-dimensional Cauchy sur-
face. This suggest that we should use the above equations
to determine the spatial coordinates ðx; y; zÞua with the time
coordinates found by other considerations. Fortunately
we already know, from the above analysis, that each
jtaj ¼ OðL2Þ while jyuaj ¼ OðLÞ. Thus we see that all
terms involving the ta areOðL4Þ and thus will be consumed
by the OðL4Þ truncation errors inherent in the above equa-
tion [as an approximation to Eq. (6.7)]. So we may safely
discard all the of the ta terms in the above equations. The
next trick that we will use is the observation that the
coordinates can be computed one vertex at a time. This is
easily shown by direct construction. Consider a typical
tetrahedron with vertices (oijk) where (o) is the central
vertex and suppose we have computed the coordinates for
(oij). Our task now is to compute yuk by solving the

following equations:

L2
ok ¼ guvy

u
ky

v
k ; (6.14)

L2
ok þ L2

oi � L2
ik ¼ 2guvy

u
i y

v
k ; (6.15)
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L2
ok þ L2

oj � L2
jk ¼ 2guvy

u
j y

v
k ; (6.16)

where the last pair of equations were obtained by expand-
ing L2

ab ¼ guvðyua � yubÞðyva � yvbÞ. A simple calculation

shows that the solution is given by [4]

yuk ¼ Pyui þQyuj þ Rnu;

where

nu¼guv	xyzvrsyri y
s
j;

P¼mikL
2
oj�mjkmij

L2
n

; Q¼mjkL
2
oi�mikmij

L2
n

;

R¼�ðL2
ok�P2L2

oi�Q2L2
oj�2PQmijÞ1=2

Ln

;

L2
n¼L2

oiL
2
oj�m2

ij;

and where the mab are defined by

2mij ¼ L2
oi þ L2

oj � L2
ij;

2mik ¼ L2
oi þ L2

ok � L2
ik;

2mjk ¼ L2
oj þ L2

ok � L2
jk:

The two solutions, one for each choice of the � signs,
correspond to the two possible locations of the third vertex
(k), one on each side of the plane containing the triangle
(oij). Which choice is taken will depend on the design
of the lattice. A systematic choice can be made by noting
that the vectors yui , y

u
j and nu form a right-handed system.

With R> 0 the vector yuk lives on the same side of the plane

as nu.
To complete the picture we need coordinates for the first

two vertices (1) and (2). Since we chose to align our
coordinates so that the x-axis passed through vertex (1)
while the vertex (2) is contained in the xy-plane we must
have yu1 ¼ ðA; 0; 0Þu and yu2 ¼ ðB;C; 0Þu for some numbers
A > 0, B and C> 0 such that

L2
01 ¼ guvy

u
1y

v
1 ;

L2
02 ¼ guvy

u
2y

v
2 ;

L2
01 þ L2

02 � L2
12 ¼ 2guvy

u
1y

v
2 :

The solution is readily found to be A ¼ L01, B ¼
ðL2

01 þ L2
02 � L2

12Þ=ð2L01Þ and C ¼ ðL2
02 � B2Þ1=2.

B. The tetrad coordinates

The transformation from the lattice to tetrad coordinates
is quite simple. Let ea be the basis for the tetrad frame
and let @� be the corresponding basis for the lattice

frame. Recall that we have previously chosen the frames
so that both e1 and @t are aligned with the normal to the
Cauchy surface. Now consider a typical vector va that

joins (0) to (a). In the lattice frame this vector has compo-
nents y

�
a while in the tetrad frame, with basis eb, its

components are just va
b. That is we have, for a ¼ 1, 2, 3

n ¼ @t ¼ e1; (6.17)

yta ¼ va
t; (6.18)

va ¼ y
�
a @� ¼ va

beb: (6.19)

In the last equation both the y�a and va
b are known. Thus

we have sufficient information to compute @� in terms of

ea and vice versa. Note that the tetrad coordinates x
�
a are

given by

x�a ¼ v�
a ¼ va

be�b: (6.20)

Finally, using Eq. (6.2), we can compute the time coor-
dinate for every vertex, not just the three vertices associ-
ated with va

b, a ¼ 1, 2, 3

yta ¼ xta ¼ �1
2K��x

�
a x�a; a ¼ 1; 2; 3; � � � : (6.21)

