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Brown [Phys. Rev. D 79, 104029 (2009)] has recently introduced a covariant formulation of the BSSN

equations which is well suited for curvilinear coordinate systems. This is particularly desirable as many

astrophysical phenomena are symmetric with respect to the rotation axis or are such that curvilinear

coordinates adapt better to their geometry. However, the singularities associated with such coordinate

systems are known to lead to numerical instabilities unless special care is taken (e.g., regularization at the

origin). Cordero-Carrión will present a rigorous derivation of partially implicit Runge-Kutta methods in

forthcoming papers, with the aim of treating numerically the stiff source terms in wavelike equations that

may appear as a result of the choice of the coordinate system. We have developed a numerical code

solving the BSSN equations in spherical symmetry and the general relativistic hydrodynamic equations

written in flux-conservative form. A key feature of the code is that it uses a second-order partially implicit

Runge-Kutta method to integrate the evolution equations. We perform and discuss a number of tests to

assess the accuracy and expected convergence of the code—namely a pure gauge wave, the evolution of a

single black hole, the evolution of a spherical relativistic star in equilibrium, and the gravitational collapse

of a spherical relativistic star leading to the formation of a black hole. We obtain stable evolutions of

regular spacetimes without the need for any regularization algorithm at the origin.
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I. INTRODUCTION

The 3þ 1 formulation of Einstein equations originally
proposed by Nakamura [1] and subsequently modified by
Shibata-Nakamura [2] and Baumgarte-Shapiro [3], which
is usually known as the BSSN formulation, has become the
most widely used formulation in the numerical relativity
community. This is due to its stability properties, and to the
developments associated with gauge conditions and the
puncture method, which have proved essential to perform
accurate and long-term stable evolutions of spacetimes
containing black holes (BHs) [4,5].

The main drawback of the BSSN formulation in its
original form resides in the fact that it is particularly tuned
for Cartesian coordinates, since this involves dynamical
fields which are not true tensors and assumes that the
determinant of the conformal metric is equal to 1. Brown
[6] addressed this issue and introduced a covariant formu-
lation of the BSSN equations which is well suited for
curvilinear coordinate systems. This is particularly desir-
able as many astrophysical phenomena are symmetric with
respect to the rotation axis (e.g., accretion disks) or are
such that spherical coordinates adapt better to their geome-
try (e.g., gravitational collapse).

However, the singularities associated with the curvilin-
ear coordinate systems are a known source of numerical
problems. For instance, one problem arises because of the
presence of terms in the evolution equations that behave
like 1=r near the origin r ¼ 0. Although on the analytical
level the regularity of the metric ensures that these terms
cancel exactly, on the numerical level this is not necessarily

the case, and special care should be taken in order to avoid
numerical instabilities. A similar problem appears also
near the axis of symmetry in axisymmetric systems if
curvilinear coordinate systems are used.
Several methods have been proposed to handle the issue

of regularity in curvilinear coordinates. One possible ap-
proach is to rely on a specific gauge choice (i.e., the polar
or areal gauge) [7,8], but it has the obvious limitation of
restricting the gauge freedom, which is one of the main
ingredients for successful evolutions with the BSSN for-
mulation. An alternative method is to apply a regulariza-
tion procedure. One such regularization method, presented
by [9], enforces both the appropriate parity regularity
conditions and local flatness in order to achieve the desired
regularity of the evolution equations. Such method has the
advantage that it allows a more generic gauge choice, and
has been explored by [10–12], whose authors have per-
formed several numerical simulations of regular space-
times in spherical and axial symmetry. In particular, in
[12], the authors applied a regularization algorithm to the
BSSN equations in spherical symmetry. A disadvantage of
such a regularization algorithm is that it is not easy to
implement numerically both conditions simultaneously,
and it requires the introduction of auxiliary variables as
well as finding their evolution equations. This is an ob-
stacle if one wants to perform 3D simulations of regular
spacetimes with spherical coordinates.
Therefore, one would ideally like to use a numerical

