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The second Bianchi identity can be recast as an evolution equation for the Riemann curvatures. Here we

will report on such a system for a vacuum static spherically symmetric spacetime. This is the first of two

papers. In the following paper we will extend the ideas developed here to general vacuum spacetimes. In

this paper we will demonstrate our ideas on a Schwarzschild spacetime and give detailed numerical

results. For suitable choices of lapse function we find that the system gives excellent results with long term

stability.
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I. INTRODUCTION

Despite a slow start, hyperbolic formulations of the
Einstein equations have in recent times become the system
of choice for numerical relativity.

The confidence afforded to hyperbolic systems is born
out not just by the recent success in numerical relativity
[1–3] but also from their strict mathematical underpin-
nings, namely, that future evolutions exist and that they
depend smoothly on the initial data. These are key aspects
of the theorems that demonstrate the stability of the sys-
tem; see [4] for details.

One of the earlier hyperbolic formulations was given by
Friedrich [5] in which he used the second Bianchi identities
to evolve the Weyl curvatures in-situ with the metric. This
idea has been extended by many other authors [6–9] and
the resulting equations are commonly referred to as an
Einstein-Bianchi system.

Yet despite their mathematical elegance and the virtues
that this would bestow upon a numerical code there seems
to be have been very few numerical applications employing
an Einstein-Bianchi system (though see [10,11]).

In this paper we will report on a simple Einstein-Bianchi
system adapted to a discrete lattice for static spherically
symmetric spacetimes. We were lead to this formulation
not by way of Friedrich’s paper but rather as a direct
extension of our own ideas developed in an earlier series
of papers [12–15]. In those papers we used the spatial form
of the second Bianchi identities (i.e., the second Bianchi
identity for the 3-metric) to compute the 3-Riemann cur-
vatures across a Cauchy surface. This device proved to be
the key element in obtaining accurate and stable evolutions
of the initial data.

Our longer term intention is to employ an Einstein-
Bianchi system to evolve a three-dimensional lattice.
This will require not only evolution equations for the
legs of the lattice, such as those given in [13], but also
evolution equations for the curvatures. This will be the
subject of the second paper in this series. The purpose of
this paper is simply to provide a proof of concept before
moving on to the general case.

For the simple case presented here we find that the
system works very well. The evolutions are stable, though
this depends on the choice of the lapse function, see
Secs. IXA and VIA. We also find that the constraints are
well behaved (they appear to grow linearly with time and
converge to zero as the lattice is refined; see Sec. VI B).
As this paper borrows heavily from two of our previous

papers, which we refer to as Paper 1 [12] and Paper 2 [13],
we will skip over many of the derivations and arguments
assuming instead that the reader is familiar with the mate-
rial in Paper 1 and Paper 2.

II. SPHERICALLY SYMMETRIC SPACETIMES

In this paper we will be constructing lattice approxima-
tions to the Schwarzschild spacetime in various slicings. In
each case the continuum metric can be written in the form

ds2 ¼ �Nðr; tÞ2dt2 þ Aðr; tÞ2dr2 þ Bðr; tÞ2d�2 (2.1)

for some set of functions Nðr; tÞ, Aðr; tÞ, Bðr; tÞ and where
d�2 ¼ d�2 þ sin2�d�2 is the metric of the unit 2-sphere.
We have introduced this coordinate form of the continuum
metric simply as a precursor to the introduction of the
lattice. As we shall soon see, we will use the coordinate
lines and their local tangent vectors as a scaffold on which
to build the lattice, after which wewill have no further need
for the coordinates (indeed we could dispense with the
coordinates altogether at the possible expense of the clarity
of the exposition).
Consider a local orthonormal tetrad built from the future

pointing unit normal t� to a typical Cauchy surface and
three unit vectors m�

x , m
�
y and m�

z where m�
z is parallel to

the radial axis (see Fig. 1). These basis vectors are also
tangent vectors to the coordinate axes of a local Riemann
normal frame. We will use this tetrad to record the frame
components of the extrinsic and Riemann curvatures on the
lattice. Our notation, which we borrow from Paper 1, will
be to use script characters to denote frame quantities,

thus Kxx :¼K��m
�
x m�

x while Rtztz :¼ R����t
�m�

z t
�m�

z .

Also, to avoid an overflow of symbols, we will allow Lxx
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and Lzz to represent both the length of the corresponding
leg as well the leg itself.

In this class of spacetimes, and on this tetrad, we know
that the extrinsic curvature is diagonal and that a basis for
the nontrivial Riemann curvatures is given by

R xyxy; Rxzxz; Rtxtx; Rtztz; Rtxxz

Now using R�� ¼ R�
��� and R ¼ g��R�� we find

R tz ¼ �2Rtxxz; (2.2)

R tt ¼ Rtztz þ 2Rtxtx; (2.3)

R zz ¼ �Rtztz þ 2Rxzxz; (2.4)

R xx ¼ �Rtxtx þRxyxy þRxzxz; (2.5)

R ¼ �4Rtxtx � 2Rtztz þ 2ðRxyxy þ 2RxzxzÞ; (2.6)

while the nontrivial vacuum Einstein equations yield

R tz ¼ Rtt ¼ Rzz ¼ Rxx ¼ 0: (2.7)

Combining the above shows that we can express all of the
nontrivial Riemann curvatures solely in terms ofRxyxy and

Rxzxz, namely

R txxz ¼ 0; (2.8)

R tztz ¼ 2Rxzxz; (2.9)

R txtx ¼ Rxyxy þRxzxz: (2.10)

In obtaining these relations we used g�� ¼ �t�t� þ
m�

x m�
x þm�

y m�
y þm�

z m�
z .