VII. SOURCE TERMS

We have previously mentioned, without giving details,
that source terms such as Rxyxy;z can be computed by

applying a finite-difference approximation to data im-
ported from neighboring cells. Here we will outline how
such a procedure can be applied (the exact details will of
course depend on the structure of the lattice). The same
procedure can also be used to estimate the spatial deriva-
tives of the e�a.
Suppose we have two neighboring computational cells

that have a nontrivial overlap (as indicated in Fig. 2). Each
cell will carry values for Rxyxy in their own local RNC

frames. Our first task would be to import the values form
the one cell to the other. This will entail a coordinate
transformation, composed of a boost (to account for the
change in the unit normal between the two cells) and a
spatial rotation (to account for the different orientations of
the legs of the cells).
Let x� be the (tetrad) coordinates in one cell and let x0�

be coordinates in the other cell. Our plan is to import data
form the x0� frame to the x� frame. We will demand that
the overlap region be such that it contains at least one set of
three linearly independent vectors (i.e., legs), at O0, which
we will denote by wi, i ¼ 1, 2, 3. Since we know the
coordinates of each vertex in each cell we can easily
compute the components of wi, i ¼ 1, 2, 3 in each frame.

The normal vector no0 at O
0 will have components n0�

o0 ¼ð1; 0; 0; 0Þ� in the x0� frame. But in the x� frame we expect
n
�
o0 ¼ n

�
o � K�

�x
�
o0 . Thus we have 4 linearly independent

vectors at O0, expressed in two different frames, and so
there must exist a mapping from the components in one
frame to those in the other. That is there exists a U�

� such
that
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n�
o0 ¼ U�

�n
0�
o0 ; (7.1)

w�
i ¼ U�

�w
0�
i ; i ¼ 1; 2; 3: (7.2)

Since we have values for the components of no0 andwi, i ¼
1, 2, 3 in both frames we can treat this as a system of
equations for the U�

�.
With the U�

� in hand, we can compute the values of
R���� at O0 in the x� frame of O by way of

ðR����Þo0 ¼ U�

U�

�U�
�U�

�ðR0

���Þo0 ; (7.3)

with U�
� ¼ g��g

��U�
� and g�� ¼ diagð�1; 1; 1; 1Þ.

This can be repeated for all of the vertices that surround
O. The result is a set of point estimates for R���� in the

neighborhood of O which in turn can be used to estimate
the derivatives of R���� at O. This part of the process is

similar to that required when computing the Hessian (see
below) and presumably similar methods could be applied.

Note that for a sufficiently refined lattice, the U�
�

should be close to the identity map, that is U�
� ¼ ��

� þ
V�

�OðLÞ, where the V�
� are each of order Oð1Þ. This can

be used to simplify some of the above computations.
See [1] for a complete example in the context of the

Schwarzschild spacetime.
In Sec. VB we noted that substitutions such as Rtyxy ¼

Rabcdet
aey

bex
cey

d could be introduced into the curvature

evolution Eq. (5.13). At that time we argued that doing so
was not necessary for the coordinate data, in this instance
Rtyxy, could easily be recovered when needed by using

Rtyxy ¼ Rabcdet
aey

bex
cey

d. Then the scheme described

above could be used to compute Rtyxy;x. However there

may be numerical advantages in making a formal substi-

tution before estimating any of the partial derivatives. For
Rtyxy;x this would lead to the following:

Rtyxy;x ¼ ðRabcdet
aey

bex
cey

dÞ;x
¼ Rabcd;xet

aey
bex

cey
d þRabcdðetaeybexceydÞ;x:

Since theRabcd are scalars, their partial derivatives can be
estimated without requiring any of the frame transforma-
tions described above (importing such data from neighbor-
ing cells is trivial). This leaves us with the derivatives of
the form ðe�aÞ;x. Since n� ¼ �e�

1 we can use (5.4) to

eliminate any of the spatial derivatives of e�
1, in this case

ðe�1Þ;x. This would introduce the extrinsic curvatures into

the evolution equations. However the remaining partial
derivatives, ðe�iÞ;x, i ¼ 2, 3, 4, would have to be estimated

using the methods described above (by importing data
from neighboring cells, etc.). This approach does incur a
small computational overhead which may be justified if it
brings some improvement to the quality of the numerical
data (e.g., better accuracy and or stability). Judging the
merits of this variation against the simple method given in
Sec. VB might best be decided by direct numerical
experimentation.
There is one aspect of the above discussion that has been

overlooked—the vector that connectsO toO0 is, generally,
not orthogonal to the normal vector at O (except in the
continuum limit, recall that the spacelike geodesic that
joins a pair of vertices should be viewed as a chord of
the Cauchy surface rather than as a curve contained within
the Cauchy surface). Thus the spatial derivatives, when
constructed according to the above, will carry an error
typically of order OðLÞ. However, this error could be
eliminated by an interpolation of the data along the world-
line of O0 prior to estimating the partial derivatives.

