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One of the most common assumptions in the study of neutron star models and their oscillations is that

the pressure is isotopic, however, there are arguments that this may not be correct. Thus in the present

paper we make a first step towards studying the nonradial oscillations of neutron stars with an anisotropic

pressure. We adopt the so-called Cowling approximation where the spacetime metric is kept fixed and

the oscillation spectrum for the first few fluid modes is obtained. The effect of the anisotropy on the

frequencies is apparent, although with the present results it might be hard to distinguish it from the

changes in the frequencies caused by different equations of state.
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I. INTRODUCTION

The discovery of gravitational waves is one of the most
important goals of the astrophysics nowadays. A lot of
effort is being devoted to this problem worldwide.
Ground based experiments [1–4] as well as space missions
[5] are planned and some of them are expected to be able to
give results in the near future. Parallel to these efforts the
first steps towards a third generation gravitational wave
telescope (the so-called Einstein telescope) which is sup-
posed to have much higher sensitivity are being undertaken
[6]. The reason why the gravitational waves are so difficult
to detect is that they are extremely weak, which requires
detectors with very high sensitivity and also accurate wave-
forms of the signal emitted from the astrophysical objects.

One of the promising sources of gravitational waves is
the oscillations of neutron stars [7]. A lot of effort has been
spent in studying the gravitational wave emission of these
objects but there is still many important unanswered ques-
tions. The gravitational wave emission by neutron stars is
ultimately connected to their interior structure. In order to
predict accurately enough the characteristics of the gravi-
tation waves we need adequate relativistic models of the
neutron star interior. However, at present little is known
about the properties and the behavior of matter at very high
densities and pressures. So, in modeling the neutron star
interior we are forced to make certain assumptions about
the properties of the neutron star matter. Some of these
assumptions seem natural from a physical point of view,
however, there are always uncertainties and suspicions that
the assumptions may be not fully correct. As the history of
science shows, there are surprises sometimes—Nature
does not always share our notions of what is ‘‘natural.’’
That is why the alternatives should also be investigated.

One of the widely accepted assumptions in studying the
equilibrium configurations of neutron stars and their oscil-
lations is that the pressure of the neutron star matter is
isotropic. There are however arguments that the pressure
could be anisotropic1 [8]. Some theoretical investigations
[9,10] show that the nuclear matter may be anisotropic at
very high densities where the nuclear interactions must be
treated relativistically. Anisotropy in the fluid pressure
can be caused by many other factors. Anisotropy can be
yielded by the existence of a solid core or by the presence
of superfluid [11–13], by pion condensation [14], by differ-
ent kind of phase transitions [15], by the presence of strong
magnetic field [16] or by other factors [8]. From a formal
point of view the mixture of two fluids is mathematically
equivalent to an anisotropic fluid [8,17].
During the last decades, starting with the pioneering

work of [18], there have been many papers studying an-
isotropic spherically symmetric static configurations
within general relativity [19–42]. These studies show that
the anisotropy may have non-negligible effects on the
neutron star structure and properties. For example, the
anisotropy may influence notably the maximal equilibrium
mass, maximum redshift, and maximum compactness of
the stars [19,34]. It is worth noting also that even for stable
configurations the anisotropy can support outwardly in-
creasing energy density in the star core [41].
The fact that the anisotropy can seriously affect the

interior structure, and the properties of the stellar configu-
rations make us think that the anisotropy may also have a
serious influence on the gravitational wave emission and
more precisely on the gravitational wave spectrum of the
stellar configurations. Therefore, in the context of the
current efforts to detect the gravitational waves, it is
important to study the gravitational wave spectrum of the
anisotropic neutron stars. Such a study is twofold. On the
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1Generally speaking the anisotropic fluid has pressures which
can differ among the spacial directions.
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one hand, it can reveal the basic characteristics of the
gravitational wave spectrum of the anisotropic stars and
the differences with the spectrum of the isotropic stars. On
the other hand, such a study provides us with a tool to study
the reverse problem—to put constraints on the amount of
neutron star anisotropy using the observed gravitational
wave spectrum in the future.