Note that Rxyxy and Rxzxz are not independent for the

simple equation R ¼ 0 leads to

0 ¼ Rxyxy þ 2Rxzxz: (2.11)

We will use this equation as a check on our numerical
integrations (see Sec. VI B for more details).

III. THE LATTICE

The symmetries in the Schwarzschild spacetime allows
us to use a very simple ladderlike structure for the lattice,
as indicated in Fig. 2. One way to imagine the construction
of the lattice is to consider the coordinate mesh generated
by setting t ¼ constant and � ¼ �=2 in the coordinate
form of the metric in (2.1). Then the rungs of the ladder
are generated by small increments in � leading to Lxx �
B�� while the side rails would coincide with two radial
curves (i.e., � ¼ constant) with Lzz � A�r. Clearly, spec-
ifying all of the Lxx and Lzz is equivalent to specifying the
metric components Aðr; tÞ and Bðr; tÞ. Note that throughout
this paper we treat the Lxx and Lzz as continuous functions
of time.
We will label the nodes from 0 to n and on the few

occasions where we need to discuss more than one leg at a
time we will write ðLxxÞi to denote an Lxx leg at node i. In
the same way ðLzzÞi will denote the Lzz that joins the nodes
i and iþ 1. Similar notation will be used for other data on
the lattice.
The initial data (as described in Sec. V) are constructed

in a way that guarantees reflection symmetry at the throat
(which is always tied to node 0).
In our computer code we extend our lattice a small way

over the throat, by including the nodes�3 to�1, so that we
can readily impose the reflection symmetries (by simply
copying data across the throat, at no point do we indepen-
dently evolve any of the data to the left of the throat).

IV. THE EVOLUTION EQUATIONS

Our present task is to develop evolution equations for the
leg lengths, the extrinsic curvatures and, the principle
innovation in this paper, evolution equations for the
Riemann curvatures.
A simple derivation of the evolution equations for our

lattice can be obtained from a general pair of equations
developed in Paper 2. There it was shown that the first and
second variations of arc lengths can be written in a form
remarkably similar to the Arnowitt-Deser-Misner (ADM)
equations, namely

dL2
ij

dt
¼ �2NK���x

�
ij�x

�
ij þOðL3Þ; (4.1)

FIG. 1. The local structure of the lattice. The ðx; y; zÞ are a set
of coordinates local to this set of legs. There is one such
coordinate frame for each Lxx along the lattice. These coordi-
nates are never used in the computer code but help to define the
metric in the neighborhood of Lxx.

FIG. 2. A simple lattice for a Schwarzschild spacetime. This
consists of two identical halves joined at the throat (denoted by
the thick line). In our computer code we only store the right-hand
half (plus a few nodes from the left-hand half to ensure reflection
symmetry at the throat).
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d

dt

�
1

N

dL2
ij

dt

�
¼ 2Nj���x�ij�x

�
ij

þ 2NðK��K
�
� � R����t

�t�Þ�x�ij�x�ij
þOðL3Þ: (4.2)

Note that in the following we will ignore the leading error
terms OðL3Þ. Applying these equations to the two legs Lxx

and Lzz of our spherically symmetric lattice leads imme-
diately to

dLxx

dt
¼ �NKxxLxx; (4.3)

dLzz

dt
¼ �NKzzLzz; (4.4)

dKxx

dt
¼ �N;xx þ NðRtxtx þK2

xxÞ; (4.5)

dKzz

dt
¼ �N;zz þ NðRtztz þK2

zzÞ: (4.6)

The last part of the picture is to provide evolution equations
for the Riemann curvatures, Rxyxy and Rxzxz. The basic

idea is to rearrange the terms in the Bianchi identities to
isolate the time derivatives while estimating the spatial
derivatives from data imported from neighboring cells.
The calculations are straightforward but a bit tedious to
present here so we defer the full details to the Appendix.
This leads to the following evolution equations

dRxyxy

dt
¼ 2NKxxð2Rxyxy þRxzxzÞ; (4.7)

dRxzxz

dt
¼ 3NKxxRxzxz þ NKzzðRxyxy þ 2RxzxzÞ:

(4.8)
The Riemann curvatures Rxyxy and Rxzxz would nor-

mally not be evolved but rather derived from the lattice
data such as the leg lengths Lxx and Lzz. In Paper 1 we used
(discrete versions of) the geodesic deviation equation and
the spatial Bianchi identity1

0 ¼ d2Lxx

dz2
þ 3RxzxzLxx; (4.9)

0 ¼ dðL2
xx

3RxyxyÞ
dz

� 3Rxzxz

dL2
xx

dz
; (4.10)

to compute the three-dimensional Riemann curvatures
3Rxyxy and 3Rxzxz on the lattice. In raising the Rxyxy

and Rxzxz to dynamical variables on the lattice we are
forced to view Eqs. (4.9) and (4.10) as constraints on the
lattice data. In Sec. VI B we shall present discretized
versions of these constraints which we will later use to
check the quality of our numerical results.

