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It is known that the covariant graviton two-point function in de Sitter spacetime is infrared-divergent for
some choices of gauge parameters. On the other hand, it is also known that there are no infrared
divergences requiring an infrared cutoff for the physical graviton two-point function for this spacetime in
the transverse-traceless-synchronous gauge in the global coordinate system. We show in this paper that the
covariant graviton Wightman two-point function with two gauge parameters is equivalent to the physical
one in the global coordinate system in the sense that they produce the same two-point function of any local
gauge-invariant tensor linear in the graviton field such as the linearized Weyl tensor. This confirms the
fact, pointed out decades ago, that the infrared divergences of the graviton two-point function in the
covariant gauge for some choices of gauge parameters are a gauge artifact in the sense that they do not
contribute to the Wightman two-point function of any local gauge-invariant tensor field in linearized

theory.
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L. INTRODUCTION

Infrared (IR) divergences of graviton two-point func-
tions have been a matter of contention for over two deca-
des. There are two separate issues which are sometimes
mistakenly thought to be related. One issue is the IR
divergences of the physical graviton two-point function
in the transverse-traceless-synchronous gauge in confor-
mally flat coordinates [1-3]. (See, e.g. Refs. [4,5], for
recent works on this issue.) The other is the IR divergences
of the covariant gauge for some choices of gauge parame-
ters [6,7]. (There is also the issue of large-distance growth
of the two-point function, which will not be discussed in
this paper.) Since linearized gravity has gauge invariance,
it is important to determine whether or not these IR diver-
gences are a gauge artifact. One of the reasons why the
research community has not reached a consensus about this
question seems to be that, when it is asserted that some IR
divergences are a gauge artifact, their precise definition is
not made sufficiently clear.

The main purpose of this paper is to clarify in what sense
the IR divergences of the graviton Wightman two-point
function in the covariant gauge for some choices of gauge
parameters are a gauge artifact. (Below, by a two-point
function, we mean a Wightman two-point function unless
otherwise stated.) This is in fact an old result of Allen [8].
We add to this result by showing that the covariant graviton
two-point function with any choice of gauge parameters is
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physically equivalent to the physical one in the transverse-
traceless-synchronous gauge in global coordinates [9],
which suffers no IR divergences. This will also imply
that the two-point function of any local gauge-invariant
tensor field linear in the graviton field evaluated in the
covariant gauge is independent of gauge parameters as
expected.

Miao, Tsamis and Woodard [10] find that the covariant
two-point function corresponding to an IR-finite choice
of gauge parameters [8,11], the ‘strictly enforced”
de Donder gauge, is IR divergent in the Poincaré patch of
de Sitter spacetime, which is the spatially flat expanding
half of this spacetime. We confirm, however, that IR di-
vergences of the two-point function for a tachyonic scalar
field, which is partly responsible for the breaking of
de Sitter invariance in Ref. [10], are absent in global
de Sitter spacetime. We also find no IR divergences in
the tensor sector of the two-point function. Thus, the co-
variant two-point function constructed using the mode-sum
method agrees with the IR-finite two-point function in the
Euclidean approach also in the de Donder gauge. (This
gauge should probably be avoided in perturbation theory in
any case because the corresponding two-point function
behaves rather badly at large separation.)

We emphasize that this paper has nothing to say about
interacting theory. In particular, we do not couple the
covariant graviton two-point function even to an external
stress-energy tensor field. Thus, in this paper, the covariant
two-point function is regarded as a graviton correlator and
is shown to be equivalent to the physical one in Ref. [9]
as such. If the gravitons are coupled to an external
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stress-energy tensor, for example, there will be nonlocal
interaction terms in the physical gauge of Ref. [9] similar
to the Coulomb-interaction term in QED in the Coulomb
gauge (see, e.g. Ref. [12]), and an explicit demonstration of
the equivalence between the physical and covariant gauges
would be rather nontrivial.

