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We study the problem of self-energy of charges in higher-dimensional static spacetimes. Application of

regularization methods of quantum field theory to calculation of the classical self-energy of charges leads

to model-independent results. The correction to the self-energy of a scalar charge due to the gravitational

field of black holes of the higher-dimensional Majumdar-Papapetrou spacetime is calculated exactly. It

proves to be zero in even dimensions, but it acquires nonzero value in odd-dimensional spacetimes. The

origin of the self-energy correction in odd dimensions is similar to the origin of the conformal anomalies

in quantum field theory in even-dimensional spacetimes.
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I. INTRODUCTION

There are several problems in theoretical physics that
have quite a long history but still attract a lot of attention.
The problem of the electromagnetic origin of the electron
mass is one of them. It first was formulated in the classical
theory when in 1881 Thompson [1] demonstrated that the
self-energy of the electromagnetic field contributes to the
inertial mass of a charged particle. This idea was then
elaborated in the works by Lorentz [2,3], Abraham [4],
Poincaré [5], Fermi [6], and others. For a simple model of a
uniformly charged sphere of radius ", the electrostatic
energy is E ¼ e2=ð2"Þ. However, it was shown by
Abraham [7,8] that the relation between energy and mo-
mentum for such a particle differs from the standard one by
a factor 4=3. This factor disappears if one includes in the
definition of the self-energy a contribution of additional
(nonelectromagnetic) forces that are required to make the
system stable. To solve the 4=3 problem, Poincaré [5,9]
introduced special sort of nonelectromagnetic pressure.
Max von Laue [10] formulated a general theorem, demon-
strating that whenever a spatially extended system is sta-
ble, the total mass of such a systemmtot is always related to
its rest mass as follows: mtot ¼ Etot=c

2. The problem of
self-energy and stability of a classical electron is discussed
in many more recent papers (see e.g. [11–15]).

There are many different ways that a simple spherical-
shell model of a classical electron can be modified. For
example, instead of the shell, one can consider a charged
ball, the shape of the shell or of the ball can be deformed,
the distribution of the electric charge can be nonhomoge-
neous, and so on. Certainly, to be consistent, for each of
these modifications one must also modify the nonelectro-
magnetic forces in order to satisfy the von Laue’s theorem.
Bopp [16] and Podolsky [17,18] proposed a covariant
scheme for the calculation of the classical self-energy of
the electron. Their idea was to start with a higher-derivative

modification of the corresponding field theory. For ex-
ample, for a scalar massless field ’ one starts with the
equation �

1� 1

�2
h

�
h’ ¼ �4�J:

This equation is equivalent to a set of relations

’ ¼ ’0 � ’00;

’0 ¼
�
1� 1

�2
h

�
’; ’00 ¼ � 1

�2
h’;

if the fields ’0 and ’00 obey the equations

h’0 ¼ �4�J; ðh��2Þ’00 ¼ �4�J:

For a pointlike charge q, the infinite parts in the self-energy
for both fields ’0 and ’00 are identical, and as result of their
subtraction the self-energy is finite Eself ¼ q2�. In this
regularization � plays the role of the cutoff parameter. In
fact, in such an approach for a small size of a classical
charged particle " � ��1 all the details of the charge
distribution become unimportant. One can easily see that
this approach has many common features with the Pauli-
Villars regularization widely used in the modern quantum
field theory [19].
In quantum electrodynamics the self-energy of the elec-

tron is divergent in the point-particle limit. In the second
order of the perturbation theory this divergence is of the
form

�m�m0

3e2

2�ℏc
lnðℏ=ð"m0cÞÞ; (1.1)

where m0 is the ‘‘bare’’ mass of the electron, and " is the
cutoff radius. In the limit ℏ ! 0 the expression in Eq. (1.1)
does not reproduce the classical result. The reason for this
is that in order to derive this relation, one uses the expan-
sion in � ¼ e2=ðℏcÞ. However, as demonstrated by
Vilenkin and Fomin [20,21], there exists a correct
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quantum-to-classical correspondence for the self-energy of
the electron (see also [22]).