The one remaining constraint is the standard momentum
constraint (see Paper 1 for details)

0 ¼ dðLxxKxxÞ
dz

�Kzz

dLxx

dz
: (4.11)

A. Artificial viscosity

Our numerical experiments (which we will present
shortly) showed that the future evolutions can be subject
to high-frequency instabilities. This was seen to occur only
in the cases where the lapse function was controlled by its
own evolution equation (e.g., as in Harmonic slicing). For
such cases we found that stability could be recovered with
the addition of an artificial viscosity term to the evolution
equations.
Let W be any one of the dynamical variables, Lxx, Lzz,

Kxx,Kzz. Then the artificial viscosity is introduced by the
addition of a simple dissipation term to the evolution
equation for W. After some experimentation we settled
on the following form

dWi

dt
¼ d �Wi

dt
þ�Ni

�
Wiþ1 �Wi

ðLzzÞi �Wi �Wi�1

ðLzzÞi�1

�
; (4.12)

where d �Wi=dt is the right-hand side of the original evolu-
tion Eq. (4.3), (4.4), (4.5), and (4.6) and � is a (small)
constant. Other choices were tried but this form seemed to
produce stable evolutions for the longest periods of time.
Note that we do not add the dissipation terms to the
evolution equations for the curvatures (doing so seemed
to make no difference to the evolutions and had no effect in
controlling the instabilities).
How should � be chosen? We need to choose it large

enough to ensure that the evolution is stable over a given
time interval while also keeping it sufficiently small so as
to not effect the large scale features of the numerical
solution. By trial and error we found that setting � ¼
0:08 worked well for evolutions to t ¼ 100:0 using n ¼
2048 nodes. We also found that as the number of nodes was
increased we had to make a proportionate increase in � to
maintain the same quality of the evolution over the same
time interval. That is � ¼ OðnÞ.
The dissipation term is easily seen to be a finite differ-

ence approximation to �Lzzd
2W=dz2 and thus it may

appear to be like a Kreiss-Oliger term that vanishes in
the continuum limit. However, since we are forced to set
� ¼ OðnÞ and as Lzz ¼ Oð1=nÞ we see that the term �Lzz

is approximately constant, say �0, and thus the dissipation
term is actually of the form �0d2W=dz2. This is a standard
dissipation term commonly used in hydrodynamic simula-
tions and it does not vanish in the continuum limit.

V. INITIAL DATA

The initial data on the lattice are the Lxx, Lzz,Kxx,Kzz,
Rxyxy and Rxzxz at each node of the lattice. Their time

symmetric initial values were set by a combination of the

1Here z is the proper distance measured up the middle of the
lattice i.e., along a trajectory that passes through the midpoints of
each Lxx.
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Hamiltonian constraint, the geodesic deviation equation
and the Bianchi identities. A full account of the choices
made in coming to the equations described below can be
found Paper 1. Here we will just quote the relevant equa-
tions simply to provide explicit details of how we con-
structed our initial data.

To ensure that the initial data is time symmetric we set
Kxx ¼ 0 and Kzz ¼ 0.

The Lzz were set according to the method of Bernstein,
Hobill and Smarr [16] using n ¼ 2048 on a grid of length
800.0 m. The ADM mass, m, was set to be 1.0 and the Lxx,
Rxyxy andRxzxz, for i ¼ 1; 2; 3 . . .n, were set according to

ðLxxÞi ¼ ðLxxÞi�1 þ ðLzzÞi�1

ðLzzÞi�2

ððLxxÞi�1 � ðLxxÞi�2Þ

� 1

2
ðLzzÞi�1ððLzzÞi�1 þ ðLzzÞi�2ÞðLxxRxzxzÞi�1;

(5.1)

ðRxzxzÞi ¼ ðRxzxzÞi�1

�
5ðL2

xxÞi�1 � ðL2
xxÞi

5ðL2
xxÞi � ðL2

xxÞi�1

�
; (5.2)

ðRxyxyÞi ¼ �2ðRxzxzÞi: (5.3)

At the reflection symmetric throat (i.e., at node 0) we set
ðLxxÞ0 ¼ 0:01 and ðRxyxyÞ0 ¼ �2ðRxzxzÞ0 ¼ 0:25.

VI. RESULTS

In all of our results we used a 4th order Runge-Kutta
integrator with the time step set equal to 1=2 the smallest
Lzz on the lattice (which happens to be ðLzzÞ0).

A. Slicing conditions

We ran our code for eight distinct slicing conditions,
somewere set by simple algebraic expressions while others
involved differential operators.

We made four choices for the algebraic slicings,

N ¼ expð�2KxxÞ; (6.1)

N ¼ 20Lxx

1þ 20Lxx

; (6.2)

N ¼ expð�RxyxyÞ; (6.3)

N ¼ 1

1þRxyxy

; (6.4)

and three choice for the differential slicings,

1þ logslicing
dN

dt
¼ �2NK . . . ; (6.5)

Harmonic slicing
dN

dt
¼ �N2K; (6.6)

Maximal slicing r2N ¼ RN3: (6.7)

The eighth slicing condition was the simple case of
geodesic slicing N ¼ 1.
The algebraic slicings were introduced after our early

explorations with the differential lapses, all of which de-
veloped high-frequency instabilities after a short time (well
before t ¼ 100). The algebraic slicings did not require any
artificial viscosity and performed remarkably well, show-
ing no signs of instabilities to at least t ¼ 1000 (excluding
the lapse (6.2) which hits the singularity at t � 32). We
have not run our codes beyond t ¼ 1000 so we can not
comment its stability for t > 1000.