A. Extrinsic curvatures

A cursory glance at Eq. (3.1) might give the impression
that it constitutes a simple linear system for the Kuv. But
things are never as simple as they seem. The problem, as
already noted, is that there are far too many equations for
the six Kuv. If we make the reasonable assumption that the
lattice data is a good approximation to the (unknown)
continuum spacetime then we can expect considerable
redundancy in this overdetermined system. How then do
we pull out just six equations for the sixKuv? One option is
to reject all but six of the equations and hope that this
yields an invertible system for the Kuv. A better, and more
flexible approach, is to take a weighted sum of the equa-
tions, that is we create a new set of equations of the form

0 ¼ X
ab

Wn
abðPab � Kuv�x

u
ab�x

v
abÞ; (7.4)

where Wn
ab are a set of weights of our own choosing

(typical values being 0 and �1). With n ¼ 1; 2; 3 . . . 6 we
have six equations for the six unknowns. This idea has been

FIG. 2. An example of the overlap, the shaded region, between
a pair of computational cells. The central vertex of each compu-
tational cell is denoted by the large dots whereas the smaller
dotes denote the vertices that define the boundary of the compu-
tation cells. These vertices are themselves the central vertices of
other computational cells. In this two-dimensional example the
overlap consists of just the pair of triangles. In 3 dimensions the
over lap would consist of a closed loop of tetrahedra. In each
case there is ample information available to obtain a coordinate
transformation between the pair of local Riemann normal
frames.
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used previously [4] and worked very well. There are cer-
tainly other options that could be explored (e.g., different
choices of weights, least squares) none of which have been
tested simply because the above scheme seems to work
well.

There is yet another approach that could be taken, one
that may simplify the evolution scheme. Suppose that the
Kuv are known at each central vertex. We could then use
the standard ADM equations (suitably adapted to the lat-
tice, see, for example, Eqs. (4.5) and (4.6) in [1]) to evolve
the Kuv. The lattice leg lengths would continue to be
evolved using (3.3) though this would require some form
of interpolation of theKuv from the vertices to the center of
the legs. The evolution equations for the Riemann curva-
tures would be unchanged. This is exactly the method
employed in the first paper in this series.

The two methods just described can be characterized in
terms of what constitutes the basic data on the lattice. In the
former approach the lattice data is taken to be the leg
lengths, their time derivatives and the Riemann curvatures.
The extrinsic curvatures would then be extracted from this
data using some weighted average, as described above. In
the later scheme the lattice data would be the leg lengths
plus the extrinsic and Riemann curvatures.

B. The Hessian

At some point we will need to estimate the Njuv at a

central vertex. SinceN is a scalar function and since we are
using Riemann normal coordinates this computation is
essentially that of computing all of the second partial
derivatives on an unstructured grid. There is an extensive
literature on this point in the context of finite element
schemes. We mention here one approach which we dis-
cussed in one of our earlier papers [4] (but which we have
yet to test).

Consider a typical leg (ij) in some computational cell.
We can estimate Nju at the center of the leg by the centered
finite-difference approximation

ðNjuÞij ¼ ð ~NjuÞij þOðL2Þ; (7.5)

where

ð ~NjuÞij ¼
Nj � Ni

Lij

ðmuÞij (7.6)

and ðmuÞij is the unit vector tangent to the geodesic and

oriented so that it points from (i) to (j). We can repeat this
computation for each leg in the computational cell and then
estimate Njuv by a least squares fit of the function

~N juðxÞ ¼ ~Nju þ ~Njuvxv (7.7)

to the data generated above by Eq. (7.6). A suitable least
squares sum would be

Sð ~Nju; ~NjuvÞ ¼
X
u

X
ij

ðð ~NjuÞij � ~Nju � ~Njuv �xvijÞ2; (7.8)

where �xvij is the center of the leg (ij). Note that this least

squares fit must be made subject to the constraint Njuv ¼
Njvu. The coefficients ~Nju and ~Njuv would then be taken as
our estimates for the corresponding quantities at the central
vertex.