scheme that is able to integrate in time a system of equa-
tions like the BSSN, in curvilinear coordinates (with or
without symmetries), without the burden of regularization
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in order to achieve the desired stability and robustness.
Implicit or partially implicit methods are used to deal with
systems of equations that require a special numerical treat-
ment in order to achieve stable evolutions. The origin of the
numerical instabilities may be diverse. Stiff source terms in
the equations can lead to the development of numerical
instabilities, and with some choices of the coordinate
system, source terms may introduce factors which can be
numerically interpreted as stiff terms (e.g., 1=r factors due
to spherical coordinates close to r ¼ 0 even when regular
data is evolved). Recently, partially implicit Runge-Kutta
(PIRK) methods for wavelike equations in spherical coor-
dinates have been successfully applied [13] to the hyper-
bolic part of Einstein equations in the fully constrained
formulation [14].

The first steps through the rigorous derivation of the
PIRK methods will appear in [15] and a detailed descrip-
tion of the methods and their properties will be derived in a
forthcoming paper [16]. Motivated by these results, we
have developed a numerical code solving the BSSN equa-
tions in spherical symmetry and the general relativistic
hydrodynamics equations written in flux-conservative
form [17]. The code uses a second-order PIRK method to
integrate the evolution equations in time, and we do not
apply any regularization scheme at the origin. This ap-
proach has the additional advantages that it imposes no
restriction at all on the gauge choice (one can therefore use
the moving puncture gauge) and no special care should be
taken in the transition between a regular spacetime and that
containing a singularity as it happens in the gravitational
collapse of a star to a BH.

The paper is organized as follows. The formulation of
Einstein equations, including the implementation of the
puncture approach and gauge conditions, along with the
formulation of the general relativistic hydrodynamic equa-
tions, is briefly presented in Sec. II. Section III gives a short
description of the PIRK method used, while Sec. IV de-
scribes the numerical implementation. Section V discusses
numerical simulations of a pure gauge wave, the evolution
of a single BH, the evolution of spherical relativistic stars
in equilibrium, and the gravitational collapse of a spherical
relativistic star leading to the formation of a BH. A sum-
mary of our conclusions is given in Sec. VI. We use units in
which c ¼ G ¼ M� ¼ 1. Greek indices run from 0 to 3,
Latin indices from 1 to 3, and we adopt the standard
convention for the summation over repeated indices.

II. BASIC EQUATIONS

We next give a brief overview of the formulation for the
system of Einstein and hydrodynamic equations as it has
been implemented in the code.

A. BSSN equations in spherical symmetry

A reformulation of the Arnowitt-Deser-Misner (ADM)
system, the BSSN formulation [1–3] has been implemented

to solve Einstein equations. In particular, we solve the
BSSN equations in the special case of spherical symmetry.
We refer to [12] for a detailed description of the equations.
Under this symmetry condition the spatial line element

is written as

dl2 ¼ e4�½aðr; tÞdr2 þ r2bðr; tÞd�2�; (1)

where d�2 is the solid angle element, d�2 ¼ d�2 þ
sin2�d’2, aðr; tÞ and bðr; tÞ are the metric functions, and
� is the conformal factor defined as

� ¼ 1
12 lnð�=�̂Þ; (2)

where �̂ is the determinant of the conformal metric. The
conformal metric relates to the physical one by

�̂ ij ¼ e�4��ij: (3)

Initially, the determinant of the conformal metric fulfills
the condition that it equals the determinant of the flat

metric in spherical coordinates �
�
ij [i.e. �̂ðt ¼ 0Þ ¼ �

� ¼
r4sin2�]. Moreover, we follow the so-called ‘‘Lagrangian’’
condition @t�̂ ¼ 0 [i.e. choosing � ¼ 1 in Eqs. (4), (6), (7),
(16), and (17)]. The evolution equation for the conformal
factor takes the form

@t� ¼ �r@r�þ �r̂m�
m � 1

6�K; (4)

K being the trace of the extrinsic curvature, � the lapse
function, and

r̂ m�
m ¼ @r�

r þ �r

�
@rðab2Þ
2ab2

þ 2

r

�
(5)

the divergence of the shift vector �i. The evolution equa-
tions for the conformal metric components are