B. Code tests and results

We subjected our code to many of the tests used in Paper
1, such as the time at which geodesic slicing hits the
singularity, the rate at which the lapse at the throat collapses
in maximal slicing and the constancy of Lxx on the horizon.
The results for these various slicings are shown in Figs. 3–8.

FIG. 3. The Schwarzschild areal coordinate r and the lattice
Lxx at the throat are related by rðtÞ ¼ 2mLxxðtÞ=Lxxð0Þ. In
geodesic slicing rðtÞ at the throat is described by the parametric
equations rðtÞ ¼ mð1þ cos�ðtÞÞ, tð�Þ ¼ mð�þ sin�Þ. These
equations allow us to plot the exact evolution of rðtÞ (the smooth
curve) against estimates from the lattice (solid points). The
relative errors are seen to be very small and are dominated by
the truncation errors in the Runge-Kutta scheme.
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All of the results are as expected. For the geodesic slicing
the code crashes at approximately one time step short of the
singularity. The familiar exponential collapse of the lapse
for maximal slicing is evident in Fig. 5. In this case it is
known that the lapse at the throat should behave as N �
� expð�tÞ for t ! 1 with � ¼ �ð2=3Þð3=2Þ � �0:54433;
see [17]. We estimated the slope of lnN vs t from our
numerical data to be�0:54215which agrees with the exact
value to within 0.4%.

We also have a new test obtained by a simple combina-
tion of the evolution equations. From Eqs. (4.7) and (4.8)
we find that

dðRxyxyþ2RxzxzÞ
dt

¼ 2Nð2KxxþKzzÞðRxyxyþ2RxzxzÞ
(6.8)

and as 0 ¼ Rxyxy þ 2Rxzxz on the initial slice [by con-

struction, see (5.3)] we conclude that 0 ¼ Rxyxy þ 2Rxzxz

for all time. This is not surprising; our evolution equations
for the curvatures are based on the Bianchi identities and
these are guaranteed to preserve the constraints. If we now

set 0 ¼ Rxyxy þ 2Rxzxz in (4.8) and combine the result

with (4.3) we find

0 ¼ dL3
xxRxyxy

dt
: (6.9)

This gives us a new test of our code, that the quantity
L3
xxRxyxy should be constant throughout the evolution.

Importantly this applies to all slicing conditions. In
Fig. 8 we have plotted the fractional variations in
L3
xxRxyxy for two choices of slicings. We see that the errors

for the 1þ log slicing are much larger than those for the
algebraic slicing which we attribute to the use of an arti-
ficial viscosity. This last claim is easily checked by varying
the artificial viscosity parameter �. We find that the errors
in L3

xxRxyxy varies linearly with �. Note that in obtaining

Eq. (6.9) we have ignored the higher order error terms that
would arise if we had carried through theOðL3Þ truncation
error from (4.1). Thus even if we set � ¼ 0 we can expect
some variation of L3

xxRxyxy over time (though this varia-

tion should vanish more rapidly than OðL3Þ).

FIG. 4 (color online). The curvature profiles for four choices of lapse function. Each figure shows the lapse function for t ¼ 0 to
t ¼ 100 in steps of 10. The small diamond on each curve represents the location of the apparent horizon. There are only two curves
visible in the algebraic slicing N ¼ 20Lxx=ð1þ 20LxxÞ due to the rapid rise in the curvatures as the slicing approaches the singularity.
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We also have three constraint equations, namely, the
geodesic deviation Eq. (4.9), the three-dimensional
Bianchi identity (4.10) and the momentum constraint
(4.11). The discrete form of these equations are

P ¼ D2Lxx

Dz2
þ 3RxzxzLxx; (6.10)

Q ¼
~DðL2

xx
3RxyxyÞ
Dz

� 3 ~Rxzxz

~DL2
xx

Dz
; (6.11)

M ¼ DðLxxKxxÞ
Dz

�Kzz

DLxx

Dz
; (6.12)

where ~Rxzxz is the average ofRxzxz across Lzz whileD=Dz
and ~D=Dz are discrete derivative operators defined as
follows. For a typical smooth function fðzÞ sampled at
the grid points zi we define

� ~Df

Dz

�
i

:¼ fþ � fo

Lo
zz

; (6.13)

�
Df

Dz

�
i

:¼ 1

Lo
zz þ L�

zz

�
L�
zz

�
fþ � fo

Lo
zz

�
þ Lo

zz

�
fo � f�

L�
zz

��
;

(6.14)

�
D2f

Dz2

�
i

:¼ 2

Lo
zz þ L�

zz

�
fþ � fo

Lo
zz

� fo � f�

L�
zz

�
; (6.15)

where we have introduced the superscripts þ, o and � to
denote quantities at the grid points ziþ1, zi and zi�1,
respectively. Note that the sample points zi are constructed
from the lattice Lzz by the recurrence relation ziþ1 ¼ zi þ
ðLzzÞi with z0 ¼ 0. In this notation we have ~Rxyxy :¼¼
ðRþ

xyxy þRo
xyxyÞ=2. Finally we note that the 3-curvatures

can be computed from the 4-curvatures by way of the
Gauss equation,

3Rxyxy ¼ Rxyxy �K2
xx; (6.16)