VIII. DISCUSSION

There are a number of aspects of this paper that could
easily be debated. For example, should we proceed with
the substitutions such as Rtyxy ¼ Rabcdet

aey
bex

cey
d in

Eq. (5.13)? As already noted in Sec. VII this would intro-
duce a raft of new terms including the extrinsic curvatures.
We chose not to use the substitution solely for reasons of
simplicity. There is also a question over our choice of
tetrad. Do we really need to demand that the tetrad be
orthonormal? Not at all. We could choose to tie the tetrad
to the legs of the lattice (and then the tetrad would no longer
be needed) but that would produce a coupling amongst all
of the evolution equations (e.g., the evolution equation for
Rxyxy would be a linear combination of all of the evolution

equations for R����). The resulting equations would not be

anywhere near as simple as those listed in the Appendix A.
Then we have the issue of estimating partial derivatives on
an irregular lattice (for the Hessian and the source terms in
the curvature evolution equations). This is nontrivial but at
least there is an extensive literature on the subject and so a
workable solution should not be too hard to find (which
may be the least squares method suggested in Sec. VII B).
All of these issues (and most likely others) can be explored
by direct numerical exploration on a nontrivial 3þ 1 space-
time. We plan to report on such investigations soon.
The previous paper in this series [1] was put forward as a

proof of concept before embarking on the general case
presented in this paper. There are details in that first paper
that are only touched on in this paper, in particular, the
computation of the spatial partial derivatives of the
Riemann curvatures. Computations such as those will of
course depend very much on the nature of the spacetime
such as the symmetries (if any). Thus the first paper serves
not only as a proof of concept but also as detailed example
that completes specific computations not undertaken in this
paper.

APPENDIX A: THE CURVATURE
EVOLUTION EQUATIONS

Here we list all 14 curvature evolution equations (this
follows on from Sec. VB where we provided details of the
derivation for the first equation below). Keep in mind that
these equations apply along the worldline of a central
vertex and that the script quantities such as Rxyxy are

projections onto an orthonormal tetrad while the nonscript
quantities such as Rxyxy are the coordinate components

in a frame where the metric is diagð�1; 1; 1; 1Þ along the
worldline of the central vertex. The list is as follows:
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dRxyxy

dt0
¼ NðRtyxy;x � Rtxxy;yÞ þRtyxyrxN �RtxxyryN

þRtyxyrxN �RtxxyryN; (A1)

dRxyxz

dt0
¼ NðRtzxy;x � Rtxxy;zÞ þRtyxzrxN �RtxxzryN

þRtzxyrxN �RtxxyrzN; (A2)

dRxyyz

dt0
¼ NðRtzxy;y � Rtyxy;zÞ þRtyyzrxN �RtxyzryN

þRtzxyryN �RtyxyrzN; (A3)

dRxzxz

dt0
¼ NðRtzxz;x � Rtxxz;zÞ þRtzxzrxN �RtxxzrzN

þRtzxzrxN �RtxxzrzN; (A4)

dRxzyz

dt0
¼ NðRtzxz;y � Rtyxz;zÞ þRtzyzrxN �RtxyzrzN

þRtzxzryN �RtyxzrzN; (A5)

dRyzyz

dt0
¼ NðRtzyz;y � Rtyyz;zÞ þRtzyzryN �RtyyzrzN

þRtzyzryN �RtyyzrzN (A6)

dRtyxy

dt0
¼ NðRxyxy;x � Rxyyz;zÞ þRiyxyriN

þRtytyrxN �RtxtyryN; (A7)

dRtxxy

dt0
¼ �NðRxyxy;y þ Rxyxz;zÞ þRixxyriN

þRtxtyrxN �RtxtxryN; (A8)

dRtzxy

dt0
¼ NðRxyxz;x þ Rxyyz;yÞ þRizxyriN

þRtytzrxN �RtxtzryN; (A9)
dRtzxz

dt0
¼ NðRxzxz;x þ Rxzyz;yÞ þRizxzriN

þRtztzrxN �RtxtzrzN; (A10)
dRtxxz

dt0
¼ �NðRxyxz;y þ Rxzxz;zÞ þRixxzriN

þRtxtzrxN �RtxtxrzN; (A11)
dRtyxz

dt0
¼ NðRxzxz;x � Rxzyz;zÞ þRiyxzriN

þRtytzrxN �RtxtyrzN; (A12)
dRtzyz

dt0
¼ NðRxzyz;x þ Ryzyz;yÞ þRizyzriN

þRtztzryN �RtytzrzN; (A13)
dRtyyz

dt0
¼ NðRxyyz;x � Ryzyz;zÞ þRiyyzriN

þRtytzryN �RtytyrzN: (A14)

Note that in the above there are two instances of Rtxyz,

in (A3) and (A5), and asRtxyz is not part of our chosen set

of R���� it should be replaced withRtyxz �Rtzxy (i.e., the

first Bianchi identity).