In the presence of the gravitational field the self-energy
problem becomes more complicated. The reason is that the
field of a pointlike charge is spread in space, and its
contribution to the energy in a general case is nonlocal.
The classical fields created by charges are not localized at
the position of the charge. It means that the charges are to
be treated as extended objects. Qualitatively, the origin of
the classical electromagnetic self-force of charges can be
explained by the deformation of the distribution of their
classical fields in curved spacetime that leads to an extra
force acting on the charge itself. Fermi [6] showed that for
a special case of the homogeneous static gravitational field,
the self-energy is the same as in the absence of the field.
This result can be related to the equivalence principle.
However, in a general case the electromagnetic (or scalar,
or any other field) self-energy depends on the position of
the particle. This may lead to an extra force acting on a
charged particle.

In a generic case the self-force acting on a particle
moving in the gravitational field contains both conservative
and dissipative terms, with the dissipative terms being
responsible for the radiation reaction. The fundamental
problem of calculation of the radiation reaction of particles
in the external gravitational field [23] has got much atten-
tion [24–26] in connection with the study of waveforms of
gravitational radiation, especially because of possible ap-
plications in experiments for gravitational wave detection.
One can find a nice review on the contemporary state of the
problem in [27].

For a static particle in a static (stationary) gravitational
field, the radiation force is absent, the problem is simpli-
fied, and in some special cases the self-energy can be
calculated exactly. This becomes possible when the static
Green functions of classical fields are known exactly.
Fortunately, this is the case for some physically interest-
ing systems like static charge near four-dimensional
Schwarzschild or Reissner-Nordström black holes [28–30].
For the electric pointlike charge, a self-interaction energy
is [31–33]

E ¼
�
mbare þ e2

2�

�
jg00j1=2 þ �E; �E ¼ e2M

2r2
; (1.2)

which leads to an additional repulsive (directed from the
black hole) self-force. Here � is the classical radius of the
electron, mbare is its bare mass, and r is the radial distance
to the black hole. It was also demonstrated that for a
scalar charge near the Reissner-Nordström black hole, the
self-energy correction �E vanishes [26,34]. In [35] the
self-energy of scalar charges in the background geometry
of wormholes was studied.

The aim of this paper is to analyze the self-energy
problem for a static pointlike charge in a static higher-
dimensional spacetime. Our motivations for this analysis

are the following. In higher dimensions the fields near a
pointlike source are stronger than in the four-dimensional
(4D) case. Hence, one can expect much more dramatic
dependence of the divergent part of the classical self-
energy on details of a model of a classical source. We
demonstrate that for the calculation of the self-energy,
one can use methods similar to the ones adopted in quan-
tum field theory. To be concrete we focus on the point-
splitting method. It is well known for the calculations of
the quantum vacuum polarization effects in a curved space-
time. We demonstrate that this regularization method
works well for the calculation of the self-energy.
Another interesting question is why nonlocal self-energy

correction �E for a scalar massless field vanishes in 4D.
We shall demonstrate that this is a generic property of a
wide class of even-dimensional spacetimes with a spatial
metric conformal to the flat one, while in the odd-
dimensional case there exists a nonvanishing extra force
acting on a charged scalar source.
The paper is organized as follows. In Sec. II we discuss

the self-energy problem for a scalar charge in a static
gravitational field and obtain an expression for the corre-
sponding shift of mass in terms of a static Green function.
After this, we adapt the point-splitting formalism, well
known in the quantum field theory, for the classical self-
energy problem in a general higher-dimensional static
gravitational field. This approach allows one (at least for-
mally) to avoid problems connected with the details of the
charge structure (Sec. III). We illustrate this method by
calculations of the self-energy of a scalar massless charge.
We apply the point-splitting approach for the calculation of
the self-energy of a static source in 4D static black hole
metrics and show that this formalism correctly reproduces
known 4D results for the self-force (Sec. IV). In Sec. V we
use the point-splitting method for the calculation of the
self-energy of pointlike scalar charges at rest in the vicinity
of a higher-dimensional extremely charged black hole, or a
set of such black holes. For such gravitational back-
grounds, the exact static Green functions are known [36],
so that one is able to obtain an exact explicit expression for
the self-energy. We demonstrate that in even-dimensional
Majumdar-Papapetrou spacetimes the self-force vanishes,
while in the odd-dimensional ones the self-force and
self-energy can be related with conformal anomalies.
Conclusions contain a discussion of the obtained results.

