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We study numerical stability of different approaches to the discretization of a conformal decomposition

of the Z4 formulation of general relativity. We demonstrate that in the linear, constant coefficient regime a

novel discretization for tensors is formally numerically stable with a method of lines time integrator. We

then perform a full set of ‘‘apples with apples’’ tests on the nonlinear system, and thus present numerical

evidence that both the new and standard discretizations are, in some sense, numerically stable in the

nonlinear regime. The results of the Z4c numerical tests are compared with those of Baumgarte-Shapiro-

Shibata-Nakamura-Oohara-Kojima (BSSNOK) evolutions. We typically do not employ the Z4c constraint

damping scheme and find that in the robust stability and gauge wave tests the Z4c evolutions result in

lower constraint violation at the same resolution as the BSSNOK evolutions. In the gauge wave tests, we

find that the Z4c evolutions maintain the desired convergence factor over many more light-crossing times

than the BSSNOK tests. The difference in the remaining tests is marginal.
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I. INTRODUCTION

There are currently two main formulations used in the
numerical evolution of astrophysically interesting space-
times by the methods of numerical relativity. The first was
pioneered by Pretorius [1,2] and later adopted by other
numerical relativity groups, for example [3–5]. In this
approach the generalized harmonic gauge (GHG) formu-
lation of general relativity [6,7] is employed with black-
hole excision. That is, inside the black-hole horizon the
numerical mesh contains a ‘‘cut-out’’ region. The general-
ized harmonic formulation has a number of desirable prop-
erties. The first is that it has a trivially wavelike principal
part, which allows the construction of boundary conditions
that lead to a well-posed initial boundary value problem
that can be implemented numerically [3,8–14]. That the
wavelike nature of the formulation is inherited by the
constraint subsystemmeans that these boundary conditions
can conveniently be made constraint preserving, and that
when numerical error causes violations of the constraints,
this violation may propagate off of the numerical grid,
hopefully to be harmlessly absorbed by the aforementioned
boundary conditions. The evolution system also admits a
constraint damping scheme [15], which has proven impor-
tant in numerical applications to avoid constraint violating
blowups. The second main formulation is the combination
of the Baumgarte-Shapiro-Shibata-Nakamura-Oohara-
Kojima (BSSNOK) system [16–18], the moving puncture
family of gauge conditions, and puncture black-hole initial
data [19,20]. Using this method coordinate singularities, or
punctures, are explicitly advected across the numerical
mesh. The puncture method has proven extremely robust
in the evolution of even extreme initial data [21,22]. But on
the other hand, while well posedness for the initial value

problem of BSSNOK with suitable members of the punc-
ture gauge family has been established [23] the compli-
cated structure of the principal part has prevented the
same development of boundary conditions for the system,
although interesting progress has been made [24].
This status begs the question: is it possible to write

down a formulation with the strengths of both GHG and
BSSNOK for numerical applications? In [25] a natural
candidate, namely a conformal decomposition of the Z4
formulation [26–32], Z4c was identified, and indeed found
to give favorable results over those of BSSNOK in the
context of spherical symmetry. Like that of GHG, the
constraint subsystem of the Z4 formulation has a trivial
wavelike principal part. This structure is inherited by the
constraint subsystem of the conformally decomposed sys-
tem provided that the additional constraints introduced by
the decomposition are explicitly imposed. This property
allows the convenient construction of constraint pre-
serving boundary conditions for the Z4c system [33]. The
Z4c system furthermore inherits the constraint damping
scheme of Z4, which was studied in detail in [34]. So far
the numerical studies of Z4c have been restricted to spheri-
cal symmetry. Recently, a variant of the conformal decom-
position, CCZ4, was performed, and for the first time
numerical evolutions in three dimensions were presented
[35]. The difference between Z4c and CCZ4 is that in the
conformal decomposition of Z4c nonprincipal constraint
additions are discarded in such a way to make the resulting
evolution system as close as possible to BSSNOK. On the
other hand in CCZ4 no constraint terms are discarded.
Therefore the two formulations share the same principal
part, and thus the same basic partial differential equation
(PDE) properties. Now that there is robust evidence in
favor of the Z4c system in spherical symmetry, we also
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turn our attention to three spatial dimensions. Since there is
a wealth of experience concerning the robustness of the
GHG and BSSNOK formulations in applications, signifi-
cant evidence must be presented that an alternative formu-
lation is competitive, and we therefore take a conservative
approach, and focus here on the question of numerical
stability.

In Sec. II we present the equations of motion of the Z4c
system and the gauge conditions that we employ in both
our analytical and numerical studies. In Sec. III we intro-
duce a novel discretization of tensors and show that in the
linear constant coefficient approximation Z4c, coupled to
the puncture gauge, is numerically stable with this discre-
tization and a method of lines time integrator. In Sec. IV we
present a complete set of ‘‘apples with apples’’ tests for
the Z4c formulation. In Appendices A and B we discuss
hyperbolicity of the conformal decomposition without
imposition of the algebraic constraints, and symmetric
hyperbolicity of the formulation with the puncture gauge.
We conclude in Sec. V.

II. THE Z4C FORMULATION

The Z4 formulation [26], with constraint damping [15]
replaces the Einstein field equations Gab ¼ 8�Tab by

Gab ¼ 8�Tab �raZb �rbZa þ gabrcZ
c

þ �1½naZb þ nbZa þ �2gabncZ
c�; (1)

whereGab ¼ Rab � 1
2Rgab is the Einstein tensor while Rab

is the Ricci tensor, ra is the covariant derivative operator
compatible with gab, and Za is an additional vector field of
constraints. Under the standard 3þ 1 decomposition,
against a timelike unit normal vector na, defining � �
�naZa and Zi �?a

i Za one finds the expressions given in
[15]. If the spacetime is without boundary and does not
admit a Killing vector, it can be shown that if the con-
straints are satisfied in one spacelike slice then they will
vanish at all times [26]. We may therefore take a free-
evolution approach to the problem. For PDEs and numeri-
cal analysis wework in the expanded phase space, in which
the constraints may be violated. In numerical applications
the constraints are to be solved for initial data, and their
compatibility with the evolution equations means that any
violation should converge away with resolution.

From the PDEs point of view, only the principal deriva-
tive additions can affect well posedness of the initial value
problem of the formulation as a PDE system. In order to
make a conformal decomposition we therefore discard
nonprincipal terms in such a way that the resulting equa-
tions of motion will have a form similar to those of the
BSSNOK formulation when written in terms of conformal
variables. Of course we keep the constraint damping terms.
The Z4c formulation equations of motion [25,33] are

@t�ij ¼ �2�Kij þL��ij; (2)

@tKij ¼�DiDj�þ�½Rij þKKij � 2KikK
k
j þ 2D̂ðiZjÞ

��1ð1þ�2Þ��ij�þ 4��½�ijðS��ADMÞ� 2Sij�
þL�Kij; (3)

for the metric and extrinsic curvature, and

@t� ¼ 1
2�½Hþ 2D̂iZi � 2�1ð2þ �2Þ�� þL��; (4)

@tZi ¼ �½Mi þDi�� �1Zi� þ �1=3Zj@t½��ð1=3Þ�ij�
þ �jD̂jZi; (5)

for the constraints � and Zi, where here we define

D̂ iZj ¼ �1=3�kj@i½��ð1=3ÞZk�; (6)

and use the shorthands

H ¼ R� KijK
ij þ K2 � 16��ADM; (7)

Mi ¼ Dj½Kij � �ijK� � 8�Si; (8)

for the Hamiltonian and momentum constraints. Similar
to the conformal transformation made in the BSSNOK
formalism, we introduce conformal variables,

~� ij ¼ ��1=3�ij; � ¼ ��1=3; (9)

~A ij ¼ ��1=3ðKij � 1
3�ijKÞ; K̂ ¼ K � 2�; (10)

~� i ¼ 2~�ijZj þ ~�ij ~�kl ~�jk;l; ~�d
i ¼ ~�i

jk ~�
jk: (11)

Under this change of variables the evolution equations
become

@t� ¼ 2
3�½�ðK̂ þ 2�Þ �Di�

i�; (12)

@t ~�ij ¼ �2� ~Aij þ 2~�kði@jÞ�k � 2
3
~�ij@k�

k þ �k@k ~�ij;

(13)

@tK̂ ¼ �DiD
i�þ �½ ~Aij

~Aij þ 1
3ðK̂ þ 2�Þ2 þ �1ð1

� �2Þ�� þ 4��½Sþ �ADM� þ �i@iK̂; (14)

@t ~Aij ¼ �½�DiDj�þ �ðRij � 8�SijÞ�tf
þ �½ðK̂ þ 2�Þ ~Aij � 2 ~Aik

~Ak
j� þ 2 ~Akði@jÞ�k

� 2
3
~Aij@k�

k þ �k@k ~Aij; (15)

@t� ¼ 1
2�½R� ~Aij

~Aij þ 2
3ðK̂ þ 2�Þ2 � 16��ADM

� 2�1ð2þ �2Þ�� þ �i@i�; (16)
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@t~�
i ¼ ~�jk@j@k�

i þ 1
3
~�ij@j@k�

k � 2 ~Aij@j�þ 2�½~�i
jk
~Ajk

� 3
2
~Aij@j ln�� 1

3
~�ij@jð2K̂ þ�Þ � �1ð~�i � ~�d

iÞ
� 8�~�ijSj� þ 2

3
~�d

i@j�
j � ~�d

j@j�
i þ �j@j~�

i;

(17)

where we absorb the constraint addition into the Ricci
tensor according to

Rij ¼ R�
ij þ ~Rij; (18)

~R �
ij ¼

1

2�
~Di

~Dj�þ 1

2�
~�ij

~Dl ~Dl�� 1

4�2
~Di� ~Dj�

� 3

4�2
~�ij

~Dl� ~Dl�; (19)

~R ij ¼ �1
2
~�lm ~�ij;lm þ ~�kði@jÞ~�k þ ~�d

k~�ðijÞk

þ ~�lmð2~�k
lði~�jÞkm þ ~�k

im
~�kljÞ: (20)

In this study we consider only vacuum spacetimes, so Sij,

Si, and �ADM all vanish. Note that the conformal decom-
position introduces two algebraic constraints,

D � ln det~� ¼ 0; T � �ij ~Aij ¼ 0; (21)

to the system. In our numerical experiments they are im-
posed explicitly after every time step. If the constraint pro-
jection is not performed then one is performing free
evolution in the larger phase space in which the algebraic
constraints are violated, meaning that the PDE properties of
the systemmust be reevaluated.We close the systemwith the
puncture gauge condition, which consists of the Bona-Másso
lapse [36] and the gamma-driver shift conditions [37],

@t� ¼ ��L�
2K̂ þ �i@i�; (22)

@t�
i ¼ �S�

2~�i � 	�i þ �j@j�
i: (23)

When coupled to the puncture gauge the Z4c formulation
forms a PDE system that is generically strongly hyperbolic.
In our numerical applications we almost always take the
‘‘1þ log’’ variant of the lapse condition �L ¼ 2=� and
�S ¼ 1=�2, although some tests are performed with har-
monic lapse �L ¼ 1. The shift damping term 	 is chosen
according to the needs of the numerical test. We also some-
times employ the harmonic shift condition,

@t�
i¼�2½�~�iþ 1

2�~�ij�;j��~�ij@j ln��þ�j@j�
i: (24)

III. NUMERICAL STABILITY

In this section we demonstrate that when coupled to the
puncture gauge and linearized around the Minkowski
spacetime, the Z4 formulation is numerically stable with
a particular discretization. The calculations build on stud-
ies of numerical stability for first order in time, second

order in space systems [38–40], and essentially rely on the
theory of [41,42].

A. A novel discretization of second order
systems of tensors

1. Motivation

For linear, constant coefficient first order strongly hyper-
bolic systems, strong hyperbolicity is enough to guarantee
numerical stability under a method of lines approach, which
is no longer the case for first order in time, second order in
space systems. If in addition to being strongly hyperbolic,
the PDE system is symmetric hyperbolic, then a discrete
energy method can be used to guarantee numerical stability.
There are many second order PDE systems of interest that
are only strongly hyperbolic, for which other methods must
be used in analysis. Unfortunately, when using the standard
discretization in space for strongly hyperbolic second order
systems it is often not even possible to analyze whether or
not the resulting semidiscrete system is stable with com-
puter algebra. The reason for this is that there is not a
straightforward relationship between the principal symbol
of the semidiscrete system and that of the continuum;
various sectors of the principal symbol that are decoupled
at the continuum become entangled in the semidiscrete
system. Here we present a novel discretization for systems
of tensors for which semidiscrete stability analysis can at
least be tackled. Intuitively this is made possible because
after Fourier transform the novel discretization has only one
wave vector, whereas the standard discretization has two.
The novel discretization does not guarantee numerical
stability whenever the continuum system is strongly hyper-
bolic. Therefore the situation is still not entirely satisfactory.

2. The standard discretization

For a grid-function f, where here and in the following
we suppress indices labeling the position on the grid, the
standard second order discretization accurate for second
order in space systems is

@i ! D0i; @i@j !
�
D0iD0j if i � j;
DþiD�i if i ¼ j;

(25)

where we use the standard notation for centered and one-
sided finite difference operators. The standard fourth order
accurate discretization for second order in space systems is

@i !Dð4Þ
i �D0i

�
1�h2

6
DþiD�i

�
;

@i@j !Dð4Þ
0i �

8<
:
Dð4Þ

0i D
ð4Þ
0j if i� j;

DþiD�i

�
1� h2

12DþiD�i

�
if i¼ j;

(26)

where here we drop the summation convention. This
approach to discretization can of course be naturally ex-
tended to higher order accuracy.
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3. A novel approach to the discretization of tensors

We are concerned with numerical approximations to the
spatial derivatives of scalars, vectors, and symmetric two-
tensors, and assume that we have a metric 
ij in space.

Suppose that we are given the finite difference approxima-

tions Dð1Þ
i and Dð2Þ

ij to the first and second derivatives,

respectively. In concrete terms we mean by this either the
standard second (25) or fourth order accurate discretization
(26) above. In each of these discretizations the symmetry is
used to reduce the size of the stencil for second derivatives
@i@j with i ¼ j, meaning that the approximation of the

second derivative is not equivalent to repeated application
of the approximation of the first. For the first derivative we

must always use Dð1Þ
i . On the other hand, for second

derivatives we may sometimes use repeated application

of Dð1Þ
i , and sometimes Dð2Þ

ij . We choose to approximate

the Laplace operator by

	ij@i@j ! �ð2Þ � _	ijDð2Þ
ij : (27)

Second gradients of scalars are approximated by

@i@ju ! ½Dð1Þ
i Dð1Þ

j �tfuþ 1
3
ij�

ð2Þu: (28)

For vectors we distinguish gradient-divergence terms by
using repeated application of the first derivative,

@i@jf
j ! Dð1Þ

i Dð1Þ
j fj: (29)

Likewise, for symmetric two-tensors we approximate
divergence-divergence terms by repeated application of
the first derivative approximation, although such terms do
not appear in our applications. In [38] numerical stability
of a parametrized generalization of the Knapp-Walker-
Baumgarte formulation [43] of electromagnetism was dis-
cussed. It was found that with the standard discretization
there are choices of the formulation parameter that render
the system numerically unstable, despite the initial value
problem being well posed at the continuum. It is straight-
forward to show that with the novel discretization, using
the standard second order discretization for the raw ap-
proximation, the semidiscrete system is numerically stable
for all choices of the parameters that render the initial value
problem well posed.

B. Application to the Z4 formulation

1. The linearized system

In this section we present the Z4c field equations line-
arized around the line element,

d s2 ¼ �dt2 þ 
ijdx
idxj; (30)

where we denote the constant, with respect to both space
and time, background spatial metric by 
ij. The back-

ground shift, extrinsic curvature, and Z4 constraints are

taken to vanish. We denote the perturbations by �, �i, �ij,

�, Zi, Kij. The linearized equations of motion are

@t�ij ¼ �2Kij þ 2@ði�jÞ; (31)

@t� ¼ ��LðK � 2�Þ; (32)

@t�
i ¼ ��Sf

i; (33)

@tKij ¼ �1
2@

k@k�ij � 1
6@i@j�� @i@j�þ @ðifjÞ; (34)

@t� ¼ �1
3@

i@i�þ 1
2@if

i; (35)

@tf
i ¼ @j@j�

i þ 1
3@i@j�

j � 4
3@

iK þ 2@i�; (36)

where here we have defined ��S ¼ ð
Þ1=3�S, and used the
Nagy-Ortiz-Reula (NOR) [44] variable

fi ¼ 2Zi þ 
ij
kl½@k�lj � 1
3@j�kl�: (37)

The linearized Hamiltonian and momentum constraints
are

H ¼ @i@j�ij � @i@i�; (38)

Mi ¼ @jKij � @iK: (39)

2. The semidiscrete system

We now discretize the system in space but leave time
continuous. Using the novel discretization described in
Sec. III A we write the system as

@t�ij ¼ �2Kij þ 2Dð1Þ
ði�jÞ; (40)

@t� ¼ ��LðK � 2�Þ; (41)

@t�
i ¼ ��Sf

i; (42)

@tKij ¼ �1
2�

ð2Þ�ij � 1
6½½Dð1Þ

iD
ð1Þ

j�tf þ 1
3
ij�

ð2Þ��
� ½½Dð1Þ

iD
ð1Þ

j�tf þ 1
3
ij�

ð2Þ��þDð1Þ
ðifjÞ; (43)

@t� ¼ �1
3�

ð2Þ�þ 1
2D

ð1Þ
if

i; (44)

@tf
i ¼ �ð2Þ�i þ 1

3D
ð1ÞiDð1Þ

j�
j � 4

3D
ð1ÞiK þ 2Dð1Þi�;

(45)

where we suppress indices labeling the grid, which we take
to be

xi ¼ ðxi1 ; yi2 ; zi3Þ ¼ ði1h; i2h; i3hÞ; (46)

with ii ¼ 0; . . . ; N � 1, h ¼ 2�
N the spatial resolution, and

restrict our attention to 2�-periodic solutions. Note that in
contrast to the continuum system the constraint subsystem
does not close for the semidiscrete system. It is not obvious
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how to achieve closure of the constraint subsystem at the
semidiscrete level without using a ‘‘ðD0Þ2’’ type discreti-
zation. Unfortunately, as discussed in [38] the D0 norm is
not strong enough for analytic considerations, and we
therefore do not consider it further here.

3. Pseudodiscrete reduction to first order

Performing a discrete Fourier transform in space, defin-
ing

�2þ ¼ X3
i¼1

j ~Dþij2; (47)

and �i ¼ ��þ 2�=N; . . . ;��þ 4�=N þ �, for i ¼
1; 2; 3, and then introducing the convenient reduction var-
iables

~� ¼ i�þ ~�; ~
i ¼ i�þ ~�i; ~�ij ¼ i�þ ~�ij; (48)

results in a large set of ordinary differential equations
which can be written as

@t ~�ij ¼ �2 ~Kij þ 2s

�þ
ŝði ~
jÞ; (49)

@t ~� ¼ ��Lð ~K � 2 ~�Þ; (50)

@t ~�
i ¼ ��S

~fi; (51)

for the metric components,

@t~�ij ¼ �2i�þ ~Kij þ 2isŝði ~
jÞ; (52)

@t~� ¼ �i�þ�Lð ~K � 2 ~�Þ; (53)

@t ~

i ¼ i�þ ��S

~fi; (54)

for the reduction variables, and finally

@t ~Kij ¼ � i

�þ

�
s2½ŝiŝj�tf þ 1

3

ij�

2

�
~�� i

2

�2

�þ
~�ij

� i

6�þ

�
s2½ŝiŝj�tf þ 1

3

ij�

2

�
~�þ isŝði ~fjÞ; (55)

@t ~� ¼ � i

3

�2

�þ
~�þ 1

2
is~fŝ; (56)

@t ~f
i ¼ i

�2

�þ
~
i þ i

3

s2

�þ
ŝi ~
ŝ � 4

3
isŝi ~K þ 2isŝi ~�; (57)

for the remaining quantities. Here we have defined

si¼�i ~Dð1Þ
i ; �2¼�~�ð2Þ; s2¼ sis

i; ŝi¼ si

s
; (58)

and use an index ŝ to denote contraction with the unit wave
vector ŝi. The Fourier transformed differencing operator
Dþi is denoted ~Dþi, and we have that

~Dþi ¼ 2

h
i sin

�i

2
: (59)

Whilst estimating the growth of the solutions we may
discard the nonprincipal terms because for the standard
second and fourth order accurate discretizations the non-
principal additions are bounded (Theorem 5.1.2 [42]). Note
that for both the standard second and fourth order accurate
discretizations we have the properties,

0 � s

�
� a; b�1 � �

�þ
� b; (60)

for some positive constants a, b, which we will use in the
following. Up to nonprincipal terms the evolution of the

metric components ~�, ~�i, ~�ij is trivial, so they may be

discarded in the following discussion. Defining the unit
wave vector ŝi, and using it with 
ij as a metric in Fourier

space to perform a 2þ 1 decomposition reveals that,
under the novel discretization the principal symbol of
the pseudodiscrete reduction decouples into a scalar

ð~�ss; ~�qq; ~�; ~fs; ~̂Kss;
~̂Kqq; ~�; ~
sÞ, vector ð~�sA; ~fA; ~̂KsA; ~


AÞ,
and tensor ð~�TFAB; ~̂KTF

ABÞ sector, just like in the continuum
PDEs analysis; see, for example, Sec. D of [33].

4. Characteristic variables

Each of the three sectors generically admits a complete
set of characteristic variables. In the scalar sector they are

u� ffiffiffiffiffi
�L

p ¼ �

�þ
~�� ffiffiffiffiffiffiffi

�L
p ~̂K; (61)

which are associated with the lapse gauge condition, prop-
agating with speed � ffiffiffiffiffiffiffi

�L
p

i�, and appear almost identi-

cally at the continuum level. For brevity we use the

shorthands ~̂K ¼ ~Kŝ ŝ þ ~Kqq � 2 ~� and ~� ¼ ~�ŝ ŝ þ ~�qq.

Next we find

u�1 ¼ 2�
3�2 þ s2

�þ
~�ŝ ŝ þ 2�

s2 � 3�2

�þ
~�qq � 12ð�2

� s2Þ ~Kŝ ŝ � 6ð�2 þ 2s2Þ ~Kqq � 24s2 ~�� 12�s~fŝ;

(62)

propagating with speeds �i�, which corresponds to light
speed in the continuum system. At the continuum four
characteristic variables in the scalar sector propagate at
light speed. In the semidiscrete system with our discretiza-
tion the third and fourth of these characteristics,
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u�v� ¼ 3 ��S�
2 � 3v2� þ s2ð ��S � 1Þ
6�þðv2� ��2Þ v� ~�

þ 3 ��S�
2 � 3v2� þ s2ð ��S � 1Þ
�þðv2� ��L�

2Þ v�~�� s

�þ
~
ŝ

� 4s2ð ��S � 1Þ
ð�L � ��SÞð3v2� � 4�2Þ � s2�Lð ��S � 1Þ ��S

~̂K

� 2
3 ��S�

2 � 3v2� þ ��Ss
2

�2 � s2
~�þ ��S � 1

�2 � v2�
v�s~fŝ;

(63)

become coupled to the characteristic variables of the shift.
They propagate with speeds �v�, where we define v� by

v2� ¼ 1
6ð4þ 3 ��SÞ�2 þ 1

6ð ��S � 1Þs2

� 1
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð4þ 3 ��SÞ�2 þ ð ��S � 1Þs2�2 � 48 ��S�

4
q

:

(64)

Under the substitution � ! s the continuum result (in
Fourier space) is recovered. The last of the characteristic
variables in the scalar sector are naturally associated with
the gamma-driver condition. They are given by the same
expression as (63) under the replacement v� ! vþ, and
have speeds�vþ. Special cases in the choice of the gauge
parameters that prevent the existence of a complete set of
characteristic variables in the scalar sector are discussed
below. Thankfully in the vector sector we have the straight-
forward

uA�1 ¼ �

2�þ
~�ŝA � ~KŝA � s

2�
~fA; (65)

uA� ffiffiffiffiffi
��S

p ¼ �

�þ
~
A � ffiffiffiffiffiffiffi

��S

p
~fA; (66)

with speeds �i� and � ffiffiffiffiffiffiffi
��S

p
i�. Finally in the discretiza-

tion of the gravitational wave degrees of freedom we have
the trivial,

uTFAB�1 ¼
�

2�þ
~�TFAB � ~KTF

AB; (67)

with speeds �i�, and where TF denotes that the trace is
removed with respect to the projected background metric.

5. Special cases

Assuming that�L > 1, there are two special cases in the
choice of the gauge parameters �L, ��S under which the
scalar sector does not admit the complete set of character-
istic variables (61)–(63) given above. They are

½ð4þ 3 ��SÞ�2 þ ð ��S � 1Þs2�2 � 48 ��S�
4 ¼ 0; (68)

ð3�L � 4Þð�L � ��SÞ�2 ��Lð ��S � 1Þs2 ¼ 0; (69)

which correspond to 4 ��S ¼ 3 and 3�L ¼ 4 ��S at the con-
tinuum in curved space. These special cases are more

subtle in the semidiscrete system because instability de-
pends on both the background metric and the specific order
of the discretization. Here we restrict our discussion to
the trivial background metric 
ij, the gauge parameter

�L ¼ 2. Then for either ��S ¼ 3
4 or ��S ¼ 3

2 , in the limit

of high resolution, h ! 0, the characteristic variables be-
come degenerate in a neighborhood of the grid mode
�i ¼ 0. This situation is the same as that of the ADM
formulation discussed in [38]. Any other mode satisfying
(68) and (69) will be unstable. There are no such modes for
�S <

3
4 or

3
4 <�S <

3
2 because for the standard second and

fourth order discretizations a ¼ 1 in (60) above with the
Minkowski background. In the limit of high resolution, one
also expects to find unstable modes in the region
3
2 <�S < 2, although for particular choices of �S they

may also appear at low resolutions. The general case is
sketched in Fig. 1.

6. Numerical stability

Notice that at the lowest and highest grid frequencies the
principal symbol takes a different form, because either�þ

0.0 0.5 1.0 1.5 2.0
S

0.0

0.5

1.0

1.5

2.0

s

FIG. 1 (color online). The unstable gridmodes with the novel
discretization and �L ¼ 2. The left (blue) line denotes (68) and
the right (red) (69). The dashed vertical lines depict the choices
of ��S that render the system weakly hyperbolic at the continuum
level. For those choices no stable discretization is possible. In
practice for the weakly hyperbolic choices of ��S, the character-
istic variables become singular at high resolution, preventing the
construction of a symmetrizer independent of h. In principle, one
expects to be able to find a stable discretization for all other
values of ��S, but our novel discretization does not fulfill that
requirement. The unstable modes should be truncated in the y
axis at some finite a * 1 determined by the discretization and
background metric, and so large values of unstable s=� are not
to be considered troublesome. On the other hand, behavior of the
red line in the region 3�L=4< ��S <�L is undesirable, because
we always expect to find modes in that region on the numerical
grid. Note that for our standard choice, �S ¼ 1, the blue line
diverges, provided that the determinant of the background metric

 ’ 1, implying that our standard choice is stable, at least in that
approximation. There are never unstable modes when �L < ��S.

ZHOUJIAN CAO AND DAVID HILDITCH PHYSICAL REVIEW D 85, 124032 (2012)

124032-6



or si vanish. As discussed in [38], this poses no difficulty in
the constant coefficient case, provided that the principal
symbol remains diagonalizable for those frequencies, as
the full solution may be written as a direct sum over the
modes. The principal symbol vanishes at the lowest fre-
quency and so is trivially diagonalizable. At the highest
frequency, by construction, the principal symbol can be
written as that of a system of decoupled wave equations,
and so is also trivially diagonalizable. The argument given
in [38] guarantees that the standard method of lines time
integrators will not violate the reduction constraints. The
existence of a complete set of characteristic variables for
the system for every grid frequency guarantees the exis-

tence of a symmetrizer ĤðsiÞ, which in turn guarantees
numerical stability, namely that the estimate,

kuðtn; �Þkh;Dþ � Ke�tnkuð0; �Þkh;Dþ ; (70)

holds for sufficiently small h, where �, K are constants,
independent of h, that are not to be confused with the lapse
and extrinsic curvature, provided that the Courant factor �,
the ratio of the time step and the spatial resolution, is
chosen sufficiently small. The Courant condition is � �
�0=ð2

ffiffiffiffiffiffiffiffiffi
3�L

p Þ, in the flat space, second order accurate case
with �S ¼ 1 and �0 the stability radius of the time inte-
grator. The norm k � kh;Dþ is given by

kuðt; �Þk2h;Dþ ¼ k�k2h þ
X3
i¼1

k�ik2h þ
X3
i;j¼1

k�ijk2h þ k�k2h

þX3
i¼1

kfik2h þ
X3
i;j¼1

kKijk2h þ
X3
i¼1

kDþi�k2h

þ X3
i;j¼1

kDþi�
jk2h þ

X3
i;j;k¼1

kDþi�jkk2h:

(71)

7. Discussion

The inclusion of a constant background shift is straight-
forward since it affects the characteristic speeds in a trivial
way, and has no affect on the characteristic variables.
Different choices of discretization of the shift advection
derivatives were studied in detail in [39]. Setting the back-
ground lapse to unity was done only for convenience and
does not affect the results qualitatively. In the linear con-
stant coefficient regime, the conformal variables can be
expressed as a linear combination of the NOR variables
that we have used in our calculations. The transformation
to conformal variables is not however just a change of
variables, because the transformation introduces the alge-
braic constraintsD and T. In the linear constant coefficient
case, as discussed in [40], if an explicit polynomial time
integrator is used then linearity of the system guarantees
that the algebraic constraints will not be violated if they are
initially satisfied. The time integrator can furthermore be

modified by a constraint projection step, so that even if the
initial data does violate the algebraic constraints then
numerical stability of the algorithm is trivially recovered.
In the variable coefficient and nonlinear cases, the con-
straint projection step is essential because error will other-
wise violate the algebraic constraints, and as shown in
Appendix A, when the algebraic constraints are violated
the Z4c formulation is generically only weakly hyperbolic.
It would be desirable to extend the results presented in this
section to the variable coefficient case, rather than linear-
izing and freezing coefficients. The most powerful method
for doing so would be to use a summation by parts finite-
differencing scheme to conserve a semidiscrete energy.
Unfortunately, such an approach does not work because,
as shown in Appendix B, even at the continuum level no
such energy exists.

IV. THE APPLES WITH APPLES TESTS

A. Numerical setup

For our numerical tests, we use the AMSS-NCKU code
[45–47]. The code employs message passing interface
parallelization for moving box mesh refinement and
method of lines time integration. In physics applications,
the code uses the moving puncture gauge with BSSNOK to
evolve black-hole spacetimes. Here it is used in a much
simpler context: each of the apples with apples tests em-
ploys just a single mesh, and periodic boundary conditions
in space, which avoids implementing complicated condi-
tions in 3D. Following [48,49] we set simulation domain
x 2 ½�0:5; 0:5�. In contrast to the normal AMSS-NCKU

setup, we use an unstaggered, or vertex centered, grid xn ¼
�0:5þ ndx, n ¼ 0; . . . ; 50�. We take dx ¼ dy ¼ dz ¼
1=ð50�Þ, � ¼ 1; 2; 4, and so on. In the y and z directions,
following [49], we use only five grid points. The Courant
factor � ¼ dt=dx is taken to be either 0.1, 0.25, or 0.5
according to the specific goal of each test. For spatial
derivatives, we restrict exclusively to second order accu-
rate finite differencing. For advection terms �i@i, we use
the upwind scheme

DðupÞ
i ¼

8<
:Dþi � 1

2dxiDþiDþi if �i > 0;

D�i þ 1
2dxiD�iD�i if �i < 0:

(72)

For the remaining spatial derivatives we employ either the
standard spatial discretization (25), or the novel scheme
described in Sec. III A. In [50] it was shown, albeit for
gauge conditions other than those that we employ here, that
without artificial dissipation the BSSNOK formulation is
not numerically stable. Since we are comparing the Z4c
formulation with BSSNOK, we therefore always use
Kreiss-Oliger numerical dissipation [42],

@tu ! @tu� �
X3
i¼1

dx3i ðDiþDi�Þ2u; (73)
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with dissipation parameter� ¼ 0:02. In the original apples
with apples tests, gauge conditions were prescribed.
Unfortunately some of those prescriptions result in an ill-
posed initial value problem when coupled to either the
BSSNOK or Z4c formulations. Furthermore, we prefer to
study error properties of the exact system that we will later
use to perform astrophysical simulations. We therefore use
only the puncture gauge (22) and (23) with �L ¼ 2=�,
�S ¼ 1=�2, and 	 ¼ 2 unless stated otherwise. We are
mainly concerned with the effect of each formulation on
the accuracy of the numerical calculation at finite resolu-
tion and the effect of the novel discretization scheme
versus the standard discretization for the Z4c system. In
our tests we frequently use the constraint monitor

C �

8>>><
>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ �ijM

iMj þ�2 þ 4�ijZ
iZj

q
for Z4c;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ �ijM
iMj þ �ijG

iGj
q

for BSSNOK

(74)

to assess the quality of the numerical solution. Here H is
the Hamiltonian constraint violation,Mi is the momentum
constraint violation, and Gi is the Gamma constraint vio-
lation. Since 2Zi corresponds to the Gamma constraint in
BSSNOK formalism, we use 4�ijZ

iZj to mimic the

Gamma constraint violation part.

B. Robust stability test

First we perform the robust stability test. Besides the
gauge choice we follow the original prescription. Initially
all variables including lapse and shift are set to the
Minkowski value perturbed by a random number � 2
ð�10�10=�2; 10�10=�2Þ. We set the Courant factor to

� ¼ 0:5. In Fig. 2, the constraint violation monitor with
respect to time is plotted for evolutions with 	 ¼ 2. In the
left subplot we compare Z4c formalism with BSSNOK
formalism using in each case the standard discretization
scheme. Although neither BSSNOK nor Z4c suffer from
rapid undesirable growth of the solution, the constraint
violations are slowly increasing for BSSNOK formalism
while they are decreasing in the Z4c test. By the end of the
evolution, the constraint violations in the Z4c tests are
several orders of magnitude lower than those of the
BSSNOK test. We do not have an explanation for this
behavior. The usual argument is that the propagating con-
straint subsystem of the Z4c formulation should prevent
constraint violation from growing on the grid, but in this
test the constraint violation cannot be absorbed by the
boundary conditions. To investigate the cause of the decay
of the constraints we have performed tests without artificial
dissipation. There we find that the constraint violation
levels off around an order of magnitude above the value
obtained with artificial dissipation. We also tried evolu-
tions with 	 ¼ 0, and find that the constraint monitor is
larger than with 	 ¼ 2, but that the qualitative behavior is
unaltered. Experimenting with the constraint damping
scheme with �1 ¼ 0:02, �2 ¼ 0, we find a minor improve-
ment in the constraint monitor, in line with our expectation
from the results of [34]. In the right subplot, we compare
the standard discretization scheme and the novel scheme,
for which we have a proof of numerical stability in the
constant coefficient approximation, each with the Z4c
formalism. Here, however, we would like to reiterate the
important point made in [38], namely that formal numeri-
cal stability neither implies nor is implied by robust stabil-
ity. The robust stability test, in the form studied here,
should be viewed only as a gauge of the errors present
in the numerical evolution at a finite resolution. In
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FIG. 2 (color online). Comparison of the constraint violation monitor (74) for the robust stability test with 	 ¼ 2. The left subplot
compares BSSNOK and Z4c, where the standard discretization scheme is used. Numerical experiments reveal that the drop in the
constraint monitor in the Z4c tests is caused neither by artificial dissipation nor the 	 parameter. The right subplot compares the
standard discretization scheme and the novel discretization scheme for Z4c formalism.
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Appendix A we present more demanding convergence
tests.

C. Linear wave test

The second test is the evolution of a linearized gravita-
tional wave on the Minkowski background. We set initial
data as

�xx ¼ 1; �yy ¼ 1þ b; �zz ¼ 1� b;

� ¼ 1; Kyy ¼ 1
2@tb; Kzz ¼ �1

2@tb;
(75)

and the remaining variables to zero. Here we choose

b ¼ A sin

�
2�ðx� tÞ

d

�
; (76)

and d ¼ 1, A ¼ 10�8. The Courant factor is chosen
� ¼ 0:5. Such a small perturbation of the metric ensures
that the numerical evolution remains essentially in the
linear regime. Here the initial data are constraint violating,
and the puncture gauge condition is not necessarily com-
patible with simple advection of the wave profile. In prac-
tice, however, it appears that to a good approximation the
solution is a simple traveling wave; in Fig. 3 we compare
the final �yy numerical profile, obtained with Z4c, to the

analytic solution of the linearized Einstein equations with
unit lapse and zero shift. There it appears that at least the
phase of the numerical solution is converging with resolu-
tion to the analytic solution. A more meaningful evaluation
of the errors in the system is obtained by performing self-
convergence tests on the data, for which we use the Dþ
norm (71) evaluated on the conformal variables of the Z4c
and BSSNOK formulations. There we find perfect second
order convergence in the norms for both BSSNOK and Z4c

(Fig. 4, BSSNOK gives the same behavior as Z4c, not
shown), and estimate that after 1000 light-crossing times,
the error is approximately 2� 10�9 for resolution � ¼ 4
and 8 (Fig. 4). Since the initial data for these evolutions is
constraint violating we do not present the constraint moni-
tor for this test, although we find that here it stays around
1� 10�12 with either formulation. The novel discretiza-
tion for Z4c gives almost identical results to those of the
standard discretization. We tested the effect of constraint
damping terms and different values of 	 in the gamma-
driver shift. Neither has an effect on the result of these
tests. Concerning coordinate gauge conditions, for com-
parison, we have performed additional evolutions with
harmonic lapse, �L ¼ 1 in (22) with harmonic shift (24).
We find both choices give very similar same convergence
behavior and errors.
In addition to the above sine wave test, we also adopted

the Gaussian shaped linear wave test suggested in [51].
Instead of Eq. (76), the b takes

b ¼ A exp

�
�ðx� tÞ2

2w2

�
; (77)

with A ¼ 10�8. In order to get periodic profile initially we
set w ¼ 0:5 which makes b roughly 0 at x ¼ �0:5. Since
the effective wavelength for this Gaussian wave is 1 which
is one-tenth of the wavelength of above sine wave, we need
more resolution to get reasonably convergent results.
Reducing numerical dispersion requires more resolution
still. In all we find resolutions � ¼ 16, 32, and 64 can
produce good convergence results (Fig. 5). The error for
� ¼ 64 and 32 is comparable to the � ¼ 8 and 4 of sine
wave case, which is roughly 2� 10�9.
As to the two-dimensional sine wave test,

�xx ¼ �yy ¼ 1þH

2
; �xy ¼ H

2
; �zz ¼ 1�H;

Kxx ¼ Kyy ¼ Kxy ¼ 1

4
@tH; Kzz ¼ � 1

2
@tH;

H ¼ A sin

�
2�ðx� y� ffiffiffi

2
p

tÞ
d

�
; � ¼ 1;

(78)

d ¼ 1, A ¼ 10�8 and other variables zero, the result is
similar to the one-dimensional test. But because the effec-

tive wavelength for two-dimensional sine wave is 1=
ffiffiffi
2

p
, a

little higher resolution (� ¼ 2; 4; 8) is needed to get com-
parable convergence behavior as in the one-dimensional
case (Fig. 6). As in the earlier robust stability tests the
constraint damping scheme with �1 ¼ 0:02, �2 ¼ 0 re-
duces the constraint violation very little.

D. Gauge wave and shifted gauge wave tests

The third and fourth tests are the unshifted gauge wave
and shifted gauge wave tests. For the gauge wave test we
take
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FIG. 3 (color online). Snapshots of �yy � 1 at coordinate t ¼
1000 for Z4c formalism at different resolutions with the standard
discretization scheme and initial data corresponding to a line-
arized gravitational wave. The evolution is performed with the
puncture gauge. The phase of the wave appears to be converging
to the linear analytic solution.
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�xx ¼ 1� b; �yy ¼ 1; �zz ¼ 1;

Kxx ¼ @tb

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1� b

p ; � ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
1� b

p
;

(79)

as initial data. For the shifted gauge wave we use

�xx ¼ 1þ b; �yy ¼ 1; �zz ¼ 1;

Kxx ¼ @tb

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ b

p ; � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ b

p ; �x ¼ � b

1þ b
;

(80)

and in either case set the remaining variables to zero. We
again choose (76), but now with d ¼ 1. Both A ¼ 0:01 and
A ¼ 0:1 are tested. We set the Courant factor � ¼ 0:5 in

the unshifted case and � ¼ 0:25 in the evolution with
nontrivial initial shift. Otherwise the grid setup is the
same as in the robust stability test. It is well known that
with harmonic lapse, �L ¼ 1, and vanishing shift the
BSSNOK formulation suffers from large undesirable
growth of the errors in both of these tests [49]. We recover
that behavior with BSSNOK, and find that with the Z4c
system the blowup is delayed. The growth can be antici-
pated from the results of [10,52,53], which show that the
harmonic gauge admits exponential growth in time evolu-
tion of such initial data. For a direct comparison with the
gauge wave results of [35] we performed this test with
harmonic lapse, vanishing shift and constraint damping
and �1 ¼ 1, �2 ¼ 0. There, in agreement with [35] we
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FIG. 4 (color online). Here we plot the experimental convergence factor (left panel) and an approximation of the absolute error (right
panel) for the ‘‘x’’ direction sine linear wave test with amplitude A ¼ 10�8. The evolution was performed with the puncture gauge and
the standard discretization. So that two self-convergence tests could be presented grids with � ¼ 1; 2; 4; 8 were used. As expected, the
self-convergence test at higher resolution results in an experimental convergence factor closer to 2 for longer.
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find that the errors do not result in a code crash, although at
this resolution the experimental convergence factor is very
poor. In contrast to the harmonic lapse gauge condition, the
puncture gauge is able to evolve the gauge wave for 1000
light-crossing times with no sign of blowup without con-
straint damping. It would be interesting to know what
concrete feature of the puncture gauge suppresses the
growth admitted by the harmonic gauge. Since both
A ¼ 0:01 and A ¼ 0:1 give roughly the same result, in
Fig. 7 we plot the convergence factor and the Dþ norm
of the error only for A ¼ 0:01. As the first test of nonlinear
effects in ‘‘apples with apples’’ test suite, Z4c gives better
convergence behavior than BSSNOK. As shown in the left
subplot of Fig. 7, Z4c can approximately maintain a

convergence factor around two while BSSNOK drops to
negative values. Moreover, Z4c gives more than one order
smaller error as shown in the right subplot of Fig. 7. In
terms of constraint violation we find that without Z4c
constraint damping the constraint monitor is comparable
for the two formulations throughout the evolutions. On the
other hand, we find that with �1 ¼ 0:02, �2 ¼ 0:0, the Z4c
constraint violation is an order of magnitude smaller than
that of BSSNOK at the end of the evolution. The experi-
mental convergence factor is unaffected by the use of the
constraint damping scheme in this test. Furthermore,
we find that with the puncture gauge condition the coor-
dinates are rapidly driven to match inertial coordinates of
Minkowski space. In others words, the amplitude of the
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FIG. 6 (color online). The plot is identical to Fig. 4 except that here the diagonal sine wave (81) was evolved. The errors are
correspondingly larger than in the one-dimensional test, but still we find that at higher resolution the experimental convergence factor
stays close to 2 for longer.
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NUMERICAL STABILITY OF THE Z4C FORMULATION OF . . . PHYSICAL REVIEW D 85, 124032 (2012)

124032-11



gaugewave decreases, as shown in Fig. 8, so in some sense,
the puncture gauge condition possesses a symmetry seek-
ing property. As shown in this figure, we find that other
gauge conditions do not have this property and the nonzero
value of 	 is also essential for the successful evolution.
Note that this gauge condition is similar to that used in
binary black-hole simulations. The novel discretization
gives near identical results to the standard discretization.
Tests with the harmonic gauge result in both larger abso-
lute error and larger constraint violations.

As for the two-dimensional linear wave test, we use

�xx ¼ �yy ¼ 1�H

2
; �xy ¼H

2
; �zz ¼ 1;

Kxx ¼Kyy ¼�Kxy ¼ @tH

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�H

p ; Kzz ¼�1

2
@tH;

H¼ A sin

�
2�ðx� y� ffiffiffi

2
p

tÞ
d

�
; �¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�H
p

;

(81)

with d ¼ 1, A ¼ 0:01, 0.1 for initial data for the two
dimensional gauge wave test, which corresponds to the
wave propagating along the diagonal direction of x-y
plane. The results are similar to the one-dimensional tests.
As for the shifted gauge wave test, the original ‘‘apples

with apples’’ test suggested A ¼ 0:5. We find such a large
amplitude results in code crashes for both formalisms with
any coordinate gauge under consideration. Our findings are
similar to those found with a pseudospectral method as used
in the SPEC code [51]. The unshifted gauge wave tests also
fail with amplitude A ¼ 0:5. Restricting to A ¼ 0:1, 0.01,
we find the resulting error and the convergence behavior is
very similar to the unshifted case. As an example we com-
pare the two results with A ¼ 0:01 in Fig. 9.

E. Gowdy wave test

The final tests are the expanding and collapsing Gowdy
waves. Following the suggestion of [48,49], we choose for
initial data
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FIG. 8 (color online). Gauge wave test with the puncture gauge condition [(22) and (23), 	 ¼ 2 or 0], with 1þ log slice and zero
shift and with harmonic lapse and harmonic shift. Here �yy � 1 is plotted at coordinate times 0, 2, 6, and 14, respectively, for a test

performed with the Z4c formalism and the standard discretization scheme. With puncture gauge and 	 ¼ 2, the gauge wave is rapidly
suppressed by the gauge condition and at later times �yy � 1 tends to zero. While with other gauge conditions we cannot see this

symmetry seeking property; with 	 ¼ 0 the code crashes soon after t ¼ 7:2.
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�xx ¼ t�1=2e�=2;

�yy ¼ teP;

�zz ¼ te�P;

Kxx ¼ �1
4t
�1=4e�=4ðt�1 ��;tÞ;

� ¼ t�1=4e�=4;

Kyy ¼ �1
2t
1=4e��=4ePð�1� tP;tÞ;

Kzz ¼ �1
2t
1=4e��=4e�Pð�1þ tP;tÞ;

(82)

where theþ sign is for the expanding Gowdy wave test and
the� sign is for the collapsing Gowdy wave test, and other
variables zero. Here P ¼ J0ð2�tÞ cosð2�xÞ and

� ¼ �2�tJ0ð2�tÞJ1ð2�tÞcos2ð2�xÞ
þ 2�2t2½J20ð2�tÞ þ J21ð2�tÞ�
� 1

2½ð2�Þ2½J20ð2�Þ þ J21ð2�Þ�
� 2�J0ð2�ÞJ1ð2�Þ�; (83)

where Jn are Bessel functions. Initially we set t ¼
9:875 320 582 909 8 following [48,49] exactly. The
Courant factor is set as C ¼ 0:05. Here the use of the
puncture gauge is troublesome because it does not repro-
duce the preferred analytical gauge in the evolution.
Unfortunately, simply choosing the lapse and shift a priori
results in an ill-posed initial value problem, highlighting
the fact that in numerical relativity there are still open
questions related to the choice of gauge conditions.
Obviously conditions must be chosen that render the initial
value problem well posed, but on the other hand such
conditions may not correspond to those best suited to study
a problem analytically.
The test results of expanding Gowdy wave are plotted in

Fig. 10. Although this test is very tough [49], up to 1000,
neither the BSSNOK formalism nor the Z4c formalism
suffer from large growth of the errors causing the code to
crash. Our results demonstrate the robustness of puncture
gauge condition. In the left subplot, we show the behavior
of relative error for two different resolutions where � ¼ 2
and � ¼ 4 are used. From this result we can see the
increasing behavior of the error roughly follows the power
function of t instead of the exponentially increasing result
obtained by the spectral code in [51]. In the right subplot
we show the constraint monitor with respect to time. In
Fig. 11 we compare the convergence behavior with respect
to Hamiltonian constraint violation. We find that Z4c
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the shifted gauge wave test. The evolutions were performed with
the puncture gauge.
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formalism achieves better convergence results than
BSSNOK formalism at this resolution. Once again the
novel finite difference scheme gives almost exactly the
same result as the standard discretization. If the damping
term with �1 ¼ 0:02 and �2 ¼ 0 is used, the constraint
violation is significantly reduced, but, as shown in
Fig. 10, does not reduce the Dþ norm of the difference
between two resolutions. Unfortunately, in Fig. 11 we see
that the damping term does reduce the experimental con-
vergence factor.

For the collapsing Gowdy wave, in contrast to the pro-
posal of original ‘‘apples with apples’’ tests, we do not
transform the time coordinate to avoid singularity by hand.
Instead we simply change the sign of initial extrinsic
curvature Kij in Eq. (82) and evolve with the puncture

gauge. Until 1000 light-crossing times, when we stop the
test, the code does not crash. As the solution approaches
the singularity, the puncture gauge makes the evolution
effectively stop by the collapse of the lapse. Both BSSNOK
and Z4c formalism gives almost identical results. In Fig. 12
we show several snapshots for the lapse and shift vector,
and the singularity avoiding property of puncture gauge
condition can be clearly seen. Since BSSNOK and Z4c
formalisms give similar results, only BSSNOK results are
shown. For the collapsing Gowdy test we find that the
effect of the constraint damping scheme, with �1 ¼ 0:02,
�2 ¼ 0, is negligible.

V. CONCLUSIONS

In order to demonstrate that a conformal decomposition
of the Z4 formulation of general relativity may be a useful
tool for numerical relativity simulations in three spatial
dimensions, we have studied numerical stability of the
system coupled to the moving puncture gauge condition.
First, we proved that in combination with a novel discre-
tization scheme, and periodic boundary conditions in
space, the Z4c system is numerically stable when linear-
ized around a constant background metric. We would like
to extend our results to the variable coefficient case, but
since Z4 coupled to the puncture gauge appears to be only
strongly, but not symmetric hyperbolic, see Appendix B,
there are few methods to hand. We then performed a
complete set of the ‘‘apples with apples’’ tests, which we
modified slightly to take into account the status of the
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convergence of the constraints in this test.

ZHOUJIAN CAO AND DAVID HILDITCH PHYSICAL REVIEW D 85, 124032 (2012)

124032-14



initial value problem from the PDEs point of view, and
discussed for each the relative behavior of Z4c in compari-
son with BSSNOK. We summarize the results of the tests
as follows.

A. Robust stability

In the robust stability tests we found that the Z4c evo-
lutions result in a smaller constraint violation, a feature that
was insensitive to the choice of gauge.

B. Linear waves

In the linear wave test we found only marginal differ-
ences between the two formulations, regardless of gauge
conditions. It is perhaps expected that in this test the
differences will be small, because the propagation of gravi-
tational waves is of course a feature shared by both
systems.

C. Gauge waves

For the gauge waves test we found, using the puncture
gauge, that the Z4c evolutions exhibit an experimentally
computed self-convergence factor closer to the expected
second order than the BSSNOK data over many light-
crossing times. In this context we found that the puncture
gauge has a strong symmetry seeking effect and rapidly
pushes the lapse to a constant, and the shift to zero.

D. Gowdy waves

To evolve expanding and collapsing Gowdy spacetimes
we again employed the puncture gauge. Here we find that,
although neither Z4c or BSSNOK results in code crashes,
long-term convergence is very difficult to achieve. Another
problematic feature here is that, although the puncture
gauge results in a well-posed initial value problem for
each of the formulations, it does not track the preferred
coordinates on the spacetime under consideration.

In Appendix Awe also studied the effect of the algebraic
constraint projection on numerical convergence. When the
algebraic constraints are violated, the Z4c formulation is
only weakly hyperbolic, which is reflected in numerical
approximation as a failure to converge to the continuum
solution, even for trivial initial data such as noise on top of
the Minkowski spacetime.

The evidence for the usefulness of a conformal decom-
position of the Z4 formulation in astrophysical applications
is mounting. In spherical symmetry, the system was shown
to have favorable properties over BSSNOK [25], especially
in the evolution of spacetimes containing matter. The
trivial wavelike nature of the constraint subsystem was
then used to construct high-order constraint preserving
boundary conditions [33], which were studied in numerical
applications in spherical symmetry. The constraint damp-
ing scheme for the formulation was studied in detail in
[34]. There, once again in spherical symmetry, the efficacy

of the constraint damping schemewas studied in numerical
applications and it was found that the constraint damping
scheme is a useful tool for the suppression of violations in
vacuum spacetimes, but that when matter is present more
work is required to paint a clear picture. For the first time,
numerical evolutions of binary black-hole spacetimes with
a conformal decomposition of Z4, CCZ4 were presented in
[35]. Here we have focused on formal numerical stability,
and compared numerical results obtained with BSSNOK
and Z4c in a simple context. Overall we find some benefit
to the use of Z4c, although in some sense the tests we have
performed here, namely the evolution of vacuum space-
times with periodic boundary conditions, are not optimally
suited to the advantages found in spherical symmetry. In
our view two points remain to be addressed before one can
consider a wholesale replacement of BSSNOK in applica-
tions. First, it is desirable to obtain boundary conditions
that are constraint preserving, minimize the incoming
gravitational wave content, lead to a well-posed initial
boundary value problem, and can be implemented in a
3D production code. Second, conclusive evidence of the
benefits of Z4c over BSSNOK is needed in applications.
We hope to address both of these issues shortly.
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APPENDIX A: Z4CWITHOUT ENFORCEMENTOF
THE ALGEBRAIC CONSTRAINTS

1. Weak hyperbolicity with the puncture gauge

Without assuming that the algebraic constraints are en-
forced, the equations of motion for the Z4c formulation
cannot naturally be written in terms of the ADM variables.
Under the standard 2þ 1 decomposition [54] and up to
transverse and nonprincipal derivatives, they are given by

@t� ¼ 2
3�½�ðK̂ þ 2�Þ � @s�

s� þ �s@s�; (A1)

@t ~�ss ¼ �2� ~Ass þ 4
3�@s�

s þ �s@s ~�ss; (A2)

@t ~�qq ¼ �2� ~Aqq � 4
3�@s�

s þ �s@s ~�qq; (A3)

@t� ¼ ��L�
2K̂ þ �s@s�; (A4)

@t�
s ¼ �2�S

~�s þ �s@s�
s; (A5)
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@tK̂ ¼ �@s@s�þ �s@sK̂; (A6)

@t ~Ass ¼ �

3
@s@s�� �

3
@s@s ~�ss þ �

6
@s@s ~�qq � 2

3
�@s@s�

þ 2

3
��2@s~�

s þ �s@s ~Ass; (A7)

@t ~Aqq ¼ ��

3
@s@s�þ �

3
@s@s ~�ss � �

6
@s@s ~�qq

þ 2

3
�@s@s�� 2

3
��2@s~�

s þ �s@s ~Aqq; (A8)

@t� ¼ �

�
@s@s�� �

4�
@s@s ~�ss � �

4�
@s@s ~�qq

þ �

2
�@s~�

s þ �s@s�; (A9)

@t~�
s ¼ 4

3�
@s@s�

s � 4�

3�
@sK̂ � 2�

3�
@s�þ �s@s~�

s;

(A10)

in the scalar sector,

@t ~�sA ¼ �2� ~AsA þ �s@s ~�sA; (A11)

@t�
A ¼ �2�S

~�A þ �s@s�
A; (A12)

@t ~AsA ¼ � �

2�
@s@s ~�sA þ �

2
�@s~�A þ �s@s ~AsA; (A13)

@t~�
A ¼ 1

�
@s@s�

A þ �s@s~�
A; (A14)

in the vector sector, and

@t ~�
TF
AB ¼ �2� ~ATF

AB þ �s@s ~�
TF
AB; (A15)

@t ~A
TF
AB ¼ ��

2
@s@s ~�

TF
AB þ �s@s ~A

TF
AB; (A16)

in the tensor sector. Here the analysis is essentially for the
linearized system, and we use the background metric �ij to

raise and lower indices. We also use the convention that
the spatial vector si is normalized to one against the
background physical metric rather than using the confor-
mal metric. The principal symbol of each sector can be
trivially read off from these equations. In geometric units
the tensor sector has speeds �1, and a complete set of
characteristic variables. Likewise the vector sector has
speeds �ð1; ffiffiffiffiffiffiffi

��S

p Þ, with ��S ¼ �S=� and a complete set
of characteristic variables. The scalar sector has speeds

0;�ð1; ffiffiffiffiffiffiffi
�L

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 ��S=3

p Þ, but does not have a full set of

characteristic variables; the formulation is thus only
weakly hyperbolic, and so does not have a well-posed
initial value problem. It may be possible to modify the
equations of motion by adding (possibly derivatives of) the
algebraic constraintsD and T to the equations of motion to

achieve strong, or even symmetric hyperbolicity. But in
any case it is not true that when the algebraic constraints
are violated the PDE properties of the system are unaltered.

2. Numerical convergence without constraint projection

In the previous subsection we saw that when the alge-
braic constraints are not enforced, the Z4c formulation is
only weakly hyperbolic. The open question is how ill
posedness of the initial value problem will be reflected in
numerical approximation. To answer the question we fol-
low [50] and perform convergence tests, using the Dþ
norm, as defined by (71), using initial data inspired by
the robust stability test. Specifically we set the initial
perturbation to � 2 ð�10�3=�p; 10�3=�pÞ. For the metric
components we set p ¼ 3, and use p ¼ 2 for the remaining
variables. This choice is needed to guarantee second order
consistency of the initial data in the Dþ norm, which is of
course necessary for convergence in that norm. We employ
the same numerical grid used in the robust stability tests,
but instead of evolving for of 1000 light-crossing times, we
consider the interval t 2 ½0; 0:8�. We set the Courant factor
to � ¼ 0:5, and use artificial dissipation (73) as usual with
� ¼ 0:02. We consider higher resolutions than those used
in the robust stability test, and compute additionally data
with � ¼ 16; . . . ; 1024, in factors of 2. Before calculating
the Dþ norm, we restrict the solution to the � ¼ 1 grid.
The convergence factor with respect to resolutions � and
2� is

C � log2

� ku� � uexactkDþ
ku2� � uexactkDþ

�
: (A17)

The convergence factors obtained with the puncture gauge
condition (22) and (23) and the novel discretization are
shown in Fig. 13. Very similar results are obtained with the
standard discretization and we interpret the close agree-
ment of the two tests as numerical evidence that the
standard discretization is formally numerically stable,
with constraint projection, despite our inability to prove
so. At the lowest three resolutions the constraint projection
does not seem to have any effect on the result, but at higher
resolutions the conclusion is clear: without algebraic con-
straint projection the numerical solution does not converge
to the continuum solution. Even with the constraint pro-
jection we do not seem to obtain perfect second order
convergence, but since we are evolving random noise and
the trend is clear, we conclude that with constraint projec-
tion the scheme is converging. Furthermore, in our tests
with smooth initial data we do obtain perfect second order
convergence with the constraint projection. We obtain
similar results with a Courant factor � ¼ 0:1, and with
the harmonic slicing and zero shift. We also find similar
results when discretizing at fourth order.
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APPENDIX B: SYMMETRIC HYPERBOLICITY OF
Z4 WITH THE PUNCTURE GAUGE

1. Definitions

A quantity E conserved by the principal part of the
second order system with state vector u,

E ¼
Z

�dx; � � ð@ju; @tuÞHijð@iu; @tuÞy; (B1)

is called a candidate energy. The Hermitian matrix H is
called a candidate symmetrizer. A system that admits a
positive definite candidate symmetrizer is called symmet-
ric hyperbolic. This definition is equivalent to the existence
of a first order reduction of the system that is symmetric
hyperbolic according to the standard definition for first
order systems.

2. Z4c second order form

The principal part of the equations of motion of Z4c
coupled to the puncture gauge can be written

@20� ¼ �L�
ij@i@j�; (B2)

@20�
i ¼ ��S�

jk@j@k�
i þ ��S

�L

@i@0�þ 1

6
� ��S�

jk@i@0�jk;

(B3)

@20�ij ¼ �kl@k@l�ij þ 1

3
�kl@i@j�kl þ 2

�
@i@j�

þ 2

�

�
1� 1

��S

�
�kði@jÞ@0�k; (B4)

where we write @0 ¼ ð@t � �i@iÞ=�. We thus express the
principal part of the system in the form

@0ui kl ¼ Ap
i
j
kl
mn@puj mn; (B5)

with

@0ui kl ¼ ð@i�kl; @i�; @i�k; @0�kl; @0�; @0�kÞy; (B6)

and the principal part matrix given by

Ap
i
j
kl
mn@pujmn ¼ 0 
p

iIkl
mn

Apj
kl
mn Bp

kl
mn

 !
; (B7)

with Ikl
mn the appropriate identity and

Apj
kl
mn ¼

Apj
11 kl

mn 2
� 


p
ðk


j
lÞ 0

0 �L�
pj 0

0 0 ��S�
pj
k

m

0
BB@

1
CCA; (B8)

Bp
kl
mn ¼

0 0 2
�

�
1� 1

��S

�

p

ðk�lÞm

0 0 0
�
6 ��S�

mn�pk ��S

�L
�pk 0

0
BBBB@

1
CCCCA;

(B9)

where

A pj
11 kl

mn ¼ �pj
m
ðk


n
lÞ þ 1

3�
mn
p

ðk

j
lÞ: (B10)

-4

-2

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

co
nv

er
ge

nc
e 

fa
ct

or

t

log2(||uρ=4||D+
/||uρ=8||D+

)
log2(||uρ=8||D+

/||uρ=16||D+
)

log2(||uρ=16||D+
/||uρ=32||D+

)
log2(||uρ=32||D+

/||uρ=64||D+
)

log2(||uρ=64||D+
/||uρ=128||D+

)
log2(||uρ=128||D+

/||uρ=256||D+
)

log2(||uρ=256||D+
/||uρ=512||D+

)
log2(||uρ=512||D+

/||uρ=1024||D+
)

-4

-2

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

co
nv

er
ge

nc
e 

fa
ct

or

t

log2(||uρ=4||D+
/||uρ=8||D+

)
log2(||uρ=8||D+

/||uρ=16||D+
)

log2(||uρ=16||D+
/||uρ=32||D+

)
log2(||uρ=32||D+

/||uρ=64||D+
)

log2(||uρ=64||D+
/||uρ=128||D+

)
log2(||uρ=128||D+

/||uρ=256||D+
)

log2(||uρ=256||D+
/||uρ=512||D+

)
log2(||uρ=512||D+

/||uρ=1024||D+
)

FIG. 13 (color online). Convergence test with the puncture gauge condition (22) and (23). Convergence factors (A17) in time for
different resolution are shown. The left subplots are without algebra constraint enforcement while the right ones with. Here the novel
finite-differencing scheme is used. Constraint projection is required for convergence.
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3. Ansatz candidate and conservation

Starting from the ansatz candidate [55],

Hijklmn

¼

Hijklmn
11 Hijkl

12 0 0 0 Hiklm
16

Hjimn
12 Hij

22 0 0 0 Him
26

0 0 Hijkm
33 Hikmn

34 Hik
35 0

0 0 Hjmkl
34 Hklmn

44 Hkl
45 0

0 0 Hjm
35 Hmn

45 H55 0

Hjmnk
16 Hjk

26 0 0 0 Hkm
66

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA
; (B11)

where we define

Hij kl mn
11 ¼ H1

11�
ij�kl�mn þ 2H2

11�
ij�kðm�nÞl

þ 2H3
11ð�iðk�lÞj�mn þ �iðm�nÞj�klÞ

þ 2H4
11ð�ik�jðm�nÞl þ �il�jðm�nÞk

þ �im�jðk�lÞn þ �in�jðk�lÞmÞ
þ A1

11ð�k½i�j�ðm�nÞl þ �l½i�j�ðm�nÞmÞ;
Hijkl

12 ¼ 2H1
12�

iðk�lÞj þH2
12�

ij�kl;

Hij
22 ¼ H1

22�
ij;

Hij k m
33 ¼ 2H1

33�
iðk�mÞj þH2

33�
ij�km þ A1

33�
k½i�j�m;

Hi kl m
16 ¼ 2H1

16�
iðk�lÞm þH2

16�
im�kl;

Hi m
26 ¼ H1

26�
im;

Hi k mn
34 ¼ H1

34�
iðm�nÞk þH2

34�
ik�mn;

Hi k
35 ¼ H1

35�
ik;

Hkl mn
44 ¼ 2H1

44�
kðm�nÞl þH2

44�
kl�mn;

Hkl
45 ¼ H1

45�
kl;

Hk m
66 ¼ H1

66�
km:

Because of the structure of the equations of motion and our
choice of gauge the block structure of the ansatz candidate is
no restriction. The restriction to energy densities constructed
by using the metric to construct indices does restrict the
class of symmetrizers, but is the largest natural choice.
Conservation of the energy is guaranteed by Hermiticity
of the matrix, suppressing nonderivative indices,

SiH
ijAp

j
kspSk; (B12)

for every spatial vector si, where

Si ¼ si 0
0 1

� �
; (B13)

and the partition of this matrix is compatiblewith that of ui kl
into spatial and time derivatives. Imposing energy conser-
vation for the puncture gauge implies that

H1
11 ¼

2

9
ð6H2

44 � �H2
34Þ; H2

11 ¼ 0;

H3
11 ¼ 0; H4

11 ¼ 0;

H1
12 ¼ 0; H1

16 ¼ 0;

H2
16 ¼

4

3 ��S

H2
34; H1

33 ¼
1� ��S

��S�
H2

34;

H1
34 ¼ 0; H1

44 ¼ 0;

and the more complicated

H1
22 ¼ �LH55 þ 8H2

34ð2 ��S � 3Þ
�Lð3�L � 4 ��SÞ�

� 12H2
44ð4þ�L � 4 ��S

�Lð3�L � 4 ��SÞ�2
;

H1
26 ¼

24ð ��S � 1Þ
��Sð4 ��S � 3�LÞ ð2H

2
44 þ �H2

34Þ;

H1
35 ¼

24� 6�L � 16 ��S

�Lð3�L � 4 ��SÞ� H2
34 þ

48ð ��S � 1Þ
�Lð4 ��S � 3�LÞ�2

H2
44;

H1
45 ¼

4 ��S

�Lð4 ��S � 3�LÞH
2
34 þ

6

4 ��S � 3�L

H2
44;

H1
66 ¼

2ð3 ��S � 4Þ
��2
S�

H2
34 þ

12ð ��S � 1Þ
��2
S�

2
H2

44;

H2
12 ¼

4

4 ��S � 3�L

H2
34 þ

8

ð4 ��S � 3�LÞ�H2
44;

H2
33 ¼

2ð3 ��S � 4Þ
��S�

H2
34 þ

12ð ��S � 1Þ
��S�

2
H2

44;

Note that the terms antisymmetric in derivative indices drop
out of the conservation equations.

4. Positivity

Introducing and expanding with a tensor basis reveals
vanishing elements on the diagonal of the candidate sym-
metrizer; there is no positive definite candidate symmetr-
izer starting from the natural ansatz (B11). We thus
conclude, unfortunately, that the use of summation by parts
finite differences for the Z4c formulation with the puncture
gauge will not guarantee numerical stability.
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