APPENDIX B: RIEMANN NORMAL
COORDINATES

We recall here a few basic properties of Riemann normal
coordinates.A set of coordinatesx� are said tobe inRiemann
normal form if every geodesic passing through a given point
O (the origin) is described by x�ðsÞ ¼ sv�, where s is an
affine parameter and v� is constant along the geodesic. It
follows from the geodesic equation and its successive
derivatives, that the connection and its higher symmetric
derivatives7 all vanish at the chosen point, that is at O

0 ¼ ��
�1�2

; (B1)

0 ¼ �
�
ð�1�2;�3����nÞ; n ¼ 3; 4; 5; � � � : (B2)

These conditions do not uniquely determine the coordinates
for we are free to apply a transformation of the form
x� � ��

�x
� which clearly preserves the property that the

geodesics through O are of the form x�ðsÞ ¼ sv�. This
freedom can be used to ensure that the metric atO is simply
g�� ¼ diagð�1; 1; 1; 1Þ.
Choosing the coordinates so that the connection van-

ishes at the origin does introduce some nice properties, in
particular, covariant differentiation reduces, at the origin,
to simple partial differentiation. This fact was essential to
the analysis given in Sec. IV.
There are two main impediments to the existence of

Riemann normal coordinates. The metric must be smooth
throughout the neighborhood (i.e., away from curvature
singularities) and each point in the neighborhood should be
connected to the origin by exactly one geodesic (i.e., no
pair of geodesics through O should cross, except at O).
These conditions are easily satisfied by simply choosing
the neighborhood aroundO to be sufficiently small (but not
vanishingly small).
In these coordinates the metric and connection can be

expanded as a Taylor series around O leading to

g��ðxÞ¼g��� 1
3R����x

�x�� 1
6R����;�x

�x�x�þOðL4Þ;
(B3)

g��ðxÞ¼g��þ 1
3R

�
�
�
�x

�x�þ 1
6R

�
�
�
�;�x

�x�x�þOðL4Þ;
(B4)

�
�
��ðxÞ ¼

1

3
R�

���x
�

þ 1

24
ð2R�

���;� þ 4R�
���;� þ R

;�
����Þx�x�

þ ð� $ �Þ þOðL3Þ: (B5)

If we know the Riemann normal coordinates, x�i and x�j ,

for a pair of points, i and j, then we can compute the length
of the geodesic segment that joins the points by

7Here we take a small liberty with notation, the upper index on
the Christoffel symbol should be ignored when computing co-
variant derivatives.
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L2
ij¼

�
g��� 1

3R���� �x
�
ij �x

�
ij� 1

6R����;� �x
�
ij �x

�
ij �x

�
ij

�
�x

�
ij�x

�
ijþOðL6Þ; (B6)

where�x
�
ij
:¼ x

�
j � x

�
i and �x

�
ij
:¼ ðx�j þ x

�
i Þ=2 is the midpoint of the leg. The unit tangent vectorm

�
ij to the geodesic at i,

is given by

Lijm
�
ij ¼ �x�ij þ

1

3
x��x�ij�x

�
ijR

�
��� þ 1

12
x�x��x�ij�x

�
ijR

�
���;� þ 1

6
x�x��x�ij�x

�
ijR

�
���;� þ 1

24
x�x��x�ij�x

�
ijR

;�
����

þ 1

12
x��x�ij�x

�
ij�x

�
ijR

�
���;� (B7)

Finally, if we have a geodesic triangle built on the three points i, j, k then the generalised cosine law takes the form

2LikLjk cos
ij ¼ L2
ik þ L2

jk � L2
ij � 1

3R�����x
�
ik�x

�
ik�x

�
jk�x

�
jk þOðL5Þ; (B8)

in which 
ij is the angle subtended at vertex k by the geodesic that connects i to j.
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