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Spontaneous pair production in Reissner-Nordstrom black holes
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We investigate the spontaneous pair production—including the Schwinger mechanism and the Hawking
thermal radiation—of charged scalar particles from the near-horizon region of a (near) extremal Reissner-
Nordstrom black hole. The paradigm is equivalent to the dynamics of the charged scalar field in a specific
AdS, X §? spacetime with a constant electric field. Two possible boundary conditions are adopted to
explicitly compute the corresponding production rate and absorption cross section. It is shown that the
Schwinger production rate can be eventually suppressed by the increasing attractive gravitational force as
the geometry changes from the extremal to the near extremal black hole. Consequently, the Schwinger
mechanism and the Hawking radiation are generically indistinguishable for the near-extremal black holes.
The holographic description dual to the pair production is also briefly discussed.
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L. INTRODUCTION

The spontaneous pair production in a strong background
field or in a causally disconnected spacetime is a significant
and profound quantum effect. The Schwinger mechanism
and the Hawking radiation are such a phenomenon in
which virtual pairs of particles and antiparticles from
vacuum fluctuations are separated into real pairs either
by an electric field [1] or by a black hole horizon via
tunneling [2]. These two processes, though independent
of each other, could be generically intertwined and indis-
tinguishable in the background of a charged black hole.
Besides, the emission of charged pairs affects the charge to
mass ratio of the Reissner-Nordstrom (RN) black hole [3],
and this effect is more rapid than the loss of mass and
angular momentum [4,5]. It has been shown in Ref. [6] that
for a large RN black hole with a small Hawking tempera-
ture, the vacuum polarization by a charged scalar field is
dominated by the Schwinger mechanism. The Hawking
emission of spin-1/2 fermions [7] from and the evolution
[8] of an RN black hole have been numerically studied.
Also, it has been shown that the semiclassical tunneling
probability of charged particles in the RN black hole leads
to the Schwinger formula on the black hole horizon [9]. For
more recent related discussions about the quantum effect of
fields in the charged black hole backgrounds, see
Refs. [10-13].

The spontaneous pair production from a black hole is
expected to occur mainly at the near-horizon region: the
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causal boundary for the Hawking radiation and electric
field domination for the Schwinger mechanism. This ex-
pectation will be confirmed by the fact that in the leading
order the pair production rate agrees with the Schwinger
formula derived in the whole RN spacetime. In this paper
we analytically study the emission from an RN black hole
by observing that the spacetime of the near-horizon region
of the (near) extremal RN black hole has a particular
product structure AdS, X §? with the same radius. Thus,
the positive curvature of the S? exactly compensates the
negative part of the AdS,. Moreover, the electric field is
constant and determined by the geometrical radius. This
background provides a simple framework in which the
analysis of spontaneous pair production can be exactly
performed. We consider the dynamics of a charged scalar
field in a (near) extremal RN black hole. The key equation
of motion is very analogous to the one studied in Ref. [14]
for an AdS, spacetime. The additional integrants include a
standard separation constant for spherical harmonics on the
S2-section and a parameter associated with the black hole
temperature. It turns out that the process of spontaneous
production corresponds to the instability of the charged
scalar in AdS,, namely, the violation of the Breitenlohner-
Freedman (BF) bound [15,16], which results in the com-
plex conformal weight of the operators dual to the charged
scalar field in the AdS/Conformal Field Theories (CFT)
correspondence [17-19].

A direct approach to obtain the physical information
about the spontaneous production—such as the mean num-
ber of pairs and the absorption cross section—is to com-
pute the ratios of fluxes passing through each boundary
under a suitable boundary condition. The Bogoliubov co-
efficients can be found by applying the same boundary
condition that resolves the Klein paradox for the tunneling
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barrier in static configurations of electric fields in quantum
electrodynamics [20-22] (see also Ref. [23]). In fact, there
are two boundaries in the near-horizon geometry of the
(near) extremal RN black holes: an outer boundary at
““spatial infinity” of the near-horizon region, and an inner
boundary associated to the black hole causal horizon. Each
of the following boundary conditions allows one to com-
pute the desired physical quantities: no flux flowing into
the considered spacetime via either the outer boundary or
the inner boundary. The physical interpretations of these
two boundary conditions will be discussed in Sec. III.

Under these two boundary conditions, the flux either
incoming from the asymptotic boundary or outgoing
from the horizon' has been turned off. Therefore, there
are only three non-vanishing fluxes, naturally named as
incident, reflected and transmitted. Moreover, the flux
conservation reduces the number of independent fluxes
down to two. The different ratios of fluxes give various
physically interesting quantities: in particular, the magni-
tude of the vacuum persistence amplitude |a|?, the mean
number of pairs | 8|2, and the absorption cross section (grey
body factor) o ,,,. Remarkably, the mean number of pairs
and the absorption cross section are the same for the both
boundary conditions. This equivalence is a consequence of
the unitarity of the scattering matrix for a given quantum
number of the charged scalar field, which reflects the flux
conservations [24].