3Rxzxz ¼ Rxzxz �KxxKzz: (6.17)

Ideally we would like to see P ¼ Q ¼ M ¼ 0 but in reality
we expect Pi, Qi and Mi to be nonzero but small. This is

FIG. 5 (color online). AsperFig. 4but this timewedisplay the lapseprofiles.Notehowquickly the lapsecollapse at the throat in the1þ log
slicing. This would likely cause serious underflow problems for t * 300. Notice also the uniform spacing of the curves along the logarithmic
axis for the maximal lapse. This show that the lapse collapses exponentially at the throat (a well known result for maximal slicing).
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indeed what we observe; see Fig. 8. We also computed a
crude estimate of the rate of convergence (ofQ, P andM to
zero at a fixed time) by running our code twice, once
with n ¼ 2048 and once with n ¼ 1024 and then forming
suitable ratios of the constraints at the horizon. In this
manner we estimated, in the absence of artificial viscosity,
that P ¼ Oðn�4Þ,Q ¼ Oðn�2Þ andM ¼ Oðn�3Þwhile the
addition of artificial viscosity degraded the convergence to
P ¼ Oðn�1Þ, Q ¼ Oðn�1Þ and M ¼ Oðn�2Þ.

We also tried setting ~D=Dz :¼ D=Dz and ~Rxyxy :¼
Ro

xyxy in the discrete Bianchi constraint but this lead to a

reduction in the rate of convergence. The form of the
discrete Bianchi constraint as given above (6.11) is readily
seen [14] to be a second-order accurate estimate to the
continuum Bianchi identity at the center of the leg Lzz.

One might ask why we have not included the
Hamiltonian constraint in our code tests. The simple an-
swer is that it is trivially satisfied by our discrete equations.
This follows from the discussion surrounding Eq. (6.8)

where we showed that 0 ¼ Rxyxy þ 2Rxzxz for all time.

It follows that the Hamiltonian H :¼ G��t
�t� will also

vanish for all time. Note that this analysis was based on
our discrete equations, not on the continuum equations.
We did indeed check that our code maintained
0 ¼ Rxyxy þ 2Rxzxz throughout the evolution.

VII. CONCLUSIONS

The results presented above, though limited to the 1þ 1
case, augers well for the proposed program—to couple the
second Binachi identities to a generic 3þ 1 lattice. This
will be the focus of the second paper in this series. The one
problem that we did encounter in this paper, the onset of
high-frequency instabilities, might dampen our enthusiasm
but it should be noted that for some choices of lapse
function no such instabilities were noticed. This suggests
that the manner in which the lapse couples to the other
dynamical variables plays an important role in the stability

FIG. 6 (color online). The Riemann curvatureRxyxy and the lapse function N for the algebraic slicing with N ¼ 1=ð1þRxyxyÞ. The
left pair of figures shows the evolution over the range t ¼ 0 to 100 in steps of 10, while the right pair cover the range t ¼ 0 to 1000 in
steps of 100. This lapse does not appear (on this time scale) to exhibit an exponential collapse at the throat. The profiles for the
algebraic slicings appear to propagate into the asymptotically flat regions far more rapidly than any of the differential slicings. This
may be explain why an artificial viscosity was not needed for the algebraic slicings—they carry away any small numerical errors
before they have chance to grow.
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of the system. This too is something worthy of further
investigation. Should it transpire that stability is limited
to a narrow class of lapse functions then it is unlikely that
this form of the smooth lattice method will be of much use
in numerical relativity. Such questions can not be answered
until we have examples from full 3þ 1 numerical experi-
ments. And for that we need the evolution equations for the
lattice and Riemann curvatures. This brings us to the
second paper in this series.

APPENDIX: BIANCHI IDENTITIES

Here we will use the Bianchi identities to obtain evolu-
tion equations for the two curvaturesRxyxy andRxzxz. We

will follow the method given in our earlier paper [14] in
which we used data imported from the neighboring com-
putational cells to estimate (by a finite difference approxi-
mation) the various derivatives required in the Bianchi
identities. We will employ Riemann normal coordinates,2

one for each computational cell, with the origin centered

on the central vertex and the coordinate axes aligned with
those described in Sec. II; see also Fig. 1. In these
coordinates, the metric in a typical computational cell is
given by

g��ðxÞ ¼ g��� 1
3R����x

�x�� 1
6R����;	x

�x�x	 þOðL4Þ;
where L is a typical length scale for the computational
cell and g�� and R���� are constant throughout the

computational cell. A convenient choice for g�� is

diagð�1; 1; 1; 1Þ (such a choice can always be made by
suitable gauge transformations within the class of Riemann
normal frames). In this case the frame components Rxyxy

and Rxzxz reduce to the coordinate components Rxyxy and

Rxzxz, respectively. A further advantage of using Riemann
normal coordinates is that at the origin, where the connec-
tion vanishes, covariant derivatives reduce to partial
derivatives.
The two Bianchi identities that we need are

0 ¼ Rxyxy;t � Rtyxy;x þ Rtxxy;y; (A1)

0 ¼ Rxzxz;t � Rtzxz;x þ Rtxxz;z: (A2)

FIG. 7. In the absence of gravitational radiation the area of the horizon should remain constant. It follows that the Lxx should be
constant on the horizon. Here we plot the fractional variation of Lxx on the horizon. The irregular behavior of the plots for later times is
due, in part, to the difficulty in accurately locating the horizon.

