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In this paper, we investigate thick branes with a nonminimally coupled background scalar field, whose

solution is a single-kink or a double-kink. The effects of the nonminimal coupling constant � on the

structure of the thick branes and the localization of gravity, fermions, scalars, and vectors are discussed. It

is shown that each brane will split into two sub-branes as increasing the nonminimal coupling constant �.

By investigating the tensor perturbation equations of gravity and the general covariant Dirac equation of

fermions, we find that both the gravity zero mode and left-chiral fermion zero mode are localized at the

center of the single-kink branes and localized between the two sub-branes generated by the double kink,

which indicates that the constant � does not effect the localization of these zero modes. However, the zero

mode of scalars is localized on each sub-brane (for both single-kink and double-kink branes) when � is

larger than its critical value �0. The effects of the nonminimal coupling constant � on the resonances of

gravity and fermions with finite lifetime on the branes are also discussed.
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I. INTRODUCTION

The idea that our observed four-dimensional Universe
might be a hypersurface, embedded in a higher-dimensional
space-time (the bulk), provides new insights into solving the
gauge hierarchy and cosmological constant problems [1–8].
In the Randall-Sundrum (RS) braneworld model, the zero
mode of gravity is localized on the brane, which reproduces
the standard Newtonian gravity on the brane [5]. But in this
model, the brane is very ideal because its thickness is
neglected. In the most fundamental theory, there seems to
exist a minimum scale of length; thus, the thickness of a
brane should be considered in more realistic field models.
For this reason, more natural thick-brane scenarios have
been investigated [9–41]. For some comprehensive reviews
about thick branes, see Refs. [42–47].

In braneworld theory, the localization of gravity and
various bulk matter fields is a very important issue. In
order to recover the effective four-dimensional gravity,
the gravity zero mode should be localized on branes. In
the other hand, various bulk matter fields should be local-
ized on branes by a natural mechanism, for the purpose of
building up the standard model. Generally, the massless
scalar fields [48] and graviton [5] could be trapped on
branes of different types. Spin-1 Abelian vector fields can
be localized on the RS brane in some higher-dimensional
cases [49] or on the thick de Sitter branes and Weyl thick
branes [50]. It is important to study the localization prob-
lem of the spin-1=2 fermions. Without introducing the
scalar-fermion coupling, fermions cannot be localized on
branes in five and six dimensions [48–74]. In some cases,

there may exist a single bound state and a continuous
gapless spectrum of massive fermion Kaluza-Klein (KK)
modes [24,50]. In some other cases, one can obtain finite
discrete KK modes (mass gap) and a continuous gapless
spectrum starting at a positive m2 [27,63,64].
Generally, including nonlinear terms of the various cur-

vature tensors (Riemann, Ricci, Weyl) and nonminimally
coupled terms in the effective action of gravity is a very
common trend from quantum field theory and cosmology.
These theories cover fðRÞ modified gravity, the Gauss-
Bonnet gravity, scalar-tensor gravity, and so on. On the
other hand, in thick-brane scenarios, branes are made of
background scalar fields, so it is natural to study gravity
coupled to background scalars. There are a lot of inves-
tigations of thick branes in the case of the minimal cou-
pling, but for the case of the nonminimal coupling, the
investigations are limited. Recently, braneworld models
with a nonminimally coupled bulk-scalar field, via an
interaction term � 1

2�R�
2 with � a background scalar

field and � a nonminimal coupling constant, have been
studied. Static solutions of these models have been exam-
ined in Refs. [75–78]. The Newton’s law for brane models
with a nonminimally coupled bulk-scalar field was inves-
tigated in Ref. [79]. The conditions for localization of
gravity for thick braneworlds with a nonminimally coupled
term and Gauss-Bonnet term were discussed in Ref. [80].
In Ref. [81], the effective dark energy of the brane-
Universe acquires a dynamical nature, as a result of the
nonminimal coupling which provides a mechanism for an
indirect ‘‘bulk-brane interaction’’ through gravity.
Furthermore, in the braneworld theory, the continuous

deformation from a single brane to two sub-branes, by
varying parameters, is called the phenomenon of brane
splitting [16,18,72,73]. Generally, the single-kink back-
ground scalar field can generate the single brane, and the
double-kink scalar field can also result in the double brane.
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In this paper, we find that increasing the nonminimal
coupling constant � can also make the brane splitting
from a single brane to two sub-branes for the single-kink
background scalar field. The fermion localization on a split
brane has been studied in Ref. [72–74]. Here, for the thick
branes generated by a nonminimally coupled background
scalar, we find that the different fields are localized on
different positions in the extra dimension. This situation is
similar to the so-called ‘‘split fermion’’ model [82,83],
which offers the solution to the fast proton decay.

In this paper, we are interested in investigating the struc-
ture of thick branes generated by a nonminimally coupled
background scalar and the effects of the nonminimal cou-
pling constant on the localization of gravity and various
matter fields. Two general cases of the background scalar
field are studied,which are set as a single-kink and a double-
kink. We find that the structure of the thick branes is very
interesting, and it is related to the nonminimal coupling
constant �. For the single-kink scalar case, as � becomes
larger, the single brane will split into two sub-branes, and
the distance of the two sub-branes will increase. For the
double-kink scalar case, there are two sub-branes located at
both sides of z ¼ 0, and as � becomes larger, the distance of
the two sub-branes will also increase. Further, the effects
of the nonminimal coupling constant on the localization
of gravity and various matter fields are investigated.
Compared to the case of the minimal coupling, the local-
ization of the zero modes of gravity and various matter
fields are similar; however, the behavior of the scalar zero
mode is different. With the increase of �, the scalar zero
mode is localized first on the center of the two sub-branes
for the single-kink case and between them for double-kink
case, and then on each sub-brane. Furthermore, with the
increase of �, the resonances of gravity will appear, which
correspond to gravitons with a finite lifetime on the branes.
This phenomenon does not appear in the case of the mini-
mal coupling. The resonances of fermions also exist, and
this is similar to the minimal coupling case. The effects of
the nonminimal coupling constant � on the resonances of
gravity and fermions are also discussed.

The organization of this paper is as follows: In Sec. II,
the model of thick branes with nonminimally coupled
bulk-scalar field in five-dimensional space-time is de-
scribed, and the structure of the branes is also discussed.
Then, in Sec. III, we investigate the localization of gravity
on the branes. In Sec. IV, the localization of various bulk
matter fields is investigated. Finally, the conclusion is
given in Sec. V.

II. THE STRUCTURE OF THE THICK
BRANES WITH A NONMINIMALLY COUPLED

BULK-SCALAR FIELD

We start with the following five-dimensional action of
thick branes, which are generated by a real nonminimally
coupled scalar field �,

S¼
Z
d5x

ffiffiffiffiffiffiffi�g
p �

Fð�ÞR�1

2
gMN@M�@N��Vð�Þ

�
; (1)

where R is the five-dimensional scalar curvature and Fð�Þ
is chosen as

Fð�Þ ¼ 1

2�2
5

ð1� �2
5��

2Þ; (2)

�2
5 ¼ 8�G5 withG5 the five-dimensional Newton constant

and � is a dimensionless coupling constant. The five-
dimensional cosmological constant has been included in
the scalar potential Vð�Þ. Here, Fð�Þ should be positive,
and it is clear that the standard thick brane action is
recovered when the coupling constant � ¼ 0.
The Einstein equations corresponding to the action (1)

are expressed as follows:

RMN � 1
2gMNR ¼ TMN; (3)

with TMN the energy-momentum tensor for the scalar field,

TMN ¼ @M�@N�� gMN½12gPQ@P�@Q�þ Vð�Þ�
þ 2rMrNFð�Þ � 2gMNhFð�Þ
þ ð1� 2Fð�ÞÞðRMN � 1

2gMNRÞ; (4)

where h is the five-dimensional d’Alembertian operator.
We have set �2 ¼ 1.
The equation of motion for the scalar field reads

h�þ dFð�Þ
d�

R� dVð�Þ
d�

¼ 0: (5)

The above equation and the Einstein equations (3) are not
independent [75].
The line element for the background space-time describ-

ing a thick flat brane is assumed as

ds2 ¼ gMNdx
MdxN ¼ e2AðyÞ���dx

�dx� þ dy2; (6)

where e2AðyÞ is thewarp factor,���¼diagð�1;þ1;þ1;þ1Þ
is the Minkowski metric, and y stands for the extra coor-
dinate. We suppose that the scalar field is considered to be a
function of y only, i.e., � ¼ �ðyÞ. From Eqs. (3)–(6), we
can obtain the following equations:

3ð1� ��2ÞðA00 þ 2A02Þ þ ð12 � 2�Þ�02 þ Vð�Þ � 2���00 � 6�A0��0 ¼ 0; (7a)

6ð1� ��2ÞA02 � 1
2�

02 þ Vð�Þ � 8�A0��0 ¼ 0; (7b)

��00 � 4A0�0 � �ð8A00 þ 20A02Þ�þ dVð�Þ
d�

¼ 0; (7c)
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where the prime stands for the derivative with respect to the
extra coordinate. A static analytical solution, for a narrow
range of the coupling constant values 0< �< 1

6 , has been
studied in Ref. [77]. In this paper, we will investigate the
effect of the coupling constant � on the brane structure and
the localization of gravity and various spin fields in some
general situations.

For the sake of convenience of obtaining the mass-
independent localization potential for gravitons, we will
follow Ref. [5] and change the metric given in Eq. (6) to the
conformally flat form

ds2 ¼ e2AðzÞð���dx
�dx� þ dz2Þ (8)

by performing the coordinate transformation

dz ¼ e�AðyÞdy: (9)

The equations of the motion for the background scalar field
�ðzÞ and the warp factor AðzÞ in the z coordinate can be
written as

3ð1� ��2ÞðA02 þ A00Þ þ 1
2�

02 þ e2AVð�Þ � 2��02 � 2���00 � 4���00 ¼ 0; (10a)

6ð1� ��2ÞA02 � 1
2�

02 þ e2AVð�Þ � 8��A0�0 ¼ 0; (10b)

�00 þ 3A0�0 þ 4��ð3A02 þ 2A00Þ � e2A
dVð�Þ
d�

¼ 0: (10c)

As we have already mentioned, the above equations are
not independent. Hence, we choose to solve Eq. (10b) and
the following equation, which can be obtained from
Eqs. (10a) and (10b):

3ð1���2ÞðA00 �A02Þþ4��A0�0

þð1�2�Þ�02�2���00 ¼0: (11)

By considering that the energy density T00ðzÞ should
vanish as z ! �1, the background scalar field should
satisfy �ðz ! �1Þ<1 and �0ðz ! �1Þ<1, so the
background scalar field is naturally considered as a kink
solution,

�ðzÞ ¼ �0tanh
kðbzÞ; (12)

where �0 and b are positive real parameters, and the
parameter k is a positive odd number. Here, we just only
consider two cases: the k ¼ 1 single-kink solution and the
k ¼ 3 double-kink solution. The background scalar has the
following behavior at z ¼ 0 and z ! �1:

�ð0Þ ¼ 0; �ðz ! �1Þ ¼ ��0: (13)

Because Fð�Þ> 0 and � � �0, the coupling constant
� < 1

�0
. It is very difficult to solve Eq. (11) by an analytical

method, so we will numerically solve it. First, we will
analyze the asymptotic behavior of the warp factor at
z ! �1. When z ! �1, we have for the scalar field
that � ! ��0, �

0 ! 0, and �00 ! 0. Hence, Eq. (11)
reduces to A00ðzÞ � A02ðzÞ ¼ 0 as z ! �1, from which
the asymptotical form of the warp factor can be given as
eAðzÞ ¼ 1

cþbjzj ’ 1
bjzj , which is the same as the RS brane-

world. Next, we want to obtain the approximate solution of
Eq. (11) in the vicinity of z ¼ 0. We expand the back-
ground scalar field �ðzÞ at z ¼ 0:

�ðzÞ ¼ �0ðbzÞk � 1
3�0kðbzÞkþ2 þOððbzÞkþ4Þ: (14)

For k ¼ 1, by using �ðzÞ ¼ �0ðbzÞ � 1
3�0ðbzÞ3 þ

OððbzÞ5Þ, the behavior of the warp factor in the vicinity
of z ¼ 0, from Eq. (11), can be expressed as

AðzÞ ¼ 1
6�

2
0ð2�� 1ÞðbzÞ2 þOððbzÞ3Þ: (15)

We find that the behavior of the warp factor in the vicinity
of z ¼ 0 is related closely to a critical coupling constant
�0 ¼ 1

2 . When small � with � < �0, the maximum of the

warp factor e2AðzÞ is at z ¼ 0, and this will correspond to
one brane located at z ¼ 0. When � is closer to �0, we will
see that the thick brane will split into two sub-branes.
When � > �0, the maxima of the warp factor are at both
sides of z ¼ 0, and this will result in the increase of the
distance of the two sub-branes.
For k ¼ 3, the scalar �ðzÞ can be expressed as

�ðzÞ ¼ �0ðbzÞ3 þOððbzÞ5Þ at z ¼ 0. And the warp factor
can be described as

AðzÞ ¼ 1
30�

2
0ð10�� 3ÞðbzÞ6 þOððbzÞ7Þ: (16)

Here, the critical coupling constant is �0 ¼ 3
10 . The behav-

ior of the warp factor is the same as the case k ¼ 1.
However, there are always two sub-branes for any �
because the scalar is a double-kink.
Equation (11) can be solved numerically with the fol-

lowing initial conditions:

Að0Þ ¼ A0ð0Þ ¼ 0: (17)

The shapes of the warp factor e2A and the energy density
T00ðzÞ are shown in Figs. 1 and 2 for k ¼ 1 and k ¼ 3,
respectively. For k ¼ 1, when � is very small, there is only
one brane located at z ¼ 0, and when increasing �, the
brane gradually splits two sub-branes located at both
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sides of z ¼ 0. The distance of the two sub-branes in-
creases with �. For k ¼ 3, there are two sub-branes located
at both sides of z ¼ 0 even for small �, and the distance of
the two sub-branes also increases with �.

The scalar potential Vð�Þ can also be solved numeri-

cally by Eqs. (10b) and (11), and it is shown in Figs. 1(d)

and 2(d) for single-kink (k ¼ 1) and double-kink (k ¼ 3),
respectively. Because the range of the background scalar

�ðzÞ is from ��0 to þ�0, the scalar potential Vð�Þ only
can be given between Vð��0Þ and Vðþ�0Þ by a numerical

method. It is shown that the scalar potential is a double-

well potential. When the coupling constant � ¼ 0, the

vacua of the potential are at ��0, and the background

scalar (single- or double-kink) connects two vacua of the

double-well potential. When � > 0, the two vacua are not

at��0, and this can also be obtained by analyzing the field

equations. From Eq. (10c), the following expression is

obtained easily:

dVð�Þ
�

¼ e�2A½�00 þ 3A0�0 þ 4��ð3A02 þ 2A00Þ�: (18)

Considering that the background scalar field and the warp
factor have the asymptotic behavior �ð�1Þ ! ��0,
�0ð�1Þ ! �4k�0e

�2z, �00ð�1Þ ! �8k�0e
�2z,

Að�1Þ ! � lnbjzj, A0ð�1Þ ! � 1
jzj , and A00ð�1Þ ! 1

z2
,

the above expression can be reduced at infinity to

dVð�Þ
d�

! �20�b2�0; (19)

and it is clear that the two vacua of the potential Vð�Þ are at
��0 only for � ¼ 0. At � ¼ 0, the scalar potential Vð�Þ
has different behaviors for k ¼ 1 and k ¼ 3. For k ¼ 1,
when the coupling constant � is small, the scalar potential
Vð�Þ has a local maximum at � ¼ 0, which is similar to
the �4 model in particle physics, and when � becomes

FIG. 1 (color online). The shapes of the warp factor e2A, the energy density T00ðzÞ, the background scalar field �ðzÞ, and scalar
potential Vð�Þ. The parameters are set to � ¼ 0:1 for the thick red line, � ¼ 0:5 for the dashed green line, and � ¼ 0:9 for the thin blue
line. The other parameters are set as �0 ¼ 1, b ¼ 1, and k ¼ 1.
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large and closes to 1
�0

¼ 1, the potential at� ¼ 0 turns to a

local minimum, which is similar to the �6 model in
particle physics. For k ¼ 3, Vð�Þ always has a local mini-
mum at � ¼ 0, which is the same as the �6 model.

III. LOCALIZATION OF GRAVITY ON
THE THICK BRANES

In this section, we will investigate the localization of the
gravity on the branes, by the linearized equations for the
metric fluctuations. From the Einstein equations (3), we
can obtain the alternative form of the Einstein equations:

2Fð�ÞRMN ¼ ~TMN � 1
3gMN

~T; (20)

where ~T ¼ gMN ~TMN and

~T MN ¼ @M�@N�� gMN½12gPQ@P�@Q�þ Vð�Þ�
þ 2rMrNFð�Þ � 2gMNhFð�Þ: (21)

From the above equations, we will obtain the linearized
equations for the metric fluctuations hMN .
Under the axial gauge conditions h5M ¼ 0, the total

metric can be written in the form

ds2 ¼ e2AðyÞð��� þ h��Þdx�dx� þ dy2: (22)

The Ricci tensor can be computed from the metric (22)

RMN ¼ Rð0Þ
MN þ Rð1Þ

MN þ . . . ; (23)

where the zero-order terms are

Rð0Þ
�� ¼ �e2AðA00 þ 4A02Þ���; Rð0Þ

55 ¼ �4ðA00 þ A02Þ;
Rð0Þ
5� ¼ 0;

and the first-order terms are

FIG. 2 (color online). The shapes of the warp factor e2A, the energy density T00ðzÞ, the background scalar field �ðzÞ, and scalar
potential Vð�Þ. The parameters are set to � ¼ 0:1 for the thick red line, � ¼ 0:3 for the dashed green line, and � ¼ 0:9 for the thin blue
line. The other parameters are set as �0 ¼ 1, b ¼ 1, and k ¼ 3.
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Rð1Þ
��¼�e2Að12@2yþ2A0@yþA00 þ4A02Þh��

� 1
2h

ð4Þh��� 1
2���e

2AA0@yð��	h�	Þ;
� 1

2�
�	ð@�@�h�	�@�@�h�	�@�@�h�	Þ; (24)

Rð1Þ
55 ¼ �1

2ð@2y þ 2A0@yÞ���h��; (25)

Rð1Þ
5� ¼ 1

2�
�	@yð@�h�	 � @�h�	Þ: (26)

And we can also obtain

~T MN ¼ ~Tð0Þ
MN þ ~Tð1Þ

MN þ . . . ; (27)

with

~Tð0Þ
�� ¼ �e2A���

�
6
dF

d�
�0A0 þ 2

d2F

d�2
�02 þ 2

dF

d�
�00

þ 1

2
�02 þ Vð�Þ

�
; (28)

~T ð0Þ
55 ¼ 1

2
�02 � Vð�Þ � 8

dF

d�
�0A0; ~Tð0Þ

5� ¼ 0; (29)

and

~Tð1Þ
��¼�e2Ah��

�
6
dF

d�
�0A0 þ2

d2F

d�2
�02þ2

dF

d�
�00

þ1

2
�02þVð�Þ

�
þe2A

dF

d�
�0h0���e2A���

dF

d�
�0h0;

(30)

~T ð1Þ
55 ¼ � dF

d�
�0h0; ~Tð1Þ

5� ¼ 0; (31)

where h ¼ ���h��. From above equations and consider-

ing the fluctuations h�� satisfy the transverse @�h�� ¼ 0

and traceless h ¼ ���h�� ¼ 0 conditions, we can obtain

the following equations:

½@2y þQ0ðyÞ@y þ e�2Ahð4Þ�hTT��ðx; yÞ ¼ 0; (32)

where we have set

QðyÞ ¼ 4AðyÞ þ lnFð�ðyÞÞ: (33)

Hence, as we required in Sec. II, Fð�ðyÞÞ should satisfy

Fð�ðyÞÞ> 0. By using the decomposition hTT��ðx; yÞ ¼
eipx ~h��ðyÞ, the above equation can be re-expressed as

½@2y þQ0ðyÞ@y þm2e�2A�~h��ðyÞ ¼ 0 (34)

with p�p� ¼ �m2 the four-dimensional mass of the

gravitons.
By using the conformally flat metric (8), Eq. (32) can be

rewritten as

½@2z þ ~Q0ðzÞ@z þm2�~h��ðzÞ ¼ 0; (35)

where ~QðzÞ ¼ 3AðzÞ þ lnFð�ðzÞÞ. By using the transfor-

mation ~h��ðzÞ ¼ e� ~Q=2’��ðzÞ, Eq. (35) can be expressed

as the Schrödinger equation,

½�@2z þ VQMðzÞ�’ðzÞ ¼ m2’ðzÞ; (36)

where ’��ðzÞ has been replaced by ’ðzÞ for simplicity and

the localization potential is read as

VQMðzÞ ¼ 1
2
~Q00ðzÞ þ 1

4
~Q02ðzÞ; (37)

where the prime denotes the derivative with respect to z.
Equation (36) can be rewritten alternatively as

½@z þ 1
2
~Q0ðzÞ�½@z � 1

2
~Q0ðzÞ�’ðzÞ ¼ �m2’ðzÞ; (38)

so it will have a complete system of eigenstates with non-
negative eigenvalues, i.e., m2 � 0.
By setting m ¼ 0, the massless wave function (the zero

mode) can be obtained,

’0ðzÞ / eð3=2ÞAðzÞF1=2ð�ðzÞÞ: (39)

If the zero mode satisfies the normalization condition

Z þ1

�1
’2

0ðzÞdz ¼
Z þ1

�1
e3AðzÞFð�ðzÞÞdz <1; (40)

the zero mode is localized on the brane.
From the solutions which we have shown in Sec. II, the

potential of gravity KK modes VQM (37) and the gravity

zero mode (39) are also can be obtained, which are shown
in Figs. 3 and 4.
By considering the asymptotic behavior of the warp

factor and the background scalar, the asymptotic behavior
of the potential as z ! �1 is

VQMðz ! �1Þ ! 0; (41)

which is similar to a volcano-type potential. The asymp-
totic behavior of the gravity zero mode is

’0ðz ! �1Þ / 1

2
ð1� ��2

0Þ1=2
�

1

bjzj
�
3=2

; (42)

and the normalization condition (40) is equivalent to the
following condition:

Z þ1

1

1

4
ð1� ��2

0Þ
�

1

bjzj
�
3
dz ¼ 1� ��2

0

8b3
<1; (43)

so it is clear that the normalization condition is satisfied.
For k ¼ 1, when � is smaller than the critical coupling
constant �0, the zero mode is localized on the single brane,
and when � is close to �0 or � > �0, the zero mode is
localized at the center of the two sub-branes. For k ¼ 3, the
zero mode is localized between the two sub-branes. The
massive-gravity KK modes are the continuous spectrum
wave functions with m2 > 0 and asymptotically turn into
plane waves.
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Generally, the volcano-type potential implies that there
may exist resonant states, which are quasilocalized on the
branes. So, we will study whether the resonant states exist
in this system. From Figs. 3 and 4, it is seen that with the
coupling constant � becoming larger, the height of the
potential VQM gets higher, with which the resonant states

could be obtained more easily. When the coupling constant
� ¼ 0:9 and other parameters are set as�0 ¼ 1 and b ¼ 1,
there is only one resonant state for the double-kink back-
ground scalar field. However, we find that when the cou-
pling constant � ¼ 0:99 and other parameters are set as
�0 ¼ 1 and b ¼ 1, there is a resonant KK mode for the
single-kink background scalar field, and two resonant
KK modes for the double-kink background scalar field.

Because resonant states are oscillating when far away from
the brane along the extra dimension, they cannot be nor-
malized. As in Ref. [60], we use the function

PGðm2Þ ¼
R
zb�zb

j’ðzÞj2dzR
zmax�zmax

j’ðzÞj2dz (44)

to describe the relative probability for finding the reso-
nances on a thick brane. Here, 2zb is about the width of the
thick brane, and zmax is set to zmax ¼ 10zb. It is clear that
for KK modes with m2 � Vmax

QM (Vmax
QM is the maximum

value of VQM), which are approximately taken as plane

waves, the value of PGðm2Þ will trend to 1
10 .

FIG. 4 (color online). The shapes of the potential of gravity KK modes VQMðzÞ and the gravity zero mode ’0ðzÞ. The parameters are
set to � ¼ 0:1 for the thick red line, � ¼ 0:3 for the dashed green line, and � ¼ 0:9 for the thin blue line. The other parameters are set
as �0 ¼ 1, b ¼ 1, and k ¼ 3.

FIG. 3 (color online). The shapes of the potential of gravity KK modes VQMðzÞ and the gravity zero mode ’0ðzÞ. The parameters are
set to � ¼ 0:1 for the thick red line, � ¼ 0:5 for the dashed green line, and � ¼ 0:9 for the thin blue line. The other parameters are set
as �0 ¼ 1, b ¼ 1, and k ¼ 1.
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The profiles of PG corresponding to the coupling con-
stant � ¼ 0:9 for single-kink scalar field (k ¼ 1) and
double-kink background scalar field (k ¼ 3) are shown in
Fig. 5 for the thick brane, and PG corresponding
to � ¼ 0:99 for k ¼ 1 and k ¼ 3 are shown in Fig. 6. In
these figures, each peak corresponds to a resonant state.
When � ¼ 0:9, it is seen that only for the double-kink
background scalar field, there is a resonant KK mode.
When � ¼ 0:99, there are one and two resonant KK modes

for single-kink and double-kink background scalars, re-
spectively. Hence, we come to the conclusion that if the
coupling constant � becomes larger, the number of the
resonant gravity KK modes will increase. As in Ref. [15],
we estimate the lifetime 
 of a resonant state as 
� ��1,
with � ¼ �m being the full width at half maximum of the
peak. Then, the mass m, width �, and lifetime 
 of the
resonant KK modes are listed in Table I, and the resonant
KK modes are shown in Figs. 7–9.

FIG. 5. The profiles of PG for massive even and odd gravity KK modes for the parameters � ¼ 0:9, �0 ¼ 1, b ¼ 1, k ¼ 1, and
k ¼ 3.

FIG. 6. The profiles of PG for massive even and odd gravity KK modes for the parameters � ¼ 0:99, �0 ¼ 1, b ¼ 1, k ¼ 1, and
k ¼ 3.

TABLE I. The mass, width, and lifetime of the resonances of gravity. The parameters are set to �0 ¼ 1 and b ¼ 1. Here, n is the
order of the resonant states with corresponding m2 from small to large.

� k Height of VQM n m2 m � 


0.9 3 Vmax ¼ 1:1322 1 0.685649 0.82804 0.123867 8.07321

0.99 1 Vmax
QM ¼ 2:8051 1 1.634424 1.27845 0.041632 24.02015

3 Vmax
QM ¼ 2:7746 1 0.831835 0.91205 0.013373 74.77949

2 2.433646 1.56001 0.104536 9.56606
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IV. LOCALIZATION OF THE VARIOUS MATTERS
ON THE THICK BRANES

In this section, we will investigate the effect of non-
minimally coupled parameter � on the localization and
resonances of various bulk matter fields on the thick
branes by presenting the potential of the corresponding
Schrödinger equation for the KK modes of the various
matter fields. Spin-0 scalars, spin-1 vectors, and spin-1=2
fermions will be considered by means of the gravitational
interaction.

A. Scalar fields and vector fields

We first consider the localization of scalar and vector
fields on the thick branes obtained in the previous section,
then turn to fermions in the next subsections. Let us start by
considering the action of a massless real scalar coupled to
gravity

S0 ¼ � 1

2

Z
d5x

ffiffiffiffiffiffiffi�g
p

gMN@M�@N�: (45)

By using the KK decomposition �ðx; zÞ ¼P
n�nðxÞ�nðzÞe�3A=2, it is easy to derive the equations

for the scalar KK modes:

½�@2z þ V0ðzÞ��nðzÞ ¼ m2
n�nðzÞ; (46)

where the Schrödinger potential is given by

V0ðzÞ ¼ 3
2A

00ðzÞ þ 9
4A

02ðzÞ: (47)

Here, mn are the masses of the scalar KK modes; they are
also the masses of the four-dimensional scalars �nðxÞ. It is
clear that the potential V0ðzÞ defined in Eq. (47) is a four-
dimensional mass-independent potential. Note that those
scalar KK modes localized on the branes should satisfy the
following orthonormality conditions:

FIG. 7 (color online). The wave function of the gravity reso-
nant KK mode for the double-kink background scalar. The
parameters are set to � ¼ 0:9, �0 ¼ 1, b ¼ 1, and k ¼ 3.

FIG. 8 (color online). The wave function of the gravity reso-
nant KK mode for the single-kink background scalar. The
parameters are set to � ¼ 0:99, �0 ¼ 1, b ¼ 1, and k ¼ 1.

FIG. 9 (color online). The wave functions of the gravity resonant KK modes for the double-kink background scalar. The parameters
are � ¼ 0:99, �0 ¼ 1, b ¼ 1, and k ¼ 3.
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Z þ1

�1
�mðzÞ�nðzÞdz ¼ �mn: (48)

For the thick branes considered previous section, the
warp factor cannot be written as an analytical form; how-
ever, the potential V0 can be solved numerically, which is
shown in Figs. 10 and 11.

The scalar zero mode can be solved from Eq. (46) by
setting m0 ¼ 0:

�0 / eð3=2ÞAðzÞ: (49)

This scalar zero mode (hence, the four-dimensional mass-
less scalar) is localized on the branes because the bounda-
ries of the five-dimensional space-time along extra
dimension are anti-de Sitter. This can also be confirmed
by the following simple calculation:

�0ðz ! �1Þ !
�

1

bjzj
�
3=2

; (50)

Z 1

1

�
1

bjzj
�
3
dz ¼ 1

2b3
<1: (51)

In fact, this is a well-known conclusion in the braneworld
model. Here, our point is another question: where does the
four-dimensional massless scalar locate when the thick
branes split? As far as we know, when a thick brane splits
into two sub-branes in minimally coupled theories, the
four-dimensional massless scalar is located between the
two sub-branes. Here, for the case of nonminimally
coupled theory considered in this paper, we can see from
Figs. 10 and 11, as well as Eqs. (49), (15), and (16), that the
four-dimensional massless scalar is localized at the center
of the two sub-branes generated by single-kink or between

FIG. 10 (color online). The shapes for the potential of the scalar KK modes V0ðzÞ and the scalar zero mode �0ðzÞ. The parameters are
set to � ¼ 0:1 for the thick red line, � ¼ 0:5 for the dashed green line, and � ¼ 0:9 for the thin blue line. The other parameters are set
as �0 ¼ 1, b ¼ 1, and k ¼ 1.

FIG. 11 (color online). The shapes for the potential of the scalar KK modes V0ðzÞ and the scalar zero mode �0ðzÞ. The parameters are
set to � ¼ 0:1 for the thick red line, � ¼ 0:3 for the dashed green line, and � ¼ 0:9 for the thin blue line. The other parameters are set
as �0 ¼ 1, b ¼ 1, and k ¼ 3.
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them by double-kink as � < �0, just as the usual situation,
while it is localized on each sub-brane when the coupling
parameter � is greater than its critical value �0.

All other scalar KK modes are continuum and massive,
for which we do not find resonant KK modes in the
spectrum. This is different the case of gravity.

For Abelian spin-1 vectors described by the action

S1 ¼ � 1

4

Z
d5x

ffiffiffiffiffiffiffi�g
p

gMNgRSFMRFNS; (52)

because the asymptotical form of the warp factor is same as
the RS braneworld when far away from the branes, with the
same case of RS brane, the vector zero mode can not be
localized on the branes with anti-de Sitter boundaries. This
problem can be solved in some higher-dimensional models
[49] or in thick de Sitter branes and Weyl thick-brane
models [50]. We do not yet find vector resonant KK modes
in the spectrum.

B. Spin-1=2 fermion fields

Next, we will study the localization and resonances of
fermions on the thick branes. In five-dimensional space-
time, fermions are four-component spinors, and their Dirac
structure can be described by the curved-space gamma
matrices �M ¼ e�Að
�; 
5Þ, where 
� and 
5 are the
usual flat gamma matrices in the four-dimensional Dirac
representation. The Dirac action of a massless spin-1=2
fermion coupled to the background scalar � (12) is

S1=2 ¼
Z

d5x
ffiffiffiffiffiffiffi�g

p ð ���MD��� � ��Gð�Þ�Þ; (53)

where � is a coupling constant, andD�� ¼ ð@M þ!MÞ�
with the nonvanishing components of the spin connection
!M for the background metric (8) given by !� ¼
1
2A

0
�
5. Then, the equation of motion reads

½
�@� þ 
5ð@z þ 2A0Þ � �eAGð�Þ�� ¼ 0; (54)

where 
�@� is Dirac operator on the brane.

Now, we would like to investigate the effect of the
coupling parameter � on the localization and resonances
of the Dirac spinor on the branes by studying the above
five-dimensional Dirac equation. Because of the Dirac
structure of the fifth gamma matrix 
5, we expect that the
left- and right-chiral projections of the four-dimensional
part have different behaviors. From the equation of motion
(54), we will search for the solutions of the general chiral
decomposition

� ¼ X
n

½c L;nðxÞLnðzÞ þ c R;nðxÞRnðzÞ�e�2A; (55)

where c L ¼ 1�
5

2 c and c R ¼ 1þ
5

2 c are the left- and

right-chiral components of a four-dimensional Dirac field
c , respectively. By demanding c L;R satisfy the four-

dimensionalmassiveDirac equations
�ð@� þ !̂�Þc L;R ¼

mc R;L, we obtain the following Schrödinger-like equations

for the KK modes of the left- and right-chiral fermions:

ð�@2z þ VLðzÞÞLn ¼ m2Ln; (56a)

ð�@2z þ VRðzÞÞRn ¼ m2Rn; (56b)

where the effective potentials are

VLðzÞ ¼ ð�eAGð�ÞÞ2 � @zð�eAGð�ÞÞ; (57a)

VRðzÞ ¼ VLðzÞj�!��: (57b)

For the purpose of getting the standard four-dimensional
action for a massless fermion and an infinite sum of the
massive fermions,

S1=2 ¼
Z

d5x
ffiffiffiffiffiffiffi�g

p ��½�Mð@M þ!MÞ � �Gð�Þ��

¼ X
n

Z
d4x

ffiffiffiffiffiffiffi�ĝ
p

�c n½
�ð@� þ !̂�Þ �mn�c n; (58)

we need the following orthonormality conditions for Ln

and Rn: Z 1

�1
LmLndz ¼ �mn; (59)

Z 1

�1
RmRndz ¼ �mn; (60)

Z 1

�1
LmRndz ¼ 0: (61)

From Eqs. (56) and (57), it is clear that, in order to
localize the left- and right-chiral fermions, some kind of
scalar-fermion coupling must be introduced. This situation
is similar to the one in Refs. [21,48–50,53,60,70], in which
the authors introduced the scalar-fermion coupling term

m ��Fð�Þ� for the localization of the fermion fields on a
brane. Moreover, if we demand that VLðzÞ and VRðzÞ are
Z2-even with respect to the extra dimension coordinate z,
Gð�Þ should be an odd function of the kink �ðzÞ. In
this paper, we choose the simplest Yukawa coupling:
Gð�Þ ¼ �. So, the potentials for left- and right-chiral
fermion KK modes can be expressed as

VLðzÞ¼�2e2AðzÞ�2ðzÞ��eA�0ðzÞ���ðzÞeAðzÞA0ðzÞ; (62)

VRðzÞ¼�2e2AðzÞ�2ðzÞþ�eA�0ðzÞþ��ðzÞeAðzÞA0ðzÞ: (63)

First, by considering the initial conditions of the warp
factor and the background scalar at z ¼ 0, the values of
the potentials can be obtained:

VLð0Þ ¼ ���0ðzÞjz¼0; (64a)

VRð0Þ ¼ þ��0ðzÞjz¼0; (64b)

So, for k ¼ 1,

VLð0Þ ¼ ���0b; VRð0Þ ¼ þ��0b; (65)
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and for k ¼ 3,

VL;Rð0Þ ¼ 0: (66)

Second, when far away from the brane z ! �1,

VL;Rðz ! �1Þ ! 0: (67)

Here, the potentials, which are shown in Figs. 12 and 13,
can be solved by the numerical method

The left- and right-chiral fermion zeromodes are solved as

L0ðzÞ / exp

�
��

Z z

0
dz0eAðz0Þ�ðz0Þ

�
; (68a)

R0ðzÞ / L0ðzÞj�!��: (68b)

From the asymptotic behavior of thewarp factor as z ! �1,
the asymptotic behavior of left- and right-chiral fermion zero
mode can be analyzed:

L0ðz ! �1Þ ! jzj�ð��0Þ=b; (69a)

R0ðz ! �1Þ ! jzjð��0Þ=b: (69b)

So, for the positive coupling constant �, only the left-chiral
zero mode tends to zero when far away from the branes,
which may be localized on the brane. We need to further
check whether the normalization condition (59) is satisfied
for the left-chiral zero mode, i.e.,

Z þ1

�1
dzL2

0ðzÞ<1: (70)

Since the values of the zero modes are finite at finite z, the
above normalization condition is equivalent to the following
condition:

Z 1

1
dzjzj�ð2��0Þ=b <1: (71)

FIG. 13 (color online). The shapes of the potentials for the left- and right-chiral fermions coupled with double-kink scalar (k ¼ 3).
The parameters are set to � ¼ 0:1 for the thick red line, � ¼ 0:3 for the dashed green line, and � ¼ 0:9 for the thin blue line. The other
parameters are set to �0 ¼ 1, � ¼ 5, and b ¼ 1.

FIG. 12 (color online). The shapes of the potentials for the left- and right-chiral fermions coupled with single-kink scalar (k ¼ 1).
The parameters are set to � ¼ 0:1 for the thick red line, � ¼ 0:5 for the dashed green line, and � ¼ 0:9 for the thin blue line. The other
parameters are set to �0 ¼ 1, � ¼ 5, and b ¼ 1.
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Only when �> �0 ¼ b
2�0

(note that �0 and b are positive

real parameters), the above integral is convergent, which
means that the left-chiral zero mode can be localized on the
branes under this condition. From the shapes of the zero
mode of left-chiral fermions (Fig. 14), it can be seen that
the zeromode is localized on the center of the two sub-branes
when the thick brane splits (single-kink case) or between
them (double-kink case). However, we will show in the
following that the nonminimally coupling parameter�would
effect the resonance spectrum of both the left- and right-
chiral fermions.

All the massive KK modes of the left- and right-chiral
fermions are the continuum modes and cannot be localized
on the brane. Next, we are going to investigate the quasi-
localization of the left- and right-chiral fermion KKmodes,
which are called resonances. As in Sec. III, the relative
probability for finding the resonances on a brane can be
given as

PL;Rðm2Þ ¼
R
zb�zb

jL; RðzÞj2dzR
zmax�zmax

jL; RðzÞj2dz : (72)

In order to investigate the effect of the gravity-scalar
coupling constant � on fermion resonances, we will inves-
tigate the resonant KK modes with different values of �.
For the single-kink background scalar field (k ¼ 1), the

mass, width, and lifetime of the resonant KK modes with
different values of � are listed in Table II. As an example,
we plot the shapes of PL;Rðm2Þ corresponding to � ¼ 0:9
and k ¼ 1 in Fig. 15. From Table II and Fig. 15, it can be
seen that the mass and lifetime of left- and right-chiral
fermion resonances are almost the same, so the formation
of the four-dimensional massive Dirac fermions can be
realized [59]. The shapes of the resonances Ln and Rn

are shown in Figs. 16 and 17 for � ¼ 0:9 and k ¼ 1. For
the left-chiral KK resonances, it can be seen that the first
resonant KK mode is an odd-parity wave function, and the

FIG. 14 (color online). The shapes of the left-chiral fermion KK zero mode. The parameters are set to � ¼ 0:1 for the thick red line,
� ¼ 0:5 for the dashed green line, and � ¼ 0:9 for the thin blue line for the left figure (k ¼ 1), and the parameters are set to � ¼ 0:1 for
the thick red line, � ¼ 0:3 for the dashed green line, and � ¼ 0:9 for the thin blue line for the right figure (k ¼ 3). The other parameters
are set to �0 ¼ 1, � ¼ 5, and b ¼ 1.

TABLE II. The mass, width, and lifetime of resonances for fermions. The parameters are set to k ¼ 1, � ¼ 5, �0 ¼ 1, and b ¼ 1.
Here, n is the order of resonant states with corresponding m2 from small to large.

� Chiral Height of VL;R n m2 m � 


0.1

Left Vmax
L ¼ 14:036

1 8.5206 2.9190 0.001222 818.64177

2 13.6638 3.6965 0.111288 8.98573

Right Vmax
R ¼ 14:072

1 8.5206 2.9190 0.001216 822.65478

2 13.6463 3.6941 0.111813 8.94354

0.5

Left Vmax
L ¼ 16:611

1 8.8961 2.9826 0.000725 1380.15215

2 15.1313 3.8899 0.063637 15.71416

Right Vmax
R ¼ 16:651

1 8.8961 2.9826 0.000722 1385.67372

2 15.1188 3.8883 0.064661 15.46516

0.9

Left Vmax
L ¼ 18:411

1 9.2353 3.0390 0.003074 325.2705

2 16.3330 4.0414 0.081694 12.2408

Right Vmax
R ¼ 18:466

1 9.2353 3.0390 0.003120 320.4962

2 16.3363 4.0418 0.084267 11.8671
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FIG. 15. The profiles of PL;R for the left- and right-chiral fermion resonances for the brane with the parameters k ¼ 1, � ¼ 0:9,
� ¼ 5, �0 ¼ 1, and b ¼ 1.

FIG. 17 (color online). The profiles of the wave function for the right-chiral fermion resonances Rn with the parameters k ¼ 1,
� ¼ 0:9, � ¼ 5, �0 ¼ 1, and b ¼ 1.

FIG. 16 (color online). The profiles of the wave function for the left-chiral fermion resonances Ln with the parameters k ¼ 1,
� ¼ 0:9, � ¼ 5, �0 ¼ 1, and b ¼ 1.
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second one has even parity. However, for the right-chiral
KK resonances, the first resonant KKmode has even parity,
and the second one has odd parity. This is held for any nth
fermion resonances; namely, the parities of the nth left-
and right-chiral resonances are opposite. In fact, this con-
clusion is originated from relationship between the two
potentials VLðzÞ and VRðzÞ or, equivalently, from the
coupled equations of the left- and right-chiral fermions,
which are not given in this paper, but one can refer to
Ref. [67]. Further, four-dimensional massive Dirac fermi-
ons can be obtained, which consist of the pairs of coupled
left- and right-chiral KK modes with different parities.

From Table II, it is shown that the lifetimes of the
first resonant KK modes satisfy 
n¼1ð� ¼ 0:5Þ>

n¼1ð� ¼ 0:1Þ> 
n¼1ð� ¼ 0:9Þ. From Fig. 12, it is seen
that the width of the barrier of the potentials in the vicinity
of VL;R ¼ m2

1 for � ¼ 0:5 is close to that for � ¼ 0:1 and

larger than that for � ¼ 0:9, so 
n¼1ð� ¼ 0:5Þ and

n¼1ð� ¼ 0:1Þ are larger than 
n¼1ð� ¼ 0:9Þ. Moreover,
the widths of the barrier of the potentials for � ¼ 0:5 and
� ¼ 0:1 are the same, but the height of the barrier for
� ¼ 0:5 is larger than that for � ¼ 0:1, so 
n¼1ð� ¼ 0:5Þ>

n¼1ð� ¼ 0:1Þ. For the second resonant KK modes, the
situation is similar to the first ones. As Fig. 12 shows, the
width of the barrier of the potentials in the vicinity of
VL;R ¼ m2

2 for � ¼ 0:5 is the largest, so 
n¼2ð� ¼ 0:5Þ is
the largest one. Hence, we can come to the conclusion that
the lifetimes of the resonant KK modes are decided by the
width and the height of the barrier of the potential, and the
width is more important than the height.