We explicitly compute these three quantities for the
extremal and near-extremal RN black holes. We perform
the calculations in both the outer and inner boundary
conditions to confirm the equivalence. Obviously, but in-
terestingly enough, the extremal RN black hole has a zero
Hawking temperature, and thus the pair production is
completely generated by the Schwinger mechanism.
However, for the near-extremal RN black hole, though
the Hawking thermal radiation is included, the production
rate is indeed reduced. The decreasing production rate is
due to the increasing “attractive’ gravitational force as the
geometry changes from the extremal to the near-extremal
RN black hole, which suppresses the Schwinger mecha-
nism. Thus this result implies that the Schwinger mecha-
nism and the Hawking radiation are generically mixed and
cannot be distinguished simply by imposing different
boundary conditions. In addition, we also compute the
corresponding quasinormal modes for the charged scalar
field by imposing both the inner and outer boundary con-
ditions at the same time, and show that there are no
quasinormal modes in the extremal limit. We further dis-
cuss the dual CFT description of the pair production pro-
cess and find that the absorption cross section of the
charged scalar field calculated from the gravity side

'Our classification of in and out states is with respect to the
view point of the black hole. Thus, the outgoing flux is positive
and incoming flux is negative.
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matches that of its dual operator in the 2D CFT, based on
the RN/CFT correspondence studied in [25-27].

The outline of this paper is as follows. Firstly, we
analyze the dynamics of a charged scalar field in the
near-horizon region of (near) extremal RN black holes.
In Sec. IIT we discuss the outer and inner boundary con-
ditions, and show the equivalence of the mean number of
pairs and the absorption cross section from both of the
boundary conditions. The results of spontaneous produc-
tion are presented in Sec. IV for the extremal case, and in
Sec. V for the near-extremal case. Further, a holographic
interpretation is given in Sec. VI. Finally, we conclude our
results in Sec. VII. In Appendix A we summarize the
properties of the special functions that are used in this
paper. A comparison, using the Hamilton-Jacobi equation
and the phase-integral method, is made with previously
known results in Appendix B.

II. SCALAR FIELD IN THE RN BLACK HOLE

The Reissner-Nordstrom (RN) solution of a charged
black hole with the following metric and a U(1) gauge
field, F = dA, [in unitsof c = A= G = 1]

dr?

2M 2
st = —(1-2 4 L\ap + s+ r2dQ3,
ror? | -4 &
A=9m; ,F=%mAdn (1)
r r

is characterized by the mass M and the charge Q. Here
dQ3 = d6* + sin*0d ¢* denotes the metric on a unit two-
sphere. By taking the near horizon and the near-extremal
limits, together with a suitable rescaling of the time
€’B?
M—-Q+—, t——, 2
0+, )
one can show that the near-horizon region of a near-
extremal RN black hole corresponds to a black hole like
solution as

r— Q0+ ep,

2 B2 2
dst= -2 7 g+ 2 =5 dp? + 0203,
pea
. 3)
A=—gm; = gdmndp.

The parameter B labels the “rescaled” deviation (2) from
the extremal limit and acts as the horizon radius of the new
black hole solution. Noting that the metric (3) has an
AdS, X S? geometry with the same radius of Q and the
strength of the associated gauge field is constant with the
magnitude Q, we will study the spontaneous pair produc-
tion of a charged scalar field in this background.

The action for a probe charged scalar field ® with mass
m and charge ¢ is

s::j}ﬁxng(—%thﬁDa®-—%nﬂ¢ﬂb) @)
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where D, =V, — igA, with V, being the covariant de-
rivative in curved spacetime. The corresponding Klein-
Gordon (KG) equation

(V, —igA, )V —igA*)D — m>® =0 3)
has the flux of a probe charged scalar field
D =i /—gg?(®D,®" — ®*D,D), (6)

which is positive for an outgoing mode and is negative for
an ingoing mode.
We look for the solution of the scalar field

(7, p, 6, p) = e T R(p)S(6), )

which separates the KG equation as

_ 22
,[(p* — Ba,R]+ [% -0~ 4, |R=0,
(8)
L 5, (sin69,s) — " —/\)S—O 9
sinf 615IMUCe <sin20 =" )

where A, is a separation constant. The solution for S(0) is
the standard spherical harmonics with the eigenvalue A; =
(1+1).