2For more details on Riemann normal coordinate see [18] and
the references cited therein.
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This pair of equations contains 4 spatial derivatives each
of which we will estimate by a finite difference approxi-
mation. But in order to do so we must first have a sampling
of the 4 curvatures at a cluster of points near and around
the central vertex. Our simple ladderlike lattice, with its
collection of computational cells along one radial axis,
would allow us to compute only the z partial derivatives.
For the x and y derivatives we will need to extend the
lattice along the x and y axes. In short we need a truly
three-dimensional lattice. Fortunately this is rather easy to
do for this spacetime. We can use the spherical symmetry
of the Schwarzschild spacetime to clone copies of the
ladder (by spherical rotations) so that a typical central
vertex of the parent ladder-lattice becomes surrounded by
4 copies of itself. It has two further nearby vertices, fore
and aft along the radial axis, that are themselves central
vertices of neighboring cells in the original ladderlike
lattice. In Fig. 9 we display an xz slice of the cloned
lattice.

We now need the coordinates of all six of the neighbor-
ing vertices. This would require a solution of

L2
ij¼g��ðx�j �x

�
i Þðx�j �x�i Þ� 1

3R����x
�
i x

�
i x

�
j x

�
j þOðL5Þ

(A3)

for the x
�
i for given values for the Lij and R����. However,

as we are only going to use these coordinates to construct
transformation matrices which will in turn multiply the
Riemann curvatures, it is sufficient to solve (A3) using a
flat metric. Note that the above equations can only be used
to compute (in fact estimate) the spatial coordinates of the
vertices. For the time coordinates we can appeal to the
smoothness of the underlying metric3 to argue that for each
vertex t ¼ OðL2Þ. The result is that the typical central
vertex, with coordinates (0, 0, 0, 0), will have 6 neighbor-
ing central vertices with coordinates as per Table I.
This accounts for the structure of our lattice but what

values should we assign to the curvatures at the newly

FIG. 8 (color online). According to Eq. (6.9) the quantity L3
xxRxyxy should be conserved. In the top row we display the relative error,

defined by 1� CðtÞ=Cð0Þ with CðtÞ ¼ L3
xxðtÞRxyxyðtÞ, for two choices of lapse. The errors for the 1þ log slicing are much larger than

those for the algebraic slicing which we attribute to the action of the artificial viscosity terms. In the bottom row we display the
momentum constraint for the same pair of slicings. This shows a slow growth in the momentum constraint over time (judging by the
peaks in the plots, the growth appears to be linear in time).

3If ðt; xiÞ are the coordinates for a local Riemann normal
frame, then a smooth Cauchy surface through (0, 0, 0, 0) is
described locally by 2t ¼ �Kijx

ixj and as each xi ¼ OðLÞ we
also have t ¼ OðL2Þ.
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created vertices? Let ðAÞPQ denote the value of a quantity A
at the vertex P in the local Riemann normal frame for
vertex Q. Since our spacetime is spherically symmetric we
can assert that

ðAÞ00 ¼ ðAÞ11 ¼ ðAÞ22 ¼ ðAÞ33 ¼ ðAÞ44:
Then the idea that we will import data from neighboring
cells can be expressed as

ðAÞPQ ¼ ðUÞPQðAPPÞ;
where ðUÞPQ is the transformation matrix, evaluated at P,
from the Riemann normal frame of P to that of Q. This
matrix will be composed of spatial rotations and boosts.

To get the correct estimates for the first partial deriva-
tives we need only compute U to terms linear in the leg
lengths.

As an example, let us suppose we wished to compute v�
;x

for a spherically symmetric vector field v on the lattice. We
start with ðvÞ10 ¼ ðUÞ10ðvÞ11 and

ðUÞ10 ¼ ðBÞ10ðRÞ10;
where ðRÞ10 represents a rotation in the x–z plane and ðBÞ10
a boost in the t–x plane. Note that as we are working only
to linear terms in the lattice scale the order in which we
perform the rotation and boost does not matter. Thus we
have

ðRÞ10 ¼

1 0 0 0

0 cos� 0 sin�

0 0 1 0

0 � sin� 0 cos�

2
666664

3
777775;

ðBÞ10 ¼

cosh� sinh� 0 0

sinh� cosh� 0 0

0 0 1 0

0 0 0 1

2
666664

3
777775:

The columns in the above matrices are labeled ðt; x; y; zÞ
from left to right and likewise for the rows. As we will
latter be forming products of these matrices with the
curvatures it is sufficient to compute these matrices as if
we were working in flat spacetime. Thus to leading order in
the lattice spacing we find4

cos� ¼ 1þOðL3Þ; sin� ¼ dLxx

dz
þOðL2Þ;

cosh� ¼ 1þOðL3Þ; sinh� ¼ �KxxLxx þOðL2Þ;
and thus

ðUÞ10 ¼ ðBÞ10ðRÞ10 ¼

1 �KxxLxx 0 0

�KxxLxx 1 0 dLxx

dz

0 0 1 0

0 � dLxx

dz 0 1

2
666664

3
777775þOðL2Þ:

In a similar manner we find

FIG. 9. This shows an xz section of the lattice obtained by
cloning the original two-dimensional lattice. The data in the
upper and lower cells are identical to that in the middle cell, this
follows from spherical symmetry. The small squares denote the
central vertices of each computational cell. The angle � can be
computed using standard Euclidean trigonometry as described in
the text.

TABLE I. Riemann normal coordinates, to OðL2Þ, of the cen-
tral vertex and its 6 immediate neighbors. These coordinates
were computed using a flat space approximation.

Vertex t x y z

0 (0, 0, 0, 0)

1 (0, Lxx, 0, 0)

2 (0, 0, Lyy, 0)

3 (0, �Lxx, 0, 0)

4 (0, 0, �Lyy, 0)

5 (0, 0, 0, Lzz)

6 (0, 0, 0, �Lzz)

4For the rotations we use standard Euclidian trigonometry, for the boost we use the definition n
�
i � n�j ¼ �K�

�ðx�i � x�j Þ, where n�a
is the future pointing unit normal to the Cauchy surface at the point a.
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ðUÞ20 ¼ ðBÞ20ðRÞ20 ¼

1 0 �KyyLyy 0

0 1 0 0

�KyyLyy 0 1
dLyy

dz

0 0 � dLyy

dz 1

2
6666664

3
7777775
þOðL2Þ:

ðUÞ30 ¼ ðBÞ30ðRÞ30 ¼

1 KxxLxx 0 0

KxxLxx 1 0 � dLxx

dz

0 0 1 0

0 dLxx

dz 0 1

2
666664

3
777775þOðL2Þ;

ðUÞ40 ¼ ðBÞ40ðRÞ40 ¼

1 0 KyyLyy 0

0 1 0 0

KyyLyy 0 1 � dLyy

dz

0 0
dLyy

dz 1

2
6666664

3
7777775
þOðL2Þ

For the remaining two matrices, ðUÞ50 and ðUÞ60, the job is quite simple, these matrices are built solely on boosts. This
leads to

ðUÞ50 ¼ ðBÞ50ðRÞ50 ¼

1 0 0 �KzzLzz

0 1 0 0

0 0 1 0

�KzzLzz 0 0 1

2
666664

3
777775þOðL2Þ:

ðUÞ60 ¼ ðBÞ60ðRÞ60 ¼

1 0 0 KzzLzz

0 1 0 0

0 0 1 0

KzzLzz 0 0 1

2
666664

3
777775þOðL2Þ

Returning now to the construction of ðvÞ10, we have
ðv�Þ10 ¼ ðU�

�Þ10ðv�Þ11 ¼ ðv�Þ11 þ
�
�KxxLxxv

x;�KxxLxxv
t þ dLxx

dz
vz; 0;� dLxx

dz
vx

�
�

11

and

ðv�Þ30 ¼ ðU�
�Þ30ðv�Þ33 ¼ ðv�Þ33 þ

�
KxxLxxv

x; KxxLxxv
t � dLxx

dz
vz; 0;

dLxx

dz
vx

�
�

33
:

We are now in a position to finally compute ðvt
;xÞ00, to wit

ðvt
;xÞ00 ¼ ðvtÞ10 � ðvtÞ30

2Lxx

þOðLaÞ ¼ ðvtÞ11 � ðvtÞ33
2Lxx

� Kxx

ðvxÞ11 þ ðvxÞ33
2

þOðLaÞ:

Here we have written the truncation errors as OðLaÞ with
a > 0 for it is not clear, at this level of analysis, what the
exact nature of this term is (save that it vanishes as L ! 0).
Since our spacetime is spherically symmetric we have

ðvÞ00 ¼ ðvÞ11 ¼ ðvÞ22 ¼ ðvÞ33 ¼ ðvÞ44
and thus

ðvt
;xÞ00 ¼ �KxxðvxÞ00 þOðLaÞ:

Similar calculations can be used to compute all of the
spatial derivatives of v� at the central vertex.

We can now return to the principle objective of this
section—to compute the various partial derivatives of the

curvatures. We proceed exactly as above but with a minor
change in that we will no longer carry the truncation errors
within the calculations. Thus we have

ðR����Þi0 ¼ ðU�

Þi0ðU�

�Þi0ðU�
�Þi0ðU�


Þi0ðR
��
Þii
for i ¼ 1, 2, 3, 4, 5, 6 and ðU�

�Þi0 ¼ g��g
�
ðU�


Þi0 with
g�� ¼ diagð�1; 1; 1; 1Þ. And, as before,

ðR����Þ00¼ðR����Þ11
¼ðR����Þ22¼ðR����Þ33¼ðR����Þ44

due to spherical symmetry.
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Using the above expressions for the ðUÞi0 and the fol-
lowing finite difference approximations:

ðRtyxy;xÞ00 ¼
ðRtyxyÞ10 � ðRtyxyÞ30

2Lxx

;

ðRtxxy;yÞ00 ¼
ðRtxxyÞ20 � ðRtxxyÞ40

2Lyy

;