For a double-kink background scalar field (k ¼ 3), be-
cause the mass, width, and lifetime of the right-chiral
fermion resonant KK modes is the same as that of left-
chiral fermion resonances, we only list the mass, width,
and lifetime for the left-chiral fermion resonant KK modes
with different values of � in Table III. It is known that the
number of the resonant KK modes will increase when the
coupling constant � becomes larger. It is also shown that
the lifetimes of the first resonant KK modes satisfy


n¼1ð� ¼ 0:1Þ> 
n¼1ð� ¼ 0:3Þ> 
n¼1ð� ¼ 0:9Þ, which
is because the widths of the barrier of the potentials in
the vicinity of VL;R ¼ m2

1 for � ¼ 0:1 are the largest, and

that for � ¼ 0:9 are the smallest from Fig. 13. For the other
resonant KK modes, the situation is similar to the case
of k ¼ 1.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we first review the model of thick branes
with a nonminimally coupled background scalar field and
then investigate the structure of the branes. In our model,
the background scalar field is set as single-kink (k ¼ 1)
and double-kink (k ¼ 3) solutions, respectively. The non-
minimal coupling between the gravity and the background
scalar field is introduced via a term 1

2�R�
2, and we find

that the behaviors of the warp factor and the branes are
related to the nonminimal coupling constant �. When the
nonminimal coupling constant � is smaller than its critical
value �0, the maximum of the warp factor is at z ¼ 0, and
when � > �0, the maxima of the warp factor are at both
sides of z ¼ 0. For the single-kink (k ¼ 1) case, the brane
will split into two sub-branes with the increase of the
nonminimal coupling constant �, and the distance of the
two sub-branes increases with �. For the double-kink
(k ¼ 3) case, there are two sub-branes, and their distance
also increases with �. The scalar potential Vð�Þ is a
double-well potential, and two vacua of the potential are
at ��0 for � ¼ 0 and not at ��0 for � > 0, respectively.
Moreover, we investigate the effects of the nonminimal
coupling constant on the localization of gravity and various
bulk matter fields on the branes.
First, the localization of gravity is considered. It is found

that, for the case of single-kink (k ¼ 1), the gravity zero
mode is localized on the single brane with small �, and it is
localized on the center of the two sub-branes with large �.
For the case of double-kink (k ¼ 3), the gravity zero mode
is localized between the two sub-branes. All the massive
modes are continuous-spectrum wave functions and
could not be localized on the branes. However, for larger

TABLE III. The mass, width, and lifetime of resonances for left-chiral fermion. The parameters are set to k ¼ 3, � ¼ 5,�0 ¼ 1, and
b ¼ 1. Here, n is the order of resonant states with corresponding m2 from small to large.

� Chiral Height of VL n m2 m � 


0.1 Left Vmax
L ¼ 15:648

1 3.1973 1.7881 2:92	 10�10 3:42	 109

2 8.8214 2.9701 1:45	 10�4 6:89	 103

3 13.3115 3.6485 0.018426 54.2705

0.3 Left Vmax
L ¼ 17:160

1 3.2171 1.79363 3:91	 10�10 2:56	 109

2 8.9598 2.9933 8:18	 10�5 1:22	 104

3 13.7770 3.7117 0.010634 94.04994

0.9 Left Vmax
L ¼ 20:395

1 3.2735 1.8093 9:03	 10�6 1:11	 105

2 9.3293 3.05439 0.00114 878.85943

3 14.9016 3.8603 0.01752 57.07182

4 19.8003 4.44975 0.128982 7.75318
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coupling constant �, there could exist gravity resonant
states, and the number of the resonances increases with �.

For scalar field, the zero mode is localized on the center
of the branes (k ¼ 1 case) or between them (k ¼ 3 case)
when � < �0, while it is localized on each sub-brane when
� > �0. For the vector field, the zero mode cannot be
localized on the branes. All the massive modes for scalars
and vectors are continuous-spectrum wave functions and
cannot be localized on the branes. There does not exist the
resonant state for both fields.

For spin-1=2 fermion fields, in order to localize the left-
and right-chiral fermions, we introduce the usual Yukawa

coupling � ����. We find that for positive Yukawa cou-
pling constant � larger than its critical value �0, the left-
chiral fermion zero mode can be localized on the branes.
For the case of k ¼ 1, the left-chiral fermion zero is
localized on the single brane with small � and on the center
of the two sub-branes with large �. For the case of k ¼ 3,
the left-chiral fermion zero is localized between the two
sub-branes. The massive KK modes asymptotically turn
into continuous plane waves when far away from the
branes. It is interesting that the well of the potentials for
left- and right-chiral fermions becomes deeper and deeper
with the increase of the nonminimal coupling constant �,
which leads to a series of massive fermions with a finite
lifetime on the branes. The spectra of left- and right-chiral
fermion resonances are the same, which demonstrates that
a Dirac fermion with a finite lifetime on the branes can be
composed from the left- and right-chiral fermion resonant
KK modes.

At the end of this paper, we discuss the effect of the
nonminimal coupling constant � on the localization of
gravity and various matter fields. For these zero modes,
the situation is similar to the case of minimal coupling, i.e.,
only the vector zero mode is not localized on the branes,
and all the other zero modes are localized on the branes.
This indicates that the nonminimal coupling constant �

does not affect the localization of these zero modes. It is
because the localization of the zero modes is decided by
the behavior of the system at the infinity of the extra
dimension. The behavior of the system for the case of the
nonminimal coupling is similar to the one for the case of
minimal coupling when far away from the branes. This
can also be seen from the action (1). When the extra-
dimensional coordinate tends to infinity, �ð�1Þ ! ��0,
and the action (1) is reduced to the form

S ¼
Z

d5x
ffiffiffiffiffiffiffi�g

p �
�

2�2
5

R� 1

2
gMN@M�@N�� Vð�Þ

�

(73)

with the constant � ¼ ð1� �2
5��

2
0Þ, which is similar to the

general action of the thick brane for the case of minimal
coupling. Therefore, the behavior of the zero modes is
similar to these for the case of minimal coupling at
z ! �1. However, near the branes, the effects of the
nonminimal coupling constant � are very obvious for the
localization of gravity and matter fields. For the scalar zero
mode, when � is large, the zero mode is localized on each
sub-brane. For the gravity and the fermion field, the num-
ber of the resonances increases with �.
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