The radial equation (8) can be understood as the equa-
tion of motion of a probe scalar field R(p) with an effective
mass m%; = m? — q> + A;/Q* propagating in an AdS,
geometry” with the radius Lpgg = Q. It is well known
that an instability will occur when the effective mass
square is less than the Breitenlohner-Freedman (BF) bound
[15,16], more precisely in a general AdS, space of radius

L ags
2
meg < = d—z
4Lxas
Therefore, the violation of the BF bound in the AdS,

spacetime, to ensure the presence of the Schwinger pair
production and/or the Hawking radiation [30], requires

(m* — ¢»)Q* + (z + %)2 <. (12)

e8Y)

This condition implies that the mass of a created particle
(which is an unstable tachyon mode) should be smaller

*Notice that Eq. (8) can also be interpreted as the equation of
motion of a massive scalar field with effective mass 2, = 4m%;
propagating in an “effective” AdS; = AdS, X S! background,
by treating the U(1) gauge field as the additional S' fiber over the
geometrical AdS,, from the viewpoint of the hidden conformal
symmetry [28,29]. The effective AdS; structure has the same
radius Lags = Q as the AdS, case, and then the condition (12)
that is required for the existence of propagating modes is actually

A 1
iy = 4mly = 4(""2 —¢+ Q—l) < o (10

which violates the BF bound in the AdS; spacetime.
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than its charge, and the background electric field should be
larger than a threshold value. Thus, a neutral scalar parti-
cle, i.e., g = 0, cannot be produced by the Hawking radia-
tion in the near extremal case. Also, the energetic condition
for pair production requires gQ/ry > m. In the near ex-
tremal black hole ry; = Q, pairs are produced when g > m,
which is satisfied by electrons and positrons.

III. BOUNDARY CONDITIONS AND THEIR
EQUIVALENCE

A. Outer boundary condition

One possible boundary condition that may reveal the
behavior of the spontaneous pair production is to require
no incoming flux at the asymptotic outer boundary (see
Fig. 1). In the Stiickelberg-Feynman picture, the outgoing
(transmitted) flux at the asymptotic represents the sponta-
neously produced ““particle’’, while the outgoing (incident)
flux at the inner boundary can be interpreted as the total
particles created by vacuum fluctuations, and the incoming
(reflected) flux represents the portion that was re-
annihilated.

In such an intuitive picture, the flux conservation

|Dincident| = |Dreﬂected| + |Dtransmitted|: (13)
leads to the Bogoliubov relation
lal> = 181> =1, (14)

where the vacuum persistence amplitude |«|? and the mean
number of produced pairs |8|?> from the Bogoliubov co-
efficients @ and S are given by the ratios of the incident
and the transmitted coefficients to the reflected one in the
Coulomb gauge (time-independent gauge potential)
[31,32]

|2 = Dincident |,8|2 = Dtransmitled ) (15)

|a
D reflected

’

D reflected

B. Inner boundary condition

The alternative boundary condition is to require no
outgoing flux at the inner boundary (horizon, see Fig. 2).
In this case, the incoming (transmitted) flux at the
horizon can be understood as the spontaneously produced

DSi,“) (reflected) Dg,“) =0 (boundary condition)
4——

—

—
D(U‘Jt) T (out) S
i (inciden D" (transmitted)

p=0 p =00
inner boundary (horizon) outer boundary (asymptotic)

FIG. 1 (color online). The outer boundary condition: no in-
coming flux at the asymptotic outer boundary.
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D™ (incident)
<—
—

DYI)“U = 0 (boundary £ondition) D™ (reflected)

|

inner boundary (horizon) outer boundary (asymptotic)

FIG. 2 (color online). The inner boundary condition: no out-
going flux at the inner boundary.

“antiparticles”. Similarly, the incoming (incident) and
outgoing (reflected) fluxes at the asymptotic boundary
can be interpreted again as the total created antiparticles
and the re-annihilated part.

Moreover, this boundary condition can have another
intuitive viewpoint as a scattering process of an incident
flux coming from the asymptotic boundary. In addition to
|a|? and | B|?, it is also useful to define the absorption cross
section as

o — D transmitted __ |B |2
bs = "~ 7 17
o Dijpcident |a|2

(16)

C. Equivalence

According to a naive physical picture of the outer and
inner boundary conditions, it is natural to expect that these
two boundary conditions indeed are equivalent since the
particles and antiparticles should always appear in pairs
due to the charge conservation and/or the energy-
momentum conservation, no matter whether they are cre-
ated or separated. Note that the flux, D, at each boundary is
the magnitude square of the coefficient, D, for the incom-
ing wave or the outgoing wave times the corresponding
momentum, i.e. D = |D|?. Actually, these coefficients are
related by the scattering matrix as [24]

G T ) i
Do S Sn )\ D
The unitarity of the scattering matrix, Sts =88t =1,
leads to

IS11] =[Sl
IS111? + 1S> =1,

1S5l = 18211,
SuSpp +8n85, =0.