@ta ¼ �r@raþ 2a@r�
r � 2

3�ar̂m�
m � 2�aAa (6)

and

@tb ¼ �r@rbþ 2b
�r

r
� 2

3
�br̂m�

m � 2�bAb; (7)

where Âij is the traceless part of the conformal extrinsic

curvature, and

Aa � Âr
r; Ab � Â�

�: (8)

Note that as Âij is traceless Aa þ 2Ab ¼ 0. The evolu-

tion equation for K is

@tK ¼ �r@rK �r2�þ �ðA2
a þ 2A2

b þ 1
3K

2Þ
þ 4��ðEþ Sa þ 2SbÞ; (9)

with the matter source terms measured by the Eulerian
observers given by
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E ¼ n�n	T
�	;

ji ¼ ��i�n	T
�	;

Sij ¼ �i��j	T
�	;

(10)

T�	 being the stress-energy tensor for a perfect fluid,
which is written as a function of the rest-mass density 
,
the specific enthalpy h, the pressure P and the fluid
4-velocity u�,

T�	 ¼ 
hu�u	 þ Pg�	; (11)

and

Sa � Srr; Sb � S��: (12)

The Laplacian of the lapse function with respect to the
physical metric is given by

r2�¼ 1

�e4�

�
@2r��@r�

�
@ra

2a
�@rb

b
�2@r��2

r

��
: (13)

Next, the evolution equation for the independent com-
ponent of the traceless part of the conformal extrinsic
curvature, Aa, is given by

@tAa ¼ �r@rAa � ðrrrr�� 1
3r2�Þ þ �ðRr

r � 1
3RÞ

þ �KAa � 16��ðSa � SbÞ; (14)

where Rr
r is the mixed radial component of the Ricci tensor,

R its trace, and rrrr� is written as

rrrr� ¼ 1

�e4�

�
@2r�� @r�

�
@ra

2a
þ 2@r�

��
: (15)

Finally, the evolution equation for �̂r, the radial compo-

nent of the additional BSSN variables �̂i ¼ �̂mn�̂i
mn with

�̂a
bc ¼ �̂a

bc � �
� a
bc, is given by

@t�̂
r¼�r@r�̂

r��̂r@r�
rþ1

a
@2r�

rþ2

b
@r

�
�r

r

�

þ�

3

�
1

a
@rðr̂m�

mÞþ2�̂rr̂m�
m

�

�2

a
ðAa@r�þ�@rAaÞþ2�

�
Aa�̂

r� 2

rb
ðAa�AbÞ

�

þ��

a

�
@rAa�2

3
@rKþ6Aa@r�

þðAa�AbÞ
�
2

r
þ@rb

b

�
�8�jr

�
; (16)

where we take � ¼ 2.
Note that in the simulations shown in Sec. V we have

evolved the quantity X � e�2� instead of the conformal
factor � (although similar conclusions can be drawn if
the conformal factor � is used instead). We replace
Eq. (4) by the following evolution equation for X:

@tX ¼ �r@rX � 1
3Xð�K � �r̂m�

mÞ: (17)

In addition to the evolution equations there are con-
straint equations, the Hamiltonian and the momentum
constraints, which are only used as diagnostics of the
accuracy of the numerical evolutions:

H � R� ðA2
a þ 2A2

bÞ þ 2
3K

2 � 16�E ¼ 0; (18)

Mr � @rAa � 2

3
@rK þ 6Aa@r�

þ ðAa � AbÞ
�
2

r
þ @rb

b

�
� 8�jr ¼ 0: (19)

Gauge choices.—In addition to the BSSN spacetime
variables, there are two more variables left undetermined,
the lapse, �, and the shift vector, �i. The code can handle
arbitrary gauge conditions; however, unless otherwise in-
dicated, we use the so-called ‘‘nonadvective 1þ log’’
condition [18] for the lapse, and a variation of the
‘‘gamma driver’’ condition for the shift vector [12,19].
The form of this slicing condition is expressed as

@t� ¼ �2�K: (20)

For the radial component of the shift vector, we choose the
Gamma-driver condition, which is written as

@tB
r ¼ 3

4@t�̂
r; (21)

@t�
r ¼ Br; (22)

where the auxiliary variable Br is introduced.