ðRtzxz;xÞ00 ¼ ðRtzxzÞ10 � ðRtzxzÞ30
2Lxx

;

ðRtxxz;zÞ00 ¼ ðRtxxzÞ50 � ðRtxxzÞ60
2Lzz

;

we find that

Rtyxy;x ¼ KxxðRxyxy þ RtytyÞ � 1

Lxx

dLxx

dz
Rtyyz; (A4)

Rtxxy;y ¼ �KyyðRxyxy þ RtxtxÞ þ 1

Lyy

dLyy

dz
Rtxxz; (A5)

Rtzxz;x ¼ KxxðRxzxz þ RtztzÞ � 1

Lxx

dLxx

dz
Rtxxz; (A6)

Rtxxz;z ¼ �KzzðRxzxz þ RtxtxÞ: (A7)

We have dropped the 00 subscript as we no longer need to
distinguish between the neighboring frames. By spherical
symmetry we have

Lxx ¼ Lyy; Kxx ¼ Kyy;

Rtxxz ¼ Rtyyz; Rxzxz ¼ Ryzyz;

while from the vacuum Einstein equations we have

0 ¼ Rtz ¼ �Rtxxz � Rtyyz;

0 ¼ Rxx ¼ Rxyxy þ Rxzxz � Rtxtx;

0 ¼ Ryy ¼ Rxyxy þ Ryzyz � Rtyty;

0 ¼ Rzz ¼ Rxzxz þ Ryzyz � Rtztz:

Combining the last few equations leads to

Rtxtx ¼ Rtyty ¼ Rxyxy þ Rxzxz;

Rtxxz ¼ Rtyyz ¼ 0; Rtztz ¼ 2Rxzxz:

Substituting these into the above Eqs. (A4)–(A7) and sub-
sequently into the previous expressions for the Bianchi
identities (A1) and (A2) leads to the following pair of
equations

dRxyxy

dt
¼ 2Kxxð2Rxyxy þ RxzxzÞ

dRxzxz

dt
¼ 3KxxRxzxz þ KzzðRxyxy þ 2RxzxzÞ:

Our job is almost complete, but we still have two tasks
ahead of us: (i) to introduce a lapse function and (ii) to
account for the limited time interval over which a single
Riemann normal frame can be used. The first task is rather
easy, we simply make the coordinate substitution t ! Nt
leading to

dRxyxy

dt
¼ 2NKxxð2Rxyxy þ RxzxzÞ; (A8)

dRxzxz

dt
¼ 3NKxxRxzxz þ NKzzðRxyxy þ 2RxzxzÞ; (A9)

and where we now have ðg��Þo ¼ diagð�N2; 1; 1; 1Þ. The
lapse N can be freely chosen at each vertex of the lattice
(but subject to the obvious constraint that N > 0). The
second task is a bit more involved. We know that each
Riemann normal frame is limited in both space and time.
Thus no single Riemann normal frame can be used to track
the evolution for an extended period of time. We will have
no choice but to jump periodically to a new frame. This can
be elegantly handled in the moving frame formalism. Thus
our task reduces to finding a new set of evolution equations
for the frame components Rxyxy and Rxzxz based on the

equations given above for Rxyxy and Rxzxz.

Let e�a, a ¼ t, x, y, z be an orthonormal tetrad,5 tied to
the worldline of the central vertex and aligned to the
coordinate axes. Thus we have e�t as the future pointing
tangent vector to the worldline while e�z points along the
z-axis. Then

dRxyxy

dt
¼ d

dt
ðR����e

�
xe

�
ye

�
xe

�
yÞ;

dRxzxz

dt
¼ d

dt
ðR����e

�
xe

�
ze

�
xe

�
zÞ:

Since our spacetime is spherically symmetric it is not hard
to see that the tetrads of two consecutive cells (on the
vertex worldline) are related by a boost in the t� z plane
(arising from gradients in the lapse function). A simple
calculation shows that

de�x

dt
¼ 0;

de�y

dt
¼ 0;

de�t

dt
¼ N;ze

�
z;

de�z

dt
¼ N;ze

�
t;

which when combined with the above leads to

dRxyxy

dt
¼

�
dR����

dt

�
e�xe

�
ye

�
xe

�
y; (A10)

5This tetrad is identical to that used in Sec. II; the change of
notation introduced here is simply to avoid unwanted clutter in
the following equations.
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dRxzxz

dt
¼

�
dR����

dt

�
e�xe

�
ze

�
xe

�
z

� 2
N;z

N
R����e

�
te

�
xe

�
xe

�
z: (A11)

In our frame we have chosen ðg��Þo ¼ diagð�N2; 1; 1; 1Þ,
e�a ¼ ��

a for a ¼ x, y, z and e�t ¼ 1=N, thus we see that
the last term in the previous equation is proportional to
Rtxxz. But for the Schwarzschild spacetime we know that
Rtxxz ¼ 0 and thus we have

dRxyxy

dt
¼

�
dR����

dt

�
e�xe

�
ye

�
xe

�
y; (A12)

dRxzxz

dt
¼

�
dR����

dt

�
e�xe

�
ze

�
xe

�
z; (A13)

which, when combined with (A8) and (A9), leads imme-
diately to the evolution Eqs. (4.7) and (4.8) quoted in
Sec. IV.
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