(18)

The mean numbers in these two different boundary con-
ditions

(out)
B2 = 25 — &)
outer i i '
Dgﬂ) Dg“)=0 Sl 1 (19)
g = Db e
inner Dg)ut) Df:l)ul):() 822 »
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are thus the same due to Eq. (18). Then the equivalence
between the absorption cross sections follows from the
Bogoliubov relation |a|> — |B]*> =1

_ 1Bl _ 18P

“leE - TriaF (20)

abs |a|2

IV. EXTREMAL BLACK HOLES

A. Solution of scalar field

The simplest background to study the Schwinger pair
production is the case B = 0 in which the Hawking tem-
perature vanishes and therefore no thermal radiation exists.
By defining a new coordinate

. ,2wQ2
=1 ,
p

T
=_, 21
argz = 3 @2y

the radial equation (8) can be expressed as the Whittaker
equation

922 ——+—

( 1 ia+;{—(ib)2
Y40 ¢ 22

)R(Z) 0 @

where the parameters a and b are defined as

1\2
a=qQ, b= \/(qz - m?)Q? — (l + 5) . (23)

The BF bound violation (12) requires the parameter b to be
real. The general solution for R(p) can be expressed in
terms of the Whittaker function M, ,(z) as

R(z) = ¢\ My —15(2) + caM;, 1(2). (24)

In order to study the pair production rate, one needs to
distinguish the in- and out-states at both the inner and outer
boundaries. For this purpose, we first analyze the behavior
of the solution (24) at the asymptotic boundary and on the
horizon, respectively. In the asymptotic limit, p — o or
z — 0, by using the property (A6), the solution (24) at the
outer boundary approaches to

Ry(z) = an>z(1/z)+ib + CS;UI)Z(I/Q)fiby (25)
where
an) = ¢, cg’m) = c,. (26)

In this case, the factor z’* ~ p~" represents the ingoing
mode, while z7? ~ pi represents the outgoing mode. In
the near-horizon limit, p — 0 or z — oo, by applying the

properties (AS) and (A6) the solution reduces to
Ry(2) = cliMele/Dzmia 4 ploud o(=2/2) zia, 27)

where
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(in) (1 + 2ib) (1 — 2ib)
C =C c s
H U0 —ia+ib)  °TE —ia — ib)
T(1 + 2ib)
(out) =7 Ta—1h
H e T+ ia + ib) ¢ (28)
iy ra—z2ie)y ...,

I+ ia — ib)

Near the horizon, the dominant factor is e*?/ 2 and con-
sequently the factor e¥/2 ~ ¢i/P indicates the ingoing
mode, while e~%/2 ~ ¢~i/P corresponds to the outgoing
mode.

The corresponding fluxes of each mode can be computed
directly via the formula (6) as

Dg") = —Zsz(Zbef”b)lcg“)P,

Dgﬂ) — _ZwQZewalcgn)P’ (29)
D™ = 20Q>2be™)| ",

Dg;)m) =2w Q2e_7m|c§3ut) 2.

B. Outer boundary condition

The boundary condition for the emission of charged
particles is that charged pairs are produced by a strong
field region near the horizon, and the charges with the same
sign as the black hole are emitted to the spatial infinity
through electric repulsion. The outer boundary condition
imposes Dgn) =0 (G.e. c; =0).

The transmitted (outgoing) flux at the boundary is

D(l;)m) — 2002(2be™)|c,|?, (30)

where the first factor comes from z!/27%_ and the reflected
(ingoing) and the incident (outgoing) fluxes near the hori-
zon are, respectively,

. I'(Q — 2ib) I2
(in) __ 2 ,ma 2
D, = -2 —_— % , 31
H wQe l“(%—ia—ib) 1y (31)
I'(1 —2ib) 2
D(out) =2 2,ma+2wb | _~ A TS | 2, 32
i wQe T+ ia—ib) leal. (32)

Thus the magnitude squares of the Bogoliubov coefficients
are given by

IDS™|  cosh(ma — 7b) ,_,
= e

Dincident
|@f2 = Zincident _ 1 (33
Dreflected |Dgn)| cosh(mra + b)
|:8|2 _ Diransmitted _ |D§§)m)| _ Sinh(27Tb) Th—ma
D efiected |Dgn)| COSh(’?Ta + 7Tb)
(34)

These coefficients satisfy the relation |a|?> — |B|> =1
from the quantization of the field. The mean number of

PHYSICAL REVIEW D 85, 124041 (2012)

charged pairs produced via the Schwinger mechanism
from the black hole is |B]*>. In the limit g > m, the
emission rate is approximately given by the Schwinger
formula

18> = e~ T0/q ~ o ™ 0 (35)

This result verifies the speculation that the spontaneous
pair production actually occurs near the horizon of RN
black holes. The absorption cross section can also be
obtained straightforwardly

sinh(27b)
cosh(ma — wb)’
(36)