In the present paper we undertake the first step towards
the study of the gravitational wave spectrum of anisotropic
neutron stars. More precisely, we investigate the spectrum
of the nonradial oscillations of anisotropic neutron stars in
the Cowling approximation. The paper is organized as
follows. In Sec. II we numerically construct equilibrium
configurations describing anisotropic stars. Section III is
devoted to the derivation of the perturbation equations of
the anisotropic neutron stars in the Cowling approximation
and the formulation of the boundary value problem for the
oscillation spectrum. In Sec. IV we present the numerical
results for the oscillation frequencies. The paper ends with
our conclusions.

II. EQUILIBRIUM ANISOTROPIC
CONFIGURATIONS OF NEUTRON STARS

In the spherically symmetric case2 which we will con-
sider in the present paper, the fluid anisotropy means that
the radial pressure p differs from the transverse pressure q.
The mathematical description of an anisotropic fluid in
spherical symmetry is given by the following energy-
momentum tensor

T�� ¼ �u�u� þ pk�k� þ qðg�� þ u�u� � k�k�Þ; (1)

where g�� is the spacetime metric, u� is the fluid

4-velocity, � is the fluid energy density, and k� is the
unit radial vector (k�k

� ¼ 1) with u�k� ¼ 0. Note that

g�� þ u�u� � k�k� is the projection tensor onto the

2-surfaces orthogonal to both u� and k�. At the center of
symmetry the anisotropic pressure must vanish since k� is
not defined there.

For spherically symmetric spacetimes the metric can be
written in the well-known form

ds2 ¼ �e2�dt2 þ e2�dr2 þ r2d�2 þ r2sin2�d�2: (2)

The Einstein field equations

R�� � 1

2
g��R ¼ 8�T�� (3)

then reduce to

2�0

r
e�2� þ 1

r2
ð1� e�2�Þ ¼ 8��; (4)

2�0

r
e�2� � 1

r2
ð1� e�2�Þ ¼ 8�p; (5)

while the contracted Bianchi identity

r�T�� ¼ 0 (6)

gives

p0 ¼ �ð�þ pÞ�0 � 2�

r
; (7)

where � ¼ p� q. Introducing the local mass mðrÞ ¼ r
2 �ð1� e�2�Þ and expressing �0 from (5) we can write

the dimensionally reduced equations in the Tolman-
Oppenheimer-Volkoff form

m0 ¼ 4��r2; (8)

p0 ¼ �ð�þ pÞ 4�pr
3 þm

rðr� 2mÞ � 2�

r
: (9)

In order to close our system we should specify the
equations of state for p and for �. For the radial pressure
we will consider a barotropic equation of state and more
precisely

� ¼ p0

�
p

Kp0

�
1=� þ p

�� 1
; (10)

where p0 ¼ 1:67� 1014 g=cm3 in units where c ¼ 1 and
we have chosen � ¼ 2:34 and K ¼ 0:0195 obtained when
fitting the tabulated data for EOS II [43]. The results are
qualitatively the same for other values of K and �.
As explained in [41] we cannot just take � ¼ �ð�Þ

because this equation of state is too restrictive. Instead
we should consider quasilocal equation of state � ¼
�ðp;�Þwhere� denotes a quasilocal variable. In principle
the equation of state� ¼ �ð�;�Þ should be determined by
the microscopic theory. Unfortunately, at present we do not
have a good enough microscopic theory to allow us to find
the explicit form of the dependence � ¼ �ð�;�Þ. A draw-
back of the available microscopic models is the fact that
the models are developed in flat spacetime and then the
results are transferred to curved spacetime which is not
completely satisfactory [12]. Within the framework of
these types of microscopic models it is impossible to find
the influence of the curved geometry on the equation of
state. That is why our approach in the present paper is
phenomenological. Following [41] for the quasilocal vari-

able we take the local compactness � ¼ 2mðrÞ
r ¼ 1� e�2�

and we consider the following equation of state

2The assumption of spherical symmetry is applicable to the
static case of matter sources with an energy-momentum tensor
satisfying jT�

� � T�
� j � T�

� . So the assumption of spherical
symmetry is applicable, for example, to the cases when the
anisotropy is yielded by the existence of a solid core, by the
presence of superfluid, or by the presence of pion condensation.
Also, the spherical symmetry can be used when the anisotropy is
yielded by weak enough magnetic field. However, if the mag-
netic field is very strong, as in the case of magnetars, the
spherical symmetry assumption may not be a good approxima-
tion [16].
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� ¼ �p�; (11)

where � is a parameter. Since the local compactness is zero
at the center, this guarantees that �ð0Þ ¼ 0. In order to
roughly estimate the range of the parameter � we use the
results of [44] where the anisotropy is caused by a pion
condensation. In [44] it is found that 0 � �=p � 1 and
therefore we could expect that the maximum value of � is
of order of 1. In the present paper we adopt the range � 2
½�2; 2�.

In order to obtain the background solutions which will
be perturbed we solve the reduced field equations (4), (5),
and (7) with the appropriate boundary conditions

�ð0Þ ¼ 0; �ð0Þ ¼ �0; �ð1Þ ¼ 0: (12)

The normalized density �, the radial p, and the aniso-
tropic � pressure as functions of the radial coordinate r are
shown in Figs. 1 and 2 for several neutron star solutions.
The central energy density �0 is the same for all of the
solutions presented in the figures and the results for several
values of the parameter �, which controls the anisotropic
pressure, are shown. It is interesting to note that for large
values of � and for large masses, neutron star solutions
exist for which the density � is not a monotonic function of
the radial coordinate but has a maximum and these solu-
tions are dynamically stable [41].
In Fig. 3 the mass M of the anisotropic neutron stars is

shown as a function of the central density �0 and of the
radius R for several values of the parameter �. As we can
see the properties of the star vary significantly when the
anisotropic pressure is varied, i.e. when we vary the
parameter �. The dynamical stability analysis shows that
the solutions are stable up to the maximum mass of the
sequences [41].

III. PERTURBATION EQUATIONS IN THE
COWLING APPROXIMATION

In this section we derive the equations describing the
nonradial perturbations of the anisotropic stars in the so-
called Cowling approximation [45,46]. In the Cowling
approximation the spacetime metric is kept fixed. Despite
this simplification the Cowling formalism turns out to be
accurate enough and reproduces the oscillation spectrum
with good accuracy. In fact, the comparison of the oscil-
lation frequencies obtained by a fully general relativistic
numerical approach and by the Cowling approximation
shows that the discrepancy is less than 20% for the typical
stellar models [47].
The equations describing the perturbations in the

Cowling formalism are obtained by varying the equations
for the conservation of the energy-momentum tensor (6).
Taking into account that the metric is kept fixed, we find

FIG. 1 (color online). The normalized energy density � as a
function of the radial coordinate r. The results for several
neutron star solutions with the same central energy density �0 ¼
7:455� 1014 g=cm3 and different values of the parameter � are
shown (this central energy density gives neutron star with mass
M ¼ 1:4M� in the case with zero anisotropic pressure, i.e. when
� ¼ 0).

FIG. 2 (color online). The radial p and the anisotropic pressure � as functions of the radial coordinate r, normalized to the value of
the radial pressure at the center of the star p0. The results are for the same solutions as in Fig. 1.
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r�	T
�
� ¼ 0 where

	T�
� ¼ ð	�þ 	qÞu�u� þ ð�þ qÞðu�	u� þ 	u�u

�Þ
þ 	q	�

� þ 	�k�k� þ �	k�k� þ �k�	k�:

(13)

Projecting equation r�	T
�
� ¼ 0 along the background

4-velocity u� we have

u�r�	�þr�f½ð�þ qÞ	�
� þ �k�k��	u�g

þ ð�þ qÞa�	u� þr�u�	ð�k�k�Þ ¼ 0: (14)

Projecting orthogonally to the background 4-velocity by
using the operator P �

� ¼ 	�
� þ u�u�, we obtain

ð	�þ	qÞa�þð�þqÞu�ðr�	u��r�	u�Þ
þr�	qþu�u

�r�	qþP �
�r
	ð�k
k�Þ¼0; (15)

where a� ¼ u�r�u� is the background 4-acceleration.

At this stage we can express the perturbations of the
4-velocity via the Lagrangian displacement vector �i,
namely,

@�i

@t
¼ 	ui

ut
; (16)

where i ¼ 1, 2, 3 ¼ r, �, �.
Now let us consider Eq. (15) for � ¼ � and � ¼ �.

Since a� ¼ a� ¼ 0 and u� ¼ ðut; 0; 0; 0Þ we find
ð�þ qÞðutÞ2@2t �� þ @�	q ¼ 0; (17)

ð�þ qÞðutÞ2@2t �� þ @�	q ¼ 0: (18)

Taking into account that �, q and ut depend on r only, the
integrability condition for the above equations gives

@��� ¼ @���: (19)

From this condition and the fact that the background is
spherically symmetric we find that �� and �� are of the

form

�� ¼ �X
lm

Vlmðr; tÞ@�Ylmð�;�Þ; (20)

�� ¼ �X
lm

Vlmðr; tÞ@�Ylmð�;�Þ; (21)

where Ylmð�;�Þ are the spherical harmonics. From now on,
in order to simplify the notations, we will just write � ¼
�VYlm when we have expansion in spherical harmonics.
We proceed further with finding the expressions for the

density and pressure perturbations. From Eq. (14) after
some algebra we find

	� ¼ � 1ffiffiffiffiffiffiffi�g
p @if ffiffiffiffiffiffiffi�g

p ½ð�þ qÞ�i þ �ðkj�jÞki�g

� ½ð�þ qÞ�i þ �ðkj�jÞki�@i lnðutÞ � ð�þ pÞai�i:

(22)

It is convenient to express �r in the form

�r ¼ e�� W

r2
Ylm (23)

and substituting in the above equations, after some algebra
we find3

	� ¼ �ð�þ pÞ
�
e�� W 0

r2
þ lðlþ 1Þ

r2
V

�
Ylm

� d�

dr
e�� W

r2
Ylm þ 2�

r3
e��WYlm

þ �
lðlþ 1Þ

r2
VYlm; (24)

where in the last step we have taken into account that ar ¼
�0 and Eq. (7).
In order to find the perturbation of the radial pressure we

first use the relation between the Eulerian and Lagrangian
variations, namely,

FIG. 3 (color online). The mass of the neutron stars as a function of the central density (left panel) and of the radius (right panel) for
several values of the parameter �.

3The derivative with respect to the radial coordinate r will be
denoted by prime or by the standard symbol interchangeably.
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	p ¼ �p� �r@rp (25)

with�p being the Lagrangian variation. From the equation
of state we have

�p ¼ dp

d�
�� ¼ dp

d�
ð	�þ �r@r�Þ: (26)

In this way we obtain the following formula for the per-
turbation of the radial pressure:

	p ¼ � dp

d�

�
ð�þ pÞ

�
e�� W 0

r2
þ lðlþ 1Þ

r2
V

�
� 2

�

r3
e��W

� �
lðlþ 1Þ

r2
V

�
Ylm � dp

dr
e�� W

r2
Ylm: (27)

For the perturbation of the anisotropic pressure � ¼
�ðp;�Þ we have

	� ¼ @�

@p
	p; (28)

where we have taken into account that 	� ¼ 0.
The dynamical equations for W and V follow from

Eq. (15), namely,

ð�þ pÞ e
��2�

r2
@2t W þ @r	̂pþ ð	̂�þ 	̂pÞar þ 2

r
	̂� ¼ 0;

(29)

ð�þ p� �Þe�2�@2t V � 	̂pþ 	̂� ¼ 0; (30)

where 	̂p are the coefficients in the expansion in the

spherical harmonics Ylm, i.e. 	p ¼ 	̂pYlm.
From now on we will assume for the perturbation func-

tions a harmonic dependence on time, i.e. Wðr; tÞ ¼
WðrÞei!t and Vðr; tÞ ¼ VðrÞei!t. Then the above equations
become

� ð�þ pÞ e
��2�

r2
!2W þ @r	̂pþ ð	̂�þ 	̂pÞar

þ 2

r
	̂� ¼ 0; (31)

� ð�þ p� �Þe�2�!2V � 	̂pþ 	̂� ¼ 0: (32)

The system (31) and (32) can be considerably simplified
by combining the equations in an appropriate manner.
Differentiating Eq. (32) and adding it to Eq. (31), and
also using Eq. (7), we find

V0 ¼ 2V�0 �
�
1� @�

@p

�
�þ p

�þ p� �

e�

r2
W

þ
�

�0

�þ p� �
þ

d�
dp þ 1

�þ p� �
�

�
�0 þ 2

r

�
� 2

r

@�

@p

�
�
1� @�

@p

��1
�
@2�

@p2
p0 þ @2�

@p@�
�0

��
V: (33)

This equation together with Eq. (31) solved forW 0, form a
system which is equivalent to (31) and (32) but much more
tractable:

W 0 ¼ d�

dp

�
!2 �þ p� �

�þ p

�
1� @�

@p

��1
e��2�r2V þ�0W

�

� lðlþ 1Þe�V þ �

�þ p

�
2

r

�
1þ d�

dp

�
W

þ lðlþ 1Þe�V
�
; (34)

V0 ¼ 2V�0 �
�
1� @�

@p

�
�þ p

�þ p� �

e�

r2
W

þ
�

�0

�þ p� �
þ

�
d�

dp
þ 1

�
�

�þ p� �

�
�0 þ 2

r

�

� 2

r

@�

@p
�

�
1� @�

@p

��1
�
@2�

@p2
p0 þ @2�

@p@�
�0

��
V

(35)

The boundary condition at the star surface is that the
Lagrangian perturbation of the radial pressure vanishes

!2 �þ p� �

�þ p

�
1� @�

@p

��1
e�2�V

þ
�
�0 þ 2

r

�

�þ p

�
e�� W

r2
¼ 0: (36)

The boundary conditions at the star center can be ob-
tained by examining the behavior in the vicinity of r ¼ 0.
For this purpose it is convenient to introduce the new
functions ~W and ~V defined by

W ¼ ~Wrlþ1; V ¼ ~Vrl: (37)

Then one can show that at r ¼ 0 the following boundary
condition is satisfied

~W ¼ �l ~V: (38)

IV. OSCILLATION SPECTRUM OF THE
ANISOTROPIC NEUTRON STARS

The oscillation spectrum of the anisotropic neutron stars
in Cowling approximation can be obtained by solving the
differential equations (34) and (35) together with the
boundary conditions (36) and (38). We have calculated
the frequencies of the f modes and the higher fluid modes
p1 and p2. All of the presented dependences are shown up
to the maximum mass for the corresponding parameters
where the solutions become unstable [41].
An empirical dependence between the f-mode frequen-

cies and the average density was found in [48,49] for the
case of isotropic neutron stars and it is interesting to see if it
changes in our case. The f-mode oscillation frequencies as
a function of the square root of the average density are
presented in Fig. 4 for several values of the parameter �.
The graph shows that the dependence does not change

NONRADIAL OSCILLATIONS OF ANISOTROPIC NEUTRON . . . PHYSICAL REVIEW D 85, 124023 (2012)

124023-5



significantly for small values of the average density. Only
for large values of the average density and for large abso-
lute values of �, the deviation from the isotropic neutron
stars (i.e. when � ¼ 0) is more significant. But still the
uncertainties in obtaining the coefficients in the empirical
dependence in [48], which come from varying the equation
of state, are comparable with the deviation due to the
anisotropic pressure.

The frequency f and the normalized frequency

!
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R3=M

p
as a function of the mass are shown in Figs. 5

and 6 for the f and the p1 modes. Depending on the sign of
� the frequencies can be larger or smaller than in the case
of isotropic neutron stars. As we can see the frequencies
can change considerably when we increase the absolute
value of �. Also for fixed value of � the differences with
the isotropic neutron stars are bigger for larger masses
because in this case the compactness �, which enters the
EOS for the anisotropic pressure (11), is larger. Therefore
for large absolute values of � and for large masses the

oscillation frequencies can differ significantly from the
isotropic neutron star case.
The normalized frequencies of the f, p1 and p2 modes

as a function of � are shown in Fig. 7 where the mass
M ¼ 1:4M� is the same for all the solutions. As we can see
the changes in the frequencies as we vary �, are similar for
all the modes. This behavior is qualitatively different from
some of the alternative models of neutron stars where the
oscillations frequencies vary more significantly as a func-
tion of the corresponding parameter, for the higher fluid
modes [50–52].
It is interesting to compare the effects on the oscillation

spectrum caused by varying the anisotropic pressure and
by changing the equation of state of the radial pressure. As
we said before the dependence between the f-mode fre-
quencies and the average density does not change much
when we vary the equation of state. The same is true also
when we vary the anisotropic pressure. But the normalized
frequency! as a function of the mass changes significantly
when we vary � and the equations of state. This can be seen
on Fig. 8 where the results for the f-mode oscillation
frequencies are presented for two equations of state of
the radial pressure and for several values of �. The EOS
II is the standard polytropic equation of state which we
used up to now with � ¼ 2:34 and K ¼ 0:0195. The EOS
A is again a polytropic equation of state where the coef-
ficients � ¼ 2:46 and K ¼ 0:009 36 are obtained when
fitting the tabulated data for EOS A [53] and EOS II is
stiffer than EOS A. As we can see the presence of an
anisotropic pressure changes the frequencies in a similar
way as changing the EOS, and more precisely positive
values of � lead to frequencies similar to a softer EOS,
and negative values of � lead to frequencies similar to a
stiffer EOS. Thus the oscillation spectrum of neutron stars
with anisotropic pressure can mimic to a certain extent the
oscillation spectrum of neutron stars with softer/stiffer
equation of state. But still if we consider strong anisotropic
pressure the frequencies can change a lot which is hard to

FIG. 4 (color online). The f-mode frequency as a function of

the square root of the average density
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
. The results for

several values of the parameter � are shown.

FIG. 5 (color online). The frequency f as a function of the mass M (left panel) and the normalized frequency ! as a function of M
(right panel) for the f mode. The results for several values of the parameter � are shown.
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be achieved by the standard nuclear equations of state.
Thus observing more than one fluid mode of a neutron
star can help us to prove or at least set limits on the possible
existence of anisotropic pressure in the neutron stars.

V. CONCLUSIONS

In the present paper we study how the possible existence
of an anisotropic pressure inside a neutron star can change
the oscillation spectrum. As a first step we examine the
oscillations in the Cowling approximation where the metric
is kept fixed and within this approximation the perturbation
equations for the anisotropic neutron stars are derived.

The background solution are obtained numerically by
solving the reduced field equations where the equation of

state for the radial pressure is polytropic and we use a
quasilocal equation of state for the anisotropic pressure
[41]. The properties of the obtained solutions can differ
significantly from the isotropic neutron stars.
The oscillation spectrum of the anisotropic neutron stars

is obtained when solving the perturbation equations with
the appropriate boundary condition and the results for the f
mode and the higher fluid modes are obtained. It turns out
that the dependence between the f-mode frequencies and
the average density which was obtained in [48] does not
change much in the presence of an anisotropic pressure.
The effect of the anisotropy is more evident on other
dependences, for example, the normalized frequency as a
function of the mass changes considerably for anisotropic
stars. Thus the observation of more than one fluid mode

FIG. 7. The normalized frequency ! as a function of � for
fixed value of the massM ¼ 1:4M�. The results for the f, p1 and
p2 modes are shown.

FIG. 6 (color online). The results for the p1 mode of the same solutions as shown on Fig. 5.

FIG. 8 (color online). The normalized frequency ! as a func-
tion of M for the f mode. The results for different values of �
and for two polytropic equations of state of the radial pressure
are shown—a soft equation of state EOS A and a stiff equation of
state EOS II.
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can serve as a test for the existence of an anisotropic
pressure in the neutron stars.

We have also compared the effect on the oscillation
spectrum caused by the anisotropic pressure and by
changing the equation of state of the radial pressure. It
turns out that for negative values of the anisotropic pres-
sure, i.e. for � < 0, the changes in the frequencies are
similar to what we will obtain in the case of isotopic
neutron star with a stiffer equation of state, and for � >
0 the results are similar to the case of an isotopic neutron
star with a softer equation of state. A more detailed
analysis, for example, if we drop the Cowling approxi-
mation or if we consider rotating solutions, may show
more differences between the oscillation spectrum of
isotropic and anisotropic neutron stars and we plan to
make such a study in the future.

It would be also interesting to check how a change in the
equation of state of the anisotropic pressure influences the
results because the choice of the quasilocal EOS (11) is by

no means the only possible one. Up to now, however, little
is know about the EOS of the anisotropic pressure and that
is why further studies on the possible quasilocal equations
of state and their effect on the stellar structure and oscil-
lations are needed.
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