B. Formulation of the hydrodynamic equations

The general relativistic hydrodynamic equations, ex-
pressed through the conservation equations for the stress-
energy tensor T�	 and the continuity equation, are

r�T
�	 ¼ 0; r�ð
u�Þ ¼ 0: (23)

Following [17], the general relativistic hydrodynamic
equations are written in a conservative form in spherical
coordinates. The following definitions for the hydrody-
namic variables are used:

vr � ur

�ut
þ �r

�
; (24)

W � �ut; (25)

where W is the Lorentz factor. By defining the vector of
unknowns, U, as

U ¼ ffiffiffiffi
�

p ðD; Sr; �Þ; (26)

where the conserved quantities are

D ¼ 
W; (27)

Sr ¼ 
hW2vr; (28)

� ¼ 
hW2 � P�D; (29)
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and fluxes, Fr, as

Fr ¼ ffiffiffiffiffiffiffi�g
p ½Dðvr � �r=�Þ; Srðvr � �r=�Þ
þ P; �ðvr � �r=�Þ þ Pvr�; (30)

the set of hydrodynamic equations (23) can be written in
conservative form as

@tUþ @rF
r ¼ S; (31)

where S is the vector of sources given by

S ¼ ffiffiffiffiffiffiffi�g
p ½0; T00ð12ð�rÞ2@r�rr � �@r�Þ þ T0r�r@r�rr

þ T0
r @r�

r þ 1
2T

rr@r�rr; ðT00�r þ T0rÞð�rKrr � @r�Þ
þ TrrKrr�: (32)

To close the system of equations, we choose the �-law
equation of state given by

P ¼ ð�� 1Þ

; (33)

where 
 is the specific internal energy.

III. PIRK METHODS

Let us consider the following system of PDEs,

ut ¼ L1ðu; vÞ; vt ¼ L2ðuÞ þL3ðu; vÞ; (34)

L1, L2 and L3 being general nonlinear differential
operators. Let us denote by L1, L2 and L3 their discrete
operators, respectively. L1 and L3 will be treated in an
explicit way, whereas the L2 operator will be considered to
contain the unstable terms and, therefore, treated partially
implicitly.

We use a Runge-Kutta (RK) method to update in time
the previous system (34). Each stage of the PIRK method
consists of two steps: (i) the variable u is evolved explic-
itly; (ii) the variable v is evolved taking into account the
updated value of u for the evaluation of the L2 operator.
This strategy implies that the computational costs of the
methods are comparable to those of the explicit ones. The
resulting numerical schemes do not need any analytical or
numerical inversion, but they are able to provide stable
evolutions due to their partially implicit component.

For the numerical simulations shown in the paper, we
use the second-order PIRK scheme, which follows as

uð1Þ ¼ un þ �t L1ðun; vnÞ;
vð1Þ ¼ vn þ�t ½12L2ðunÞ þ 1

2L2ðuð1ÞÞ þ L3ðun; vnÞ�; (35)

unþ1 ¼ 1
2 ½un þ uð1Þ þ �tL1ðuð1Þ; vð1ÞÞ�;

vnþ1 ¼ vn þ�t

2
½L2ðunÞ þ L2ðunþ1Þ þ L3ðun; vnÞ

þ L3ðuð1Þ; vð1ÞÞ�: (36)

In the first stage, u is evolved explicitly; the updated value

uð1Þ is used in the evaluation of the L2 operator for the

computation of vð1Þ. Once all of the values of the first stage

are obtained, we proceed to the final one. Again, u is
evolved explicitly (using the values of the variables of
the previous time-step and previous stage), and the updated
value unþ1 is used in the evaluation of the L2 operator for
the computation of vnþ1.
This scheme is applied to the hydrodynamic and BSSN

evolution equations. We include all of the problematic
terms appearing in the sources of the equations in the L2

operator. Firstly, the hydrodynamic conserved quantities;
the conformal metric components, a and b; the conformal
factor, �, or the quantity X (function of the conformal
factor); the lapse function, �; and the radial component
of the shift,�r, are evolved explicitly (as u is evolved in the
previous PIRK scheme); secondly, the traceless part of the
extrinsic curvature, Aa, and the trace of the extrinsic cur-
vature, K, are evolved partially implicitly, using updated

values of �, a and b. Then, the quantity �̂r is evolved
partially implicitly, using the updated values of �, a, b, �r;
conformal factor, Aa; andK. Finally, B

r is evolved partially

implicitly, using the updated values of �̂r. Matter source
terms are always included in the explicitly treated parts. In
the Appendix, we give the exact form of the source terms
included in each operator.
The PIRK methods will be further described in a forth-

coming paper [16] and derived up to third order in�t (time
step), in such a way that the number of stages is minimized.
These methods are based on stability properties for both
the explicit and implicit parts, recovering the optimal
strong stability preserving explicit RK methods [20]
when the L2 operator is neglected, i.e., partially implicitly
treated parts are not taken into account.

IV. IMPLEMENTATION

A. Numerics

Derivatives in the spacetime evolution equations are
calculated using a fourth-order centered finite difference
approximation in a uniform grid except for the advection
terms (terms formally like �r@ru), for which an upwind
scheme is used. We also use fourth-order Kreiss-Oliger
dissipation [21] to avoid high frequency noise appearing
near the outer boundary.
We use a second-order slope limiter reconstruction

scheme (monotonized central-difference limiter) to obtain
the left and right states of the primitive variables at each
cell interface and a Harten–Lax–van Leer–Einfeldt ap-
proximate Riemann solver [22,23].

B. Boundary conditions

The computational domain is defined as 0 � r � L,
where L refers to the location of the outer boundary. We
used a cell-centered grid to avoid that the location of the
puncture at the origin coincides with a grid point in
simulations involving a BH. At the origin we impose
the conditions derived from the assumption of spherical
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symmetry. At the outer boundary we impose radiative
boundary conditions [19] for the spacetime variables
expressed as

@tf ¼ �v@rf� v

r
ðf� f0Þ; (40)

where f0 is the background solution of the field and v is the
wave speed.

C. Atmosphere treatment

An important ingredient in numerical simulations based
on finite difference schemes to solve the hydrodynamic
equations is the treatment of vacuum regions. The standard
approach is to add an atmosphere of very low density
filling these regions [24]. We follow this approach and
treat the atmosphere as a perfect fluid with a rest-mass
density several orders of magnitude smaller than that of the
bulk matter. The hydrodynamic equations are solved in
the atmosphere region as in the region of the bulk matter. If
the rest-mass density 
 or specific internal energy 
 fall
below the value set for the atmosphere, these values are
reset to have the atmosphere value of the primitive
variables.

V. NUMERICAL RESULTS

A. Pure gauge dynamics

We first consider the propagation of a pure gauge pulse
using the same initial parameters as in Ref. [12]. The main
difference with respect to [12] is that we do not regularize
the origin and rely only on the PIRK scheme to achieve a
stable numerical simulation. The initial data are given by

� ¼ 0; (41)

a ¼ b ¼ 1; (42)

Aa ¼ Ab ¼ K ¼ 0; (43)

�̂ r ¼ 0; (44)

� ¼ 1þ �0r
2

1þ r2
½e�ðr�r0Þ2 þ e�ðrþr0Þ2�; (45)

with �0 ¼ 0:01 and r0 ¼ 5. We evolve these initial data
with a grid resolution of �r ¼ 0:1 and �t ¼ 0:5�r. We
use zero shift and harmonic slicing,

@t� ¼ ��2K: (46)

In Fig. 1, we show the trace of the extrinsic curvature,K,
as a function of the radius at four different times (t ¼ 0, 5,
10, 15). The initial pulse separates into two pulses prop-
agating in opposite directions. The snapshots of the evolu-
tion of the trace of the extrinsic curvature show that the
evolution remains well behaved everywhere in the compu-
tational grid. We note that at t ¼ 5 the value of K reaches a

value of 0.1 at the origin, but later returns to 0 when the
pulse moves outwards as shown by [12].
In Fig. 2 , we plot the Hamiltonian constraint [Eq. (18)]

at four different times (t ¼ 0, 5, 10, 15). Although the
largest violation of the Hamiltonian constraint occurs close
to the origin (and is of the order of 10�3 for the time frames
shown in Fig. 2), we find that it remains well behaved and
there is no sign of any numerical instability despite the fact
that the initial data are regular at the origin and we do not
impose any regularity conditions there.
In order to asses the convergence of the code, we have

performed three simulations with resolutions �r ¼ 0:1,
�r ¼ 0:05 and �r ¼ 0:025. The Hamiltonian constraint
violations rescaled by the factors corresponding to second-
order convergence at t ¼ 10 are plotted in Fig. 3. All three
lines overlap indicating that the code achieves the second-
order convergence expected for the PIRK scheme used.

B. Schwarzschild black hole

The Schwarzschild metric in isotropic coordinates is
used as initial data to test the ability of the code to evolve
BH spacetimes within the moving puncture approach. The
initial data are such that the 3-metric is written as

dl2 ¼ c 4ðdr2 þ r2d�2Þ; (47)

where the conformal factor is c ¼ ð1þM=2rÞ, M being
the mass of the BH, which we set as M ¼ 1. Here r is the
isotropic radius. Initially the extrinsic curvature is Kij ¼ 0.

We evolve the single stationary puncture initial data with
a precollapsed lapse and initially vanishing shift vector. We
use the gauge conditions given by Eqs. (20)–(22), with a
resolution �r ¼ 0:05, �t ¼ 0:5�r and Nr ¼ 30 000 grid

FIG. 1. Trace of the extrinsic curvature, K, for a pure gauge
pulse as a function of the radius at four different times.
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points to place the outer boundary sufficiently far away
from the puncture so that errors from the boundary do not
affect the evolution.

As pointed out by [25,26], the numerical slices of a
Schwarzschild BH spacetime with these gauge conditions
reach a stationary state after t� 20. This is shown in Fig. 4,
where the time evolution of the maximum value of the
radial shift �r is displayed in the upper panel. After an

initial phase in which the maximum value of the shift
vector grows rapidly, it settles to a value of �0:15 and
we find almost no drift until the end of the simulation at
t ¼ 2500. In the lower panel of Fig. 4, we show the time
evolution of the mass of the apparent horizon (AH), de-

fined asMAH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=16�

p
, whereA is the area of the AH.

We notice thatMAH is conserved well during the evolution
and the error at t ¼ 2500 is less than 0.2%.
The Hamiltonian constraint violation results are

displayed in Fig. 5, which shows the L2-norm of the
Hamiltonian constraint as a function of time. Both the
initial phase driven by the gauge dynamics (see upper inset
in Fig. 5) and the stationary phase are clearly visible. The
lower inset in Fig. 5 shows that the L2-norm computed
outside the AH is about three orders of magnitude smaller
than the L2-norm computed in the whole grid, which is to
be expected as the largest spatial violation of the constraint
occurs near the puncture (due to the finite differencing of
the irregular solution).

C. Spherical relativistic stars

For our first numerical simulation of the coupling of
Einstein equations and the general relativistic hydrody-
namic equations, we use the Tolman-Oppenheimer-
Volkoff (TOV) solution. We focus on an initial TOV model
that has been extensively investigated numerically by
[24,27]. This model is a relativistic star with polytropic
indexN ¼ 1, polytropic constant � ¼ 100 and central rest-
mass density 
c ¼ 1:28� 10�3, so that its gravitational
mass is M ¼ 1:4, its baryon rest mass M	 ¼ 1:5 and its
radius R ¼ 9:59.

FIG. 2. Hamiltonian constraint for a pure gauge pulse as a
function of the radius at four different times.

FIG. 4. Time evolution of the maximum value of the radial
shift �r (upper panel) and of the mass of the AH (lower panel) in
the single puncture BH simulation.

FIG. 3 (color online). Hamiltonian constraint at t ¼ 10 for
simulations of a pure gauge wave with three different resolutions
�r ¼ 0:1, �r ¼ 0:05, and �r ¼ 0:025 rescaled by the factors
corresponding to second-order convergence.
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We evolve these initial data with our nonlinear code until
t ¼ 3000 (�17 ms). In the upper panel of Fig. 6 we plot
the time evolution of the central rest-mass density for a
simulation with �r ¼ 0:025 and Nr ¼ 4000 until t ¼
1000. In the inset we show the same quantity for the whole
evolution. We observe that the truncation errors at this
resolution are enough to excite small periodic radial oscil-
lations, visible in this plot as periodic variations of the
central density. We see that the damping of the periodic
oscillations of the central rest-mass density is very small
during the whole evolution, which highlights the low nu-
merical viscosity of the implemented scheme.

By computing the Fourier transform of the time evolu-
tion of the central rest-mass density we obtain the power
spectrum, which is shown with a solid line in the lower
panel of Fig. 6, while the dashed vertical lines indicate the
fundamental frequency and the first two overtones com-
puted by [24]. Note that the locations of the frequency
peaks for the fundamental mode and the two overtones are
in very good agreement, the relative error in the funda-
mental frequencies being less than 0.1%.

The result of this simulation shows the ability of the
scheme to maintain the numerical stability in long-term
nonvacuum regular spacetime simulations in spherical co-
ordinates without the need for an additional regularization
at the origin.

D. Gravitational collapse of a marginally stable
spherical relativistic star

We next test the capability of the code to follow BH
formation with the gravitational collapse to a BH of a

marginally stable spherical relativistic star. For this test,
we consider a � ¼ 100, N ¼ 1 polytropic star with central
rest-mass density 
c ¼ 3:15� 10�3, so that its gravita-
tional mass is M ¼ 1:64 and its baryon rest-mass M	 ¼
1:79. In order to induce the collapse of the star, we initially
increase the rest-mass density by 0.5%.
We present numerical results for a simulation of the

gravitational collapse of a marginally stable spherical rela-
tivistic star performed with resolution of �r ¼ 0:125. We
use the gauge conditions given in Eqs. (20)–(22). We plot
in Fig. 7 the time evolution of the normalized central
density until t ¼ 300 (upper panel) and of the mass of
the AH in units of the ADM mass of the system until t ¼
500 when we stopped the simulation (lower panel).
Overall, as the collapse proceeds the star increases its
compactness, reflected in the increase of the central density
as shown in the upper panel. The most unambiguous
signature of the formation of a BH during the simulation
is the formation of an AH. Once an AH is found by the AH
finder, we monitor the evolution of the AH area, and also of
its mass which is plotted, in the lower panel of Fig. 7. This
panel shows that approximately at t� 167, an AH is first
found and that the mass of the AH relaxes to the ADM
mass of the system. The difference in the ADM mass and
the mass of the AH at t ¼ 500 is about 0.2%.
In Fig. 8 we plot the L2-norm of the Hamiltonian con-

straint in the collapse simulation. The vertical dashed line
indicates the time of AH formation, and the inset shows the

FIG. 5. L2-norm of the Hamiltonian constraint in the single
puncture BH simulation. The insets show the L2-norm during
the initial phase and the L2-norm computed outside the AH,
respectively.

FIG. 6 (color online). The upper panel shows the time evolu-
tion of the normalized central density for an M ¼ 1:4, � ¼ 100,
N ¼ 1 polytrope. Power spectrum of the evolution of the central
rest-mass density is shown in the lower panel. F, H1 and H2
represent the frequency of the fundamental mode and the first
two overtones computed by [24].
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L2-norm computed outside the AH. The largest violation
of the constraint occurs during the AH formation, and
afterwards the value of the L2-norm settles to �10�3. As
in the case of a Schwarzschild BH, the L2-norm of the
Hamiltonian constraint computed outside the AH is about
two orders of magnitude smaller than the L2-norm com-
puted in the whole grid.

Results of this simulation indicate that the numerical
scheme to integrate the evolution equations in time can
handle accurately the transition between a regular space-
time (that of the star) and an irregular spacetime containing
a puncture singularity at r ¼ 0.