C. Inner boundary condition

The inner boundary condition assumes that D(;,’m) =0

(i.e., c(,f;“t) = (), which gives the following relation for two

undetermined parameters, ¢ and c,, in the general solution

(1 +2ib)L'G + ia —ib) _,
e

= — , 37
27 7T = 2P + ia + ib) &7

or, equivalently leads to
an) I sinh(27b) I'(1 + 2ib) (38)

cosh(ra — wb) I'(} — ia + ib)’

The magnitude squares of the Bogoliubov coefficients,
after a routine calculation, are given by

IDgn)I cosh(7ra — wb) ,_,
= e

D: ident
|a,|2 __ “incident __ _ . (39)
Deflected |Dg’ut)| cosh(7ra + b)
|ﬁ|2 _ D pansmitted _ |D2]n)| _ Sll’lh(27Tb) wh—ma
Dreflected |Dg)ul)| COSh(7TCl + 7Tb) ’
(40)

and the absorption cross section is given by

_ Dtransmilted _ |B|2 _ |D§-1]n)|

ID§"|
sinh(27b)

cosh(ma — mb)

— e—ﬂ'a—ﬂ'b

1 1 2
= —e ™ 7 ginh(27b) I I‘(— + ia — ib) | . 4D
T 2

As shown in Sec. III C, |a|?, | 8| and o, are actually
identical with those obtained by imposing the outer bound-
ary condition.

D. Quasinormal modes

For the quasinormal mode analysis, we should impose
both the inner and outer boundary conditions at the same

124041-5
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time: D = 0 and D™ = 0. The only possible solution
for the first condition comes from ¢; = 0. For the second
condition, besides the trivial choice ¢, = 0, there is an-
other non-trivial condition

1
rQ+ia—ib) " “2)

which is fulfilled only when
%Jria—ib:—N, N=01-- (43

Since parameters a and b are real and b < a, the condition
(43) cannot be satisfied, which means that there are always
outgoing modes at the black hole horizon in the extremal
limit. That is, there are no quasinormal modes in this limit.

V. NEAR-EXTREMAL BLACK HOLES

A. Solution of scalar field

For the near-extremal case, i.e., B # 0, the radial equa-
tion (5) has the following solution in terms of the hyper-
geometric function

. _ . ~ 1
R(p)=c1(p — B) /20 + B)<l/2><a+a>F(E +id+ib,

1 1 p
L i bl — a4 gt —
> ia—ib;1—ia la,2 —23)

+cy(p — B)/Pad(p + B)("/Q)(””)F(% +ia+ib,

1 1
§+ia—ib;1+ia—id;5—%), (44)
where parameters a, b are in Eq. (23), and the new pa-
rameter 4 is defined as’
wQ?
a= . 45
a=— (45
The frequency (energy) dependence is a significant prop-
erty of the parameter @, which is essentially related to the
Hawking radiation as a tunneling effect on the black hole
horizon.
As the horizon is located at p = B by the property (A8),
the solution at the near-horizon region reduces to

3In terms of the variables of the original RN black holes
according to the rescaling (2)

p_y20M-0) " w
€ ’ €

the parameter @ can be expressed as

_ wer
V20 = Q)

where w denotes the frequency with respect to the RN time
coordinate t as ™" = ¢7'¢7,

>

a=

PHYSICAL REVIEW D 85, 124041 (2012)
Ry(p) = ¢ (p — B)T/20(p + B)i/20a+0
+ (9 (p — B)i/2Ea)(p 4 B)i/Data)
~ c\in(ap)i/ata) (, — py-i/Da—a)

+ Cgut)(zg)(iﬂ)(ﬁa)(p — B)i/2a-a) (46)
where
i = ¢, O = ¢ 47)

On the other hand, at the asymptotic boundary, by the
properties (A7) and (AS8), the solution behaves as

RB(P) _ an)(p _ B)—l/Z—(i/Z)(t71+a)—ib(p + B)(i/2)(d+a)
+ cg’“‘)(p _ B)—l/z—(i/z)(a+a>+ib(p + B)i/2@+a)
~ cgn)p(fl/Z)fih + Cg)Ut)p(fl/Z)Hb’ (48)
where
I'(1 — ia + ia)l’(—2ib)

I —ia—ib)T'G + ia — ib)
' + ia — ia)l’(—2ib)
UG+ ia — ib)T' (G —ia — ib)’

(49)

an) _ 61(23)(1/2)+ia+ib

+ cz(ZB)(1/2)+izz+ih

(1 — ia + ia)'(2ib)

L4 —ia +ib)T'G + ia + ib)
(1 + ia — ia)T'(2ib)
LG+ ia +ib)T'G — ia + ib)’