II. SELF-ENERGY OFA SCALAR CHARGE
IN A STATIC SPACETIME

Let us consider a scalar massless field ’ in
D-dimensional spacetime with the metric

dS2 ¼ g��dy
�dy�: (2.1)

It obeys the equation

h’ � �4�J: (2.2)
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We assume that the spacetime is static and � is its Killing
vector, so that in the region where �2 � ��2 > 0 one can
write the metric in the form

dS2 ¼ ��2dt2 þ gabdx
adxb; @t� ¼ @tgab ¼ 0:

(2.3)

For a static source, the field equation takes the form

4’þ gabraðln�Þrb’ ¼ �4�J: (2.4)

Here ra is a covariant derivative in (D� 1)-dimensional
metric gab and 4 ¼ gabrarb.

For a pointlike scalar charge q located at x, one has

JðxÞ¼q
Z 1

�1
d��D�1ðx;x0Þ�ðt�t0ð�ÞÞ

�ðx0Þ ¼q�D�1ðx;x0Þ;

�D�1ðx;x0Þ¼�D�1ðx�x0Þffiffiffi
g

p ; g¼detgab: (2.5)

In what follows it is convenient to rewrite Eq. (2.4) in a
self-adjoint form. For this purpose, we introduce the quan-
tities

’ ¼ ��1=2 ~’; J ¼ ��1=2j; (2.6)

and write the Eq. (2.4) in the form

F̂ ~’ � ð4þ VÞ~’ ¼ �4�j;

V ¼ ðr�Þ2
4�2

�4�

2�
� �4ð�1=2Þ

�1=2
: (2.7)

The energy E in a static spacetime is

E ¼
Z
�
T���

�d��; (2.8)

where � is a Cauchy surface and d�� is a future-directed
volume element on it. The energy-momentum tensor for
the minimally coupled massless scalar field is

T�� ¼ 1

4�

�
’;�’;� � 1

2
g��’;�’

;�

�
þ g��’J: (2.9)

For a static field, ��’;� ¼ 0 so that one has

E ¼
Z
�
T ��d�

�; T ¼ J’� 1

8�
ðr’Þ2: (2.10)

Since E does not depend on the choice of�, we choose this
surface in the form t ¼ const. In the presence of a black
hole one restricts the integration domain to the black hole
exterior. For this choice of �, one has

d�� ¼ n�
ffiffiffi
g

p
dD�1x; (2.11)

where n� is a unit future-directed vector normal to �, and

��n
� ¼ ��: (2.12)

Thus,

E ¼ �
Z
t¼const

dD�1x
ffiffiffi
g

p
�T : (2.13)

Using the Stokes’ theorem and the field equation Eq. (2.4),
we get [37]

E ¼ � 1

2

Z
�
�’J

ffiffiffi
g

p
dD�1x ¼ � 1

2

Z
�
~’j

ffiffiffi
g

p
dD�1x:

(2.14)

Denote by G the Green function of the operator F̂:

F̂Gðx; x0Þ ¼ ��D�1ðx; x0Þ: (2.15)

Then Eq. (2.14) takes the form

E ¼ � q2

2
�ðxÞGðx; xÞ: (2.16)

As expected, the obtained expression for the self-energy of
a pointlike charge is divergent. To deal with this problem,
we shall use the point-splitting method, similar to the
regularization schemes adopted in the quantum field
theory. Namely, to regularize E, we use the regularized
version of the Green function Gregðx; xÞ:
Gðx;xÞ!Gregðx;xÞ¼ lim

x!x0
½Gðx;x0Þ�Gdivðx;x0Þ�: (2.17)

We discuss this point-splitting procedure in the next sec-
tion. Now let us make the following remark. The energy of
the object of mass m at rest at a point x in a static
gravitational is

E ¼ �mu��
� ¼ m�ðxÞ: (2.18)

Using this relation, we obtain for the contribution �m of
the self-energy to the mass of a scalar charge the following
expression:

�m ¼ �q2

2
Gregðx; xÞ: (2.19)

III. POINT-SPLITTING REGULARIZATION
OF OF THE SELF-MASS

A. Schwinger-DeWitt expansion

To obtain Gdiv it is convenient to start with the heat

kernel expansion for the operator F̂. We define the heat
kernel Kðsjx; x0Þ as a solution of the equation�

� @

@s
þ F̂

�
Kðsjx; x0Þ ¼ ��D�1ðx; x0Þ�ðsÞ: (3.1)

The static Green function Gðx; x0Þ defined by Eq. (2.15) is

G ðx; x0Þ ¼
Z 1

0
dsKðsjx; x0Þ: (3.2)

The divergent terms ofG are determined by the behavior of
the heat kernels at small s and can be found by using the
standard Schwinger-DeWitt expansion
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Kðsjx;x0Þ¼ �1=2ðx;x0Þ
ð4�sÞðnþ2Þ=2 exp

�
�	ðx;x0Þ

2s

�
�X1

k¼0

akðx;x0Þsk:

(3.3)

Here ak are the Schwinger-DeWitt coefficients for the

operator F̂. The world function 	 and Van Vleck-Morette
determinant � are defined on the (D� 1)-dimensional
spatial metric gab.

The divergent part of the static Green function

G divðx; x0Þ ¼
Z 1

0
dsKdivðsjx; x0Þ (3.4)

comes from the first [ðD� 1Þ=2] terms in this series
Eq. (3.3). Denote n ¼ D� 3, then one has

Kdivðsjx; x0Þ ¼ �1=2ðx; x0Þ
ð4�sÞðnþ2Þ=2 exp

�
�	ðx; x0Þ

2s

�

� X½n=2�
k¼0

akðx; x0Þsk: (3.5)

Therefore,

Gdivðx; x0Þ ¼ �1=2ðx; x0Þ 1

ð2�Þðn=2Þþ1

� X½n=2�
k¼0

�ðn2 � kÞ
2kþ1	ðn=2Þ�k

akðx; x0Þ; (3.6)

where brackets in the upper limit of the sum mean the
integer part of n=2. When n is even the last term (k ¼ n=2)
in the sum should be replaced by

�ðn2 � kÞ
2kþ1	ðn=2Þ�k

akðx; x0Þjk¼n=2 ! � ln	ðx; x0Þ þ 
� ln2

2ðn=2Þþ1

� an=2ðx; x0Þ: (3.7)

B. Special cases

Let us illustrate the self-mass calculations by ex-
amples of special static black hole solutions in a space-
time with dimensions D ¼ 4, 5, 6, and 7. For this
purpose, let us present here the corresponding expres-
sions for the divergent parts of the static Green functions
for these cases

(i) Four dimensions D ¼ 4, n ¼ 1

G divðx; x0Þ ¼ �1=2ðx; x0Þ
4�

1

ð2	Þ1=2 a0ðx; x
0Þ: (3.8)

(ii) Five dimensions D ¼ 5, n ¼ 2

Gdivðx; x0Þ ¼ �1=2ðx; x0Þ
4�2

�
1

2	
a0ðx; x0Þ

� 1

4
ðln	þ 
� ln2Þa1ðx; x0Þ

�
: (3.9)

(iii) Six dimensions D ¼ 6, n ¼ 3

Gdivðx; x0Þ ¼ �1=2ðx; x0Þ
8�2

�
1

ð2	Þ3=2 a0ðx; x
0Þ

þ 1

2ð2	Þ1=2 a1ðx; x
0Þ
�
: (3.10)

(iv) Seven dimensions D ¼ 7, n ¼ 4

Gdivðx;x0Þ¼�1=2ðx;x0Þ
8�3

�
1

2	2
a0ðx;x0Þþ 1

4	
�1ðx;x0Þ

�1

8
ðln	þ
� ln2Þa2ðx;x0Þ

�
: (3.11)

IV. SELF-ENERGY IN FOUR-DIMENSIONAL
REISSNER-NORDSTRÖM SPACETIME

As a first example, let us apply the developed point-
splitting method to calculation of the self-energy of a scalar
charge near a four-dimensional Reissner-Nordström black
hole. Namely, we shall demonstrate that these methods
give he same answer as earlier calculations using a spheri-
cal shell model of a the classical charged particle.
Let M and Q be mass and electric charge Q of the lack

hole. The Reissner-Nordström metric in the isotropic co-
ordinates is

dS2 ¼ ��2dt2 þU2�abdx
adxb; (4.1)

where

� ¼ 4�2 � ðM2 �Q2Þ
ð2�þMþQÞð2�þM�QÞ ;

U ¼ 1þM

�
þM2 �Q2

4�2
; �2 ¼ �abx

axb:

(4.2)

The standard radial coordinate r is related to the isotropic
coordinate � as follows:

r ¼ Mþ �þM2 �Q2

4�
: (4.3)

The spatial metric is conformally flat

gab ¼ U2�ab: (4.4)

We denote a ‘‘coordinate distance’’ between two points as

jx� x0j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�abðxa � x0aÞðxb � x0bÞ

q
: (4.5)

In spherical isotropic coordinates ðt; �; �;Þ
dS2 ¼ ��2dt2 þU2½d�2 þ �2ðd�2 þ sin2�d2Þ�;

(4.6)

it takes the form

VALERI P. FROLOVAND ANDREI ZELNIKOV PHYSICAL REVIEW D 85, 124042 (2012)

124042-4



jx� x0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �02 � 2��0�

q
;

� ¼ cos� cos�0 þ sin� sin�0 cosð�0Þ:
(4.7)

The static Green function for a scalar field in the Reissner-
Nordström spacetime is known exactly [38–40]. In iso-
tropic coordinates it takes the form

Gðx;x0Þ¼
ffiffiffiffiffiffiffiffiffi
��0p

4�Rðx;x0Þ ; �¼�ð�Þ; �0 ¼�ð�0Þ: (4.8)

Here

Rðx; x0Þ2 ¼ ð�2 þ �02 � 2��0�Þ
�
1� �ðM2 �Q2Þ

2��0

þ ðM2 �Q2Þ2
16�2�02

�
: (4.9)

In the limit x0 ! x one has the following expressions:

	ðx; x0Þ ¼ UU0

2
jx� x0j2 þOðjx� x0j4Þ;

a0ðx; x0Þ ¼ 1; �1=2ðx; x0Þ ¼ 1þOðjx� x0j2Þ:
(4.10)

Thus, Eq. (3.8) leads to

G divðx; x0Þ ¼ 1

4�
ffiffiffiffiffiffiffiffiffiffi
UU0p 1

jx� x0j þOðjx� x0jÞ: (4.11)

Similarly, when x ! x0, one can expand the exact expres-
sion Eq. (4.8) in series. It is easy to check that

��0

½1� �ðM2�Q2Þ
2��0 þ ðM2�Q2Þ2

16�2�02 �
¼ 1

UU0 þOðjx� x0j2Þ; (4.12)

and hence,

G ðx; x0Þ ¼ 1

4�
ffiffiffiffiffiffiffiffiffiffi
UU0p 1

jx� x0j þOðjx� x0jÞ: (4.13)

By comparing Eq. (4.13) with Eq. (4.11), one obtains

G regðx; x0Þ ¼ Gðx; x0Þ � Gdivðx; x0Þ ¼ Oðjx� x0jÞ;
(4.14)

and hence,

G regðx; xÞ ¼ 0: (4.15)

The corresponding self-energy Eself and the mass correc-
tion �m vanish

�m ¼ ��1Eself ¼ 0: (4.16)

This result coincides with the corresponding result for a
spherical shell model obtained earlier [25,26,32,34]. Let us
emphasize that the point-splitting method is not only easier
and simplifies calculations, but more importantly, it allows
one to extract the finite part of the self-energy without
discussing details of the classical charged particle model.
It also can be used in arbitrary number of spacetime

dimensions. In order to illustrate the latter point we shall
perform calculations of the self-energy in special higher-
dimensional black hole metrics.

V. SELF-ENERGY OFA SCALAR CHARGE
IN THE HIGHER-DIMENSIONAL

MAJUMDAR-PAPAPETROU METRICS

A. Static Green function in the
Majumdar-Papapetrou spacetime

There exist a wide class of higher-dimensional metrics
where the static Green functions for scalar and electromag-
netic field of a point charge are known in explicit form
[36]. These are so-called higher-dimensional Majumdar-
Papapetrou metrics [41]. They describe the field of a set of
extremally charged black holes in equilibrium in a higher-
dimensional asymptotically flat spacetime. The corre-
sponding background metric and electric potential are of
the form (D ¼ nþ 3)

dS2 ¼ �U�2dt2 þU2=n�abdx
adxb;

A� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

2n

s
U�1�0

�:

(5.1)