VI. CONCLUSIONS

In this paper we have presented a numerical code
solving the BSSN equations in spherical symmetry and
the general relativistic hydrodynamic equations written in
flux-conservative form. A key feature of the code is that it
uses a second-order PIRKmethod to integrate the evolution
equations in time. This numerical scheme has proved to be
crucial and sufficient to obtain the desired stability without
the need for a regularization scheme at the origin.
We have performed and discussed a number of tests

to assess the accuracy and expected convergence of the
code—namely a pure gauge wave, the evolution of a single
BH, the evolution of spherical relativistic stars in equilib-
rium, and the gravitational collapse of a spherical relativ-
istic star leading to the formation of a BH. We remark that,
to our knowledge, we have presented the first successful
numerical simulations of regular spacetimes (vacuum and
nonvacuum) using the covariant BSSN formalism in
spherical coordinates without the need for a regularization
algorithm at the origin (or without performing a spherical
reduction of the equations [28,29]).
In addition, curvilinear coordinate systems facilitate the

use of nonuniform radial grids (i.e., logarithmic radial
coordinates) to achieve the required high resolution near
the origin while still keeping the outer boundaries suffi-
ciently far away. This is particularly useful if one aims to
study astrophysical phenomena like the gravitational col-
lapse or the dynamics of accretion disks around BHs. Such
approach is simpler, and likely computationally less ex-
pensive, than the adaptive mesh refinement techniques
used in 3D codes in Cartesian coordinates.
We note that, unlike with the fully constrained formula-

tion [14] in which some of the equations take an elliptic
form and where a similar PIRK has been successfully
tested, the BSSN formulation is purely hyperbolic, and
yet the application of the PIRK method has proved very
robust and provided the numerical stability necessary to
perform long-term simulations of regular spacetimes in
curvilinear coordinates. The work we have presented also
paves the way for future comparisons of the performance in
curvilinear coordinates between the BSSN and the fully
constrained formulation system. Moreover, the application
of the PIRK method to the BSSN equations in 3D in such
coordinate systems should be rather straightforward and
we aim to investigate this in a future work.
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APPENDIX: DETAILED SOURCE TERMS
INCLUDED IN THE PIRK OPERATORS FOR THE

EVOLUTION EQUATIONS

The evolution Eqs. (6), (7), (9), (14), (16), (17), and (20)
–(22) are evolved using a second-order PIRK method,
described in Sec. III. In this Appendix the source terms
included in the explicit or partially implicit operators are
detailed.

First, the hydrodynamic conserved quantities, a, b, X, �
and �r, are evolved explicitly, i.e., all of the source terms
of the evolution equations of these variables are included in
the L1 operator of the second-order PIRK method.

Second, Aa and K are evolved partially implicitly, using
updated values of �, a and b; more specifically, the corre-
sponding L2 and L3 operators associated to the evolution
equations for Aa and K are

L2ðAaÞ ¼ �ðrrrr�� 1
3r2�Þ þ �ðRr

r � 1
3RÞ; (A1)

L3ðAaÞ ¼ �r@rAa þ �KAa � 16��ðSa � SbÞ; (A2)

L2ðKÞ ¼ �r2�; (A3)

L3ðKÞ ¼ �r@rK þ �ðA2
a þ 2A2

b þ 1
3K

2Þ
þ 4��ðEþ Sa þ 2SbÞ: (A4)

Then, �̂r is evolved partially implicitly, using updated
values of �, a, b, �r; conformal factor, Aa; and K; more
specifically, the corresponding L2 and L3 operators asso-

ciated to the evolution equation for �̂r are

L2ð�̂rÞ ¼
1

a
@2r�

r þ 2

b
@r

�
�r

r

�
þ �

3a
@rðr̂m�

mÞ

� 2

a
ðAa@r�þ �@rAaÞ � 4�

rb
ðAa � AbÞ

þ ��

a

�
@rAa � 2

3
@rK þ 6Aa@r�

þ ðAa � AbÞ
�
2

r
þ @rb

b

��
; (A5)

L3ð�̂rÞ ¼ �r@r�̂
r � �̂r@r�

r þ 2�

3
�̂rr̂m�

m

þ 2�Aa�̂
r � 8�jr

��

a
: (A6)

Finally, Br is evolved partially implicitly, using updated

values of �̂r, i.e., L2ðBrÞ ¼ 3
4@t�̂

r and L3ðBrÞ ¼ 0.
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