(50)

cg’“t) = (23)(1/2)+iii—ib

+ 62(23)(1/2)+ia—ib

Using the approximate solutions near both the inner and
outer boundaries, the corresponding fluxes of each mode
can be obtained:

DY = —2blc§">, DY = —2B(a — a)lc
Dg_(;m) =2B(a — a)lcgut)lz.
(51)

DY = 2|2,

B. Outer boundary condition

In this subsection, we compute the magnitude squares of

the Bogoliubov coefficients and the absorption cross sec-

tion by imposing the outer boundary condition, i.e. cg") =

0. This condition relates the parameters ¢; and ¢, where
¢, = —c,(2B)ila=d
(1 +ia —ia)I'¢ — ia — ib)T'( + ia — ib)
I'(1 —ia +ia@)L'G + ia — ib)T' (G — ia — ib)’
(52)

which leads to

124041-6
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Cgmt) _ _02(23)(1/2)+ia—ib
sinh(27b) sinh(7rd — a)
cosh(wa + @b) cosh(wa — mb)
I'(1 + ia — ia)I'(2ib)
I+ ia+ib)TG —ia + ib)’

(33)

The magnitude squares of the Bogoliubov coefficients
are

t
Dincidcnt _ |Dg-(1)u)|

la|*> =

D reflected | Dgn) |
_cosh(mra — 7b) cosh(wa + b) (54)
cosh(7a + 7b) cosh(md — wb)’
|B|2 _ Dtransmitted _ |Dg)ut)|
D (in)
reflected |DH |
_ sinh(2#7b) sinh(wd — 7a) (55)

~ cosh(ma + mb) cosh(wa — mb)"

As a consequence of the flux conservation, these coeffi-
cients satisfy the Bogoliubov relation |a|*> — |8|> = 1. In
the limit B — 0 (@ — o0), the results reduce to the extremal
case (33) and (34). Moreover, the leading term of |B|>
leads to the Schwinger formula (35). The absorption cross
section is

D transmitted __ | B | 2

Dincidenl I o | 2

Oabs =

_ sinh(2#7b) sinh(wd — 7a)
cosh(wa — mb) cosh(mrd + mwb)’

(56)

Again, it reduces to (41) in the limit @ — 0.

It has been pointed out that the spontaneous pair pro-
duction in the extremal black hole is generated completely
by the Schwinger mechanism in which the charged parti-
cles with the same charge as that of the black hole are
repulsed to infinity by the constant electric field. One may
naively expect to distinguish the Hawking radiation from
the Schwinger mechanism by comparing the production
rate in the near-extremal case (Schwinger + Hawking)
with the production rate in the extremal limit (pure
Schwinger). A remarkable fact is observed from this com-
parison: the mean numbers | 3|? in the extremal (34) and in
the near-extremal (55) cases have the ratio

|B(B = 0)I* _ cosh(ma — mb)
|B(B # 0)|> sinh(wd — ma)
1+ eZaT(b—[z)

whb—1a

=T = 1. (57)
This ratio indicates that the production rate in the extremal
limit (Schwinger) is greater than the production rate in the
near-extremal case (Schwinger + Hawking). A major
physical interaction dominates here: as the geometry
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changes from the extremal to near-extremal black holes,
the increasing attractive gravitational force will reduce the
electromagnetic repulsive force for the Schwinger mecha-
nism. Therefore, the production rate of the Schwinger
mechanism is suppressed faster than the increasing part
from the Hawking thermal radiation. Moreover, such an
interaction generically prohibits one from distinguishing
the Schwinger mechanism from the Hawking radiation.

C. Inner boundary condition

For the comparison, we repeat the computation by impos-

ing the inner boundary condition, namely csm) =c; =0.

The magnitude squares of the Bogoliubov coefficients are

|a|2 _ Dincident _ |Dgn)|
D reflected | ngt) |
_cosh(7ra — mb) cosh(wd + mb) (58)
cosh(7ra + mb) cosh(wa — wb)’
D ) |D(in)|
| Blz __ “transmitted __ H
D reflected | Dg)m) |
sinh(27b) sinh(7rd — m7a) (59)

B cosh(ma + b) cosh(wa — wb)’
and the absorption cross section is
_ D transmitted __ |D§L]1n)|
Tabs = —p = = " in)
D incident |D B |
_ sinh(27b) sinh(7a — ma)
cosh(7ra — arb) cosh(ma + mb)

1 1
= — sinh(27b) sinh(7wa — 7a) F(E + ia — ib)
T
(60)

2

2
X

o+ ia+ )

These quantities are the same as those from the outer
boundary condition, as expected from Sec. III C.

D. Quasinormal modes

The quasinormal mode boundary condition, Dgn) =0
and D(;,“") = 0, requires the trivial solution ¢; = ¢, =0
except for some special discrete values of parameters, i.e.
quasinormal modes, determined by the condition

1
T( +ia —ib)T(} —ia —ib)

0. (61)

Therefore, besides the condition given in Eq. (43) for the
extremal limit, there is an additional possibility for the
near-extremal black holes

1 —ig—ib=—N,

1 N=01-. (62

This condition gives the quasinormal mode frequencies
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bB 1 B

Since the parameter B > 0, the quasinormal mode bound-
ary condition thus requires the appearance of the negative
energy states.

VI. HOLOGRAPHIC DUAL DESCRIPTION

The spontaneous production in Secs. IV and V corre-
sponds to the instability of the probe charged scalar field in
the AdS space. One expects that the charged scalar field
should be dual to an “‘unstable’ operator in the boundary
conformal field theory (CFT) according to the holographic
principle. Previous studies on the RN/CFT correspondence
[25-27] show that the 4D (near) extremal RN black hole
consists of an AdS; = AdS, X S! structure, where the
AdS, comes from the near-horizon geometry and the U
(1) gauge field plays the role of the S' bundle. The central
charges and temperatures of the dual two-dimensional CFT
have been determined as

3
_ 60 I T

CL:CR € y R:W—QZ;
(64)

where € is a free parameter which can be interpreted as a
measure of the U(1) bundle. In addition, from the asymp-
totic form of the solution, either (25) or (48), we can see
that unlike the conventional situation of massive
probe fields in the AdS/CFT correspondence [17-19], the
operator and the source on the boundary are of the same
magnitude, namely, the conformal weights of the dual
operator are

=

Without loss of generality, we choose h; =hp=1/2+ib
below. The complex conformal weight means that the dual
operator is unstable.

To compare the results calculated from the gravity side
with those from the CFT’s, recall that the general expres-
sion for a two-point function G(o , o_) in 2D CFT is

Gloy, o) =(p(o1)p(a-))
- (_)hL+hR( Ty )2hL

sinh(#T, o)
% ( 7TTR )2hkeiqLQLour +iqRQR(r,’
sinh(7Tro_)
(66)

where (g, gg) and ({};, Q) are the charges and chemical
potentials of the left- and right-hand operators, respec-
tively. Consequently, the absorption cross section of the
operator ¢ is

PHYSICAL REVIEW D 85, 124041 (2012)

QAT QaTge)* ! ; h(‘”L —q.
Tabs T T P00, T(2hy) 27,

+ WR — QRQR> % |F(hL + l-wL - QLQL)
2TR 27TTL

2

2
X

F(hR + jOR — 4R7R ‘IRQR)

2 7TTR

(67)

Further identifying the first law of thermodynamics of the
black hole with that of the dual 2D CFT, i.e. 6Sgy =
O0Scrr, We have

8_M_QH6Q—ﬂ+ﬂ

, 68
Ty Ty T, Tg (%)

where the black hole Hawking temperature and chemical
potential are Ty = 2:#, Qy=A,(B)=—-B/Q and
G)L = w; — qLQLs d)R = Wpr — QRQR- Together with
the identifications 6M = w and 6Q = —¢ (the minus
sign corresponds to the convention “—g¢g” in the operator
D, for the dynamics of the charged scalar field), we can
then determine that

0 =—ql and & =2wl. (69)

One can see that the absorption cross section (60) agrees
with the CFT’s result (67) only up to some numerical
factors. The dual description for the production rate | 8|?
can be understood through the relation (20).

VII. CONCLUSION

We have studied the spontaneous pair production of a
charge scalar field for RN black holes in the extremal and
near-extremal limits. The charged particle pairs are pro-
duced near the horizon region of the black holes that have a
specific spacetime structure AdS, X S? with a constant
electric field. The Bogoliubov coefficients and the absorp-
tion cross section have been computed from the ratios of
fluxes through the outer and inner boundaries by imposing
two suitable boundary conditions. Indeed, these two
boundary conditions are equivalent and allow one to study
the spontaneous production as discussed in Section III. The
Bogoliubov coefficients provide the information of the
vacuum polarization and the vacuum persistence on
the horizon. The model in this paper is one of the few
examples for which we exactly know the Bogoliubov co-
efficients. In particular, the explicit expressions of the
vacuum persistence amplitude |«|?, the mean number of
pairs | 3|2, and the absorption cross section o, have been
obtained. Moreover, the holographic description of the pair
production in which the emitted particles are unstable
tachyon modes has also been discussed.

By comparing the results in the extremal and near-
extremal cases, it is shown that the production rate is
suppressed when the black hole temperature is turned on.
This is a consequence of the attractive gravitational force
that reduces the repulsive electromagnetic force for the
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Schwinger mechanism, and thereby suppresses the corre-
sponding production rate. On the contrary, a repulsive
gravitational force (for example, in a de Sitter space with
positive cosmological constant) enhances the Schwinger
pair production. In virtue of these kinds of interactions, the
effects of the Schwinger mechanism and the Hawking
radiation generically cannot be distinguished by imposing
different boundary conditions.
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APPENDIX. A: USEFUL PROPERTIES
OF SPECIAL FUNCTIONS

In this Appendix, we list useful properties of some
special functions that are used in our computations. The
details may be found, for instance, in [33].

The Wittaker’s equation

d? 1 «k 1—pu?
d—ZZW(Z)+(_Z+Z+4 Z2 )W(Z)zo,

(AL)

has the solutions (which are called the Whittaker func-
tions)

1
M, (2) = e(*Z/z)z(l/z)“‘F(E +tu—Kl+2p, z), (A2)

1
W, (2) = e“z/”z“/”*”U(E +u—k 1+ 2, z). (A3)

In the case of non-integer 2 1, the Whittaker functions have
the following relations

(-2
W) = ot M)
I'2up) Ad
i E— M, _,(2), (A4)
3
argz < 577,

PHYSICAL REVIEW D 85, 124041 (2012)

ra+2p . B
M = e iT
o u(2) T+ o ¢ W_ule™'72)
ra+22w . D+ p—r)
- = i AW . (A5)
I'G+u+«) ¢ en(?

—1 <ar <3
ok gy

Moreover, these two special functions have the following
asymptotic forms

lim M, ,(z) — e "2/ (/)
|zl—0 (A6)
|1|im WK,,L(Z) — o=/,
Z|—o0

We also used the transformation formula of the hyper-
geometric function,

o _are—a, .,
F(a, b;c;z) = T —a) a)( 2)
XF(a,l—c+a;1—b+a;%)
I'(c)['(a — b) _
Marc—n' 9

XF(b,l—c-Fb;l—a-f-b;l)
z
(larg(=2)| <), (A7)
and a special value

F(a, b;c;0) = 1. (A8)

Finally, we have used the particular relations for the
Gamma function,

Gro)| -
I'=+iy = ,
2 cosh7ry

ID(iy)]? = ——

T+ i)l = —2—,
sinhmry

— (A9)
y sinhry

and worked in the Riemann sheet —37/2 < argz < 7/2

for analytical continuations

i = eiﬂ'/Z’ —1 = e*iﬂ’ —j = e*iﬂ'/Z‘

(A10)

APPENDIX. B: HAMILTON-JACOBI APPROACH
TO PAIR PRODUCTION

The |B]? in (55) can be expressed as
sinh(27b)
cosh(wa + 7b) cosh(wa — mb)

1 — e*477b 1 -
1+ 6*277'(1727717 1+ 87277-&+277b)' (Bl)

sinh(wa — ma)

1BI> =

e*27r[z+277a

— 627717—27m(

In the limit a ~ b > 1 (¢ > m) considered in the litera-
ture, the leading term
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p=DB p =00
FIG. 3. The contour integral for pair production in the phase-
integral method.

Q2 =2ma o= m(m?Q/q)+((1+1/27/40%) (B2)

and other terms in parenthesis (B1) include corrections to
the Schwinger formula.

In order to understand the leading term in (B1), we use
the Hamilton-Jacobi approach to pair production via quan-
tum tunneling. In the phase-integral method the Hamilton-
Jacobi approximation R(p) = 5% to (8) has the imagi-
nary part [34]

(qp — 00)PQ>  m2Q? + (I + 1/2)

2ImS = —i}(dp

(,02 _ BZ)Z p2 _ BZ
_ . Vo —p)p—p-)
b fdp (p=B)p+B) ’ ®2

where

PHYSICAL REVIEW D 85, 124041 (2012)

qoQ@®  qoQ’
P+ = *
R b2
b? 20+ (1+1/2)?
) fi— b MmO URLRN g gy
q°Q q w0

The contour integral excludes the branch cut in Fig. 3, and
poles are located at p = B and p = oo.

Firstly, in the case of an extremal black hole (B = 0) the
contour integral exterior to the branch cut yields

2ImS = 27 (a — b), (B5)

where 27a comes from the small-p expansion and 27b
from the large-p expansion. Thus the pair production is
approximately given by |B]> = ¢~2!™S which accounts for
the leading term in (B1). We compare the instanton action
(B5) with Eq. (39) of Ref. [9], which mostly contributes to
(B1) near the peak of the barrier for @ = ¢. In Ref. [10] the
radial part (8) of the KG equation is approximated by an
inverted parabola, which is equivalent to the motion in a
constant electric field with E = w?/(¢*Q), and leads to
pair production e ™9Q/@" = o=TQ/4  for @ = gq.
Secondly, in the case of near-extremal black holes, the
large-p and small-p expansions contribute

2ImS = w(a — a) — 2b. (B6)
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