Denote

� ¼ jx� x0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�abðxa � x0aÞðxb � x0bÞ

q
; (5.2)

4 ¼ �ab@a@b: (5.3)

Note that the flat Laplace operator 4 differs from the
curved one 4 ¼ gabrarb.
The function U in Eq. (5.1)

U ¼ 1þX
k

Mk

�n
k

; �k ¼ jx� xkj: (5.4)

The index k ¼ ð1; . . . ; NÞ enumerates the extremal black
holes. xak is the spatial position of the kth extremal black

hole. The potential U obeys the equation

4U ¼ � 4�1þðn=2Þ

�ðn2Þ
X
k

Mk�
nþ2ðx� xkÞ: (5.5)

In the black holes exterior the function U is a harmonic
function.
It is easy to heck that the static scalar field equation Eq.

(2.4) in the metric Eq. (4.4) takes the form

4’ ¼ �4�U2=nJ: (5.6)

For a pointlike charge, this equation can be easily
solved. It is sufficient to use the following relations:

4
�
1

�n

�
¼ � 4�1þðn=2Þ

�ðn2Þ
�nþ2ðx� x0Þ ¼ �n 1

�nþ1 �ð�Þ;

(5.7)
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�nþ2ðx� x0Þ ¼ �ð1þ n
2Þ

2�1þðn=2Þ
1

�nþ1
�ð�Þ: (5.8)

The static Green function is [36]

G ðx; x0Þ ¼ �ðn2Þ
4�1þðn=2Þ

1ffiffiffiffiffiffiffiffiffiffi
UU0p 1

�n : (5.9)

B. Self-energy

Since the spatial part of the Majumdar-Papapetrou met-
ric is conformally flat, the calculations of the divergent part
of a static function in the higher-dimensional case are

greatly simplified. In addition in this case the operator F̂
happens to be conformally invariant. The details of the
calculations can be found in Appendices A and B. Using
these results and expressions for Gdiv presented in
Sec. III B, one obtains Eself and �m ¼ Eself=�. Here we
collect the corresponding results for D ¼ 4, 5, and 6
dimensional spacetimes:

(i) Four dimensions D ¼ 4, n ¼ 1

Gðx; x0Þ ¼ 1

4�

1ffiffiffiffiffiffiffiffiffiffi
UU0p 1

jx� x0j ;

Gdivðx; x0Þ ¼ 1

4�

1ffiffiffiffiffiffiffiffiffiffi
UU0p 1

jx� x0j þOðjx� x0jÞ;

Gregðx; xÞ ¼ 0; (5.10)

�m ¼ 0: (5.11)

(ii) Five dimensions D ¼ 5, n ¼ 2

Gðx; x0Þ ¼ 1

4�2

1ffiffiffiffiffiffiffiffiffiffi
UU0p 1

jx� x0j2 ;

Gdivðx; x0Þ ¼ 1

4�2

1ffiffiffiffiffiffiffiffiffiffi
UU0p

�
1

jx� x0j2 þ
1

72
UR

�
þOðjx� x0j2Þ;

Gregðx; xÞ ¼ � 1

288�2
R; (5.12)

�m ¼ q2

576�2
R: (5.13)

Here R is the Ricci scalar of the spatial metric gab

R ¼ 3

2
U�3ðU;aU;b � 2UU;abÞ�ab: (5.14)

(iii) Six dimensions D ¼ 6, n ¼ 3

Gðx; x0Þ ¼ 1

8�2

1ffiffiffiffiffiffiffiffiffiffi
UU0p 1

jx� x0j3 ;

Gdivðx; x0Þ ¼ 1

8�2

1ffiffiffiffiffiffiffiffiffiffi
UU0p 1

jx� x0j3 þOðjx� x0jÞ;

Gregðx; xÞ ¼ 0; (5.15)

�m ¼ 0: (5.16)

Note that the obtained results are valid for geometries
which are more general than the Majumdar-Papapetrou
spacetimes, because in the derivation of these formulas
we used the metric in the form Eq. (5.1) with an arbitrary
function U. The Majumdar-Papapetrou spacetimes satisfy
the Einstein equations which lead to the additional con-
straint Eq. (5.5) on the function U.

C. Self-force near five-dimensional
Reissner-Nordström black hole

The self-force fa acting on a static scalar charge can be
read out from the variation of the self-energy over dis-
placement of the charge (see, e.g. [25,31,34] for details)

�Eself ¼ �fa�x
a: (5.17)

In even-dimensional asymptotically flat spacetimes of the
type in Eq. (5.1) the self-energy vanishes and there is no
corresponding self-force. In odd-dimensional spacetimes
there appears a nontrivial self-force.
Consider a simple example of a self-force of a scalar

charge near a single five-dimensional extremal Reissner-
Nordström black hole. In this case

U ¼ 1þ M

�2
; R ¼ 6

M2

ð�2 þMÞ3 : (5.18)

The self-energy

Eself ¼ q2

576�2
U�1R ¼ q2

96�2

M2�2

ð�2 þMÞ4 : (5.19)

In terms of the Schwarzschild radial coordinates r2 ¼
�2 þM it reads

Eself ¼ q2

96�2

M2ðr2 �MÞ
r8

: (5.20)

Thus, the only nonvanishing component of the self-force is
its radial component

f� ¼ q2

48�2

M2�3ð3�2 �MÞ
ð�2 þMÞ6 : (5.21)

The force is repulsive at far distances, vanishes at � ¼ffiffiffiffiffiffiffiffiffiffi
M=3

p
(or, equivalently, r ¼ 2

ffiffiffiffiffi
M

p
=

ffiffiffi
3

p
) and becomes

attractive at smaller radii. At the horizon � ¼ 0, it vanishes
again.

VI. CONCLUSIONS

In the paper we discussed the problem of self-energy of
a classical charged particle in an external static gravita-
tional field. Our main focus was on the case of higher-
dimensional gravity. Classical self-energy of pointlike
charges diverges and should be properly regularized and
renormalized. Our approach is to use well established
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regularization techniques of quantum field theory to deal
with this problem. To single out divergences of the self-
energy of a pointlike charge, we used the point-splitting
method. This method is well known in quantum field
theory and is convenient for our purposes. It has been
intensively used to study the vacuum polarization effects
in black hole physics and cosmology. We demonstrated
that the application of a similar method for the classical
problem allows one to reproduce the earlier published
results of calculations where a special (uniformly charged
shell) model of classical charged particle was used.

An important property of the point-splitting method is
that it does not require a special model for the charged
particle, and it is easily adapted for higher-dimensional
calculations. We performed calculations of the self-energy
for a static source of a minimally coupled scalar massless
field. We showed that the contribution of the self-energy to
the proper mass of the particle has the form

�m ¼ � 1

2
q2Gregðx; xÞ: (6.1)

In other words, �m is identical to

�m ¼ � 1

2
q2h~’2iren; (6.2)

where ~’ is the properly normalized Euclidean quantum
field in (D� 1)-dimensional space with metric gab. The
classical point-splitting method practically coincides with
calculations of h~’2iren in the corresponding (D� 1)-
quantum theory (see, e.g., [42,43]).

To illustrate the developed method of the calculations of
the self-energy, we applied it to a special case of a charge in
the higher-dimensional Majumdar-Papapetrou metrics, de-
scribing a set of static extremally charged black holes in
equilibrium. For such spaces, the static Green functions for
a static charge are known explicitly. We showed that for
even-dimensional spacetimes (D ¼ 4; 6; . . . ) �m vanishes
identically. In five dimensions �m does not vanish and is
related to the local curvature invariants of the spatial
metric. One can expect that this is a generic property of
all odd-dimensional spacetimes. A natural explanation of
these results might be the following. On the class of space-
times of the form Eq. (5.1) characterized by an arbitrary

functionU, the corresponding operator F̂ is invariant under
the transformation of the functionU. The spatial part of the
Majumdar-Papapetrou metric is conformally flat. In a flat
space �m vanishes identically. Thus, the nontrivial value
of �m in a ‘‘physical’’ space arises as a result of the
mechanism similar to the conformal anomalies. For odd-
dimensional spaces with (D� 1 ¼ 3; 5; . . . ), such anoma-
lies vanish, and �m remains equal to zero. We are going to
return to this interesting problem and will discuss this
mechanism in detail in another publication.
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APPENDIX A: CONFORMALTRANSFORMATION
OF THE DEWITT COEFFICIENTS

Consider (nþ 2)-dimensional space with the confor-
mally flat metric

gab¼�2 �gab; 	c	c¼2	; �	c �	c¼2 �	: (A1)

Here 	a � gab	;b and �	a � �gab �	;b. The metric �gab is a

flat metric. Therefore,

�	 a;b ¼ �gab: (A2)

We can express 	 in terms of �	 and its derivatives. The
result is

	 ¼ �	

�
�2 ���;a �	

a þ 1

12
ð4��;ab

þ 4�;a�;b ��;c�
;c �gabÞ �	a �	b

�
þ . . .

¼ �	�ðxÞ�ðx0Þ
�
1þ 1

12�2
ð�2��;ab

þ 4�;a�;b ��;c�
;c �gabÞ �	a �	b

�
þ . . . (A3)

For the determinant �1=2ðx; x0Þ, we have

�1=2 ¼ 1þ 1

12
Rab	

a	b þ . . .

¼ 1þ 1

12�2
½�n��;ab þ 2n�;a�;b � ð��;c

;c

þ ðn� 1Þ�;c�;cÞ �gab� �	a �	b þ . . . (A4)

Here we took into account

Rab ¼ �Rab þ 1

�2
½�n��;ab þ 2n�;a�;b

� ð��;c
;c þ ðn� 1Þ�;c�;cÞ �gab�; (A5)

R ¼ 1

�2
�R� nþ 1

�4
½2��;c

;c þ ðn� 2Þ�;c�;c�; (A6)

and that in our case �gab is flat and, hence, �Rab ¼ 0. Here,
on the right-hand side of these equations, all the covariant
derivatives �;ab, �;a, etc. are defined in accordance with

the flat metric �gab.
The first DeWitt coefficients corresponding to the

operator

F̂ ¼ rara þ V (A7)

are
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a0ðx; x0Þ ¼ 1; (A8)

a1ðx; x0Þ ¼ V þ 1

6
Rþ . . . (A9)

APPENDIX B: DEWITT COEFFICIENTS IN
MAJUMDAR-PAPAPETROU SPACETIMES

The expressions Eq. (3.8), (3.9), and (3.10). for the UV
divergent terms of the scalar Green function have been
derived for generic curved spacetimes. Now, we apply
these results to the class of Majumdar-Papapetrou metrics.

In the case of the metric Eq. (5.1) we have

� ¼ U1=n; (B1)

R ¼ 1

4�nþ2

U�2�ð2=nÞðU;aU;b � 2UU;abÞ�ab;

�nþ2 ¼ n

4ðnþ 1Þ ;
(B2)

V ¼ ��nþ2R ¼ � 1

4
U�2�ð2=nÞðU;aU;b � 2UU;abÞ�ab;

(B3)

a1ðx; xÞ ¼ 1

6
Rþ V ¼

�
1

6
� �nþ2

�
R: (B4)

(i) In five dimensions n ¼ 2, � ¼ U1=2, �4 ¼ 1=6

a1ðx; xÞ � 0; (B5)

�1=2

	
¼ 1

� �	�0 þ
1

36
Rþ . . . ; (B6)

and

R ¼ 3

2
U�3ðU;aU;b � 2UU;abÞ�ab: (B7)

(ii) In six dimensions n ¼ 3, � ¼ U1=3, �5 ¼ 3=16

a1 ¼ � 1

48
R; (B8)

R ¼ � 4

�4
½2��;c

;c þ�;c�;c�; (B9)

�1=2 ¼ 1þ 1

12�2
½�3��;ab þ 6�;a�;b � ð��;c

;c

þ 2�;c�;cÞ �gab� �	a �	b þ . . . ; (B10)

�1=2

�
1

ð2	Þ3=2 a0 þ
1

2ð2	Þ1=2 a1
�

¼ 1

�3=2ð2 �	Þ3=2�03=2 þOð �	1=2Þ

¼ 1

U1=2ð2 �	Þ3=2U01=2 þ . . . (B11)

In all odd-dimensional (n ¼ 2; 4; . . . ) Majumdar-
Papapetrou spacetimes the DeWitt coefficients

an=2ðx; x0Þ ¼ 0: (B12)

These coefficients appear as the factors before lnjx� x0j in
the Hadamard representation. This is why there are no
logarithmic divergences in the static Green functions in
these spacetimes.
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