In linearized gravity, the two-point function of the
graviton field h,,(x) has no physical meaning by itself
because this theory has gauge invariance under the gauge
transformation,

Shap(x) =V, Ap(x) + VA, (x), (1.1

where A,(x) is any vector field. Here, the covariant deriva-
tive is the one compatible with the background de Sitter
metric, g,5,(x). One can find tensor fields at x which are
linear in &, and are invariant under this gauge transfor-
mation. An example of such a tensor field is the linearized
Weyl tensor W,.4(x) = Wiappea)(x), where

Wabcd(x) = vcvbhad(x) + Hzgad(x)hcb(x)- (12)

Here, the constant H is the Hubble constant of de Sitter
spacetime. (See Ref. [13] for conditions for a local tensor
field to be gauge-invariant.) The two-point function of
W,pea(x) evaluated in the covariant gauge can be found
in Ref. [14].

Now, suppose that a graviton two-point function
Ay (x5 x7) = (0l h,, (x)h 1 (x')]|0) can be written as

Aaba’b’(xr xl) = Aaba’b’(x’ )C/) + v(a Qb)a’b’(x» X/)
+ Vi Qapip (x, X'),

for some Q,,/(x, x') and Q.. (x, x'). (In this paper, we
use the convention of Ref. [15] that primed indices are
associated with point x’ and unprimed indices with
point x.) Then, the two-point function of a local gauge-
invariant tensor field linear in /,;, will be the same whether
one uses A, (x, x') or A, (x, x') as the graviton two-
point function. This motivates the following definition: we
say that the two graviton two-point functions, A, (x, X')
and A, ,(x, x'), are physically equivalent in linearized
gravity if Eq. (1.3) is satisfied for some Q. (x, x') and
O pa' (x, x'), which are not required to be bounded.

A more precise formulation of the graviton two-point
function would correspond to defining it in the smeared
form as

DU, f@) = [ o j = g () VD ()

X f(Z)albl(x/)Aaba’b’ ()C, X/),

(1.3)

(1.4)

where (V% (x) and f®«?'(x') are smooth, compactly sup-
ported and divergence-free symmetric tensor fields in
de Sitter spacetime. Thus, the two-point function D would
be defined as a functional on the space of pairs of smooth,
compactly supported and divergence-free symmetric ten-
sor fields. In such a definition, the functions A,/ (x, x')
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and A, (x, x') satisfying Eq. (1.3) can be regarded as
two representatives of the same two-point function D.
[It can be shown that there are “sufficiently many’” smooth,
compactly supported and divergence-free symmetric
tensor fields for characterizing the gauge-invariant content
of the graviton two-point function as in Eq. (1.4).]

Now suppose that a graviton two-point function
A pap (x, x') has an IR cutoff € and that it is divergent in
the limit € — 0. If it is physically equivalent in linearized
gravity to A ;.5 (%, ") which is not IR-divergent, then the
two-point function of a local gauge-invariant tensor field
will not depend on €, i.e. will not be IR-divergent. What we
show in this paper is that the covariant graviton two-point
function for any choice of gauge parameters is physically
equivalent in linearized gravity to the graviton two-point
function in the transverse-traceless-synchronous gauge in
global coordinates, which is IR-finite [9]. This will imply
that the IR divergences of the covariant two-point function
for a certain gauge choice can be said to be a gauge artifact
in linearized gravity in the sense that the divergences will
not manifest themselves in the two-point function of any
local gauge-invariant tensor field linear in the graviton
field, confirming and clarifying the claim in Ref. [8].

The rest of the paper is organized as follows. In Sec. I,
we summarize some properties of the solutions to the free-
field equations which we will need later for scalar, vector
and symmetric tensor fields in de Sitter spacetime. We
leave the explicit expressions of these solutions to
Appendix A. In Sec. III, we review the physical two-point
function in the transverse-traceless-synchronous gauge in
global coordinates. In Sec. IV, we find all solutions to the
field equation in the covariant gauge with two parameters.
In Sec. V, we describe the quantization of linearized grav-
ity in the covariant gauge in de Sitter spacetime. Then, we
construct the covariant two-point function using the mode-
sum method and show that it is equivalent to the physical
two-point function of Ref. [9]. In Sec. VI, we summarize
the results in this paper. We give explicit expressions for
solutions to the free-field equations in Appendix A.
Appendix B contains a technical result used in Sec. V. In
Appendix C, the scalar two-point function, including the
tachyonic case, is constructed by the mode-sum method in
global de Sitter spacetime. We also show how this IR-finite
two-point function can be recovered in Poincaré patch by
subtracting the IR divergences. In Appendix D, we explic-
itly show that the covariant two-point function constructed
in this paper is the same as that obtained in the Euclidean
approach [11] for spacelike-separated points. We use the
metric signature — + ++ and let z = ¢ = 1 and take the
metric of de Sitter spacetime to be

ds* = —dt* + cosh?tdQ)?, (1.5

where d()? is the line element on the unit 3-sphere (S3),
throughout this paper. Thus, we choose units such that the
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Hubble constant is 1. A point x in this spacetime has
coordinates (z, x), where X is a point on S>.

II. SOLUTIONS TO FREE-FIELD EQUATIONS

In this section, we summarize some known properties of
the solutions to the free-field equations for spin 0, 1 and 2
of arbitrary mass in de Sitter spacetime following
Ref. [16]. We present the explicit solutions in
Appendix A. First, we recall that the scalar, transverse
vector and transverse-traceless tensor spherical harmonics

3 ; (0to) y(lto) (2t0)
on §°, which we denote by Y , Y, and Yl-j , are
orthonormal eigenfunctions of the Laplace-Beltrami op-
erator V> on S5 satisfying

— V2y0to) — ¢(¢ 4 2)y0to), €=012..., 2.1

— VYN =g +2) -1y, e=1,23,...,

2.2)

€=2734...,
(2.3)

— VY3 = e +2) — 2]y,

where o represents all labels other than { (see, e.g.
Refs. [17,18]).
Let us start with the solutions to the scalar field equation,
(—O04+ u?¢ =0. 2.4)
(The solutions we present here are valid for x> > 0 and for
most negative values of u?.) We can choose the solutions
to be proportional to Y%/ We denote the “positive-
frequency” solutions which determine the Bunch-Davies
(or Euclidean) vacuum [19,20] proportional to Y0/ by
¢#*£9)(x). (We mean by positive-frequency solutions the
coefficient functions of annihilation operators when the
field is quantized.) They are

G (x) o (coshr) TP, 1V (i sinh) YOO (x),  (2.5)
with Ly = —3+ 42— u? where P;](ﬁl)(z) are the

Legendre functions of the first kind given in terms of
Gauss’s hypergeometric function as

_ 1 1 — z2\«+1n/2
(€+1) _
Proi (@) = €+ 1)! (1 + z)
1 —_
X F(—LO — L Ly +2:0+2; Z). (2.6)

These solutions and their complex conjugates, ¢("2‘€"),
form a complete set of solutions to Eq. (2.4).

We define the Klein-Gordon (KG) inner product for two
solutions ¢ and ¢®@ to Eq. (2.4) as follows:
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(@, 3 = i [ a3 [FTV G — (Vo))
2.7)

where d3, = d3n, with n® being the future pointing unit
normal vector to the Cauchy surface 2. We normalize the
solutions qﬁ("z?e") by requiring

<¢(M2§€0)’ ¢(M2;€’0’)>KG = §tt' so0’ (2.8)

The orthogonality follows from that of the spherical har-
monics Y% on $3. We also note that ¢»:¢?) are or-

thogonal to d)(/‘z%'"') with respect to the Klein-Gordon
inner product.

We write the field equation for a transverse vector field
A, satisfying V,A* = 0 as

(—O+3+ u?)A, = 0. (2.9)

The gauge-invariant equation, V®(V, A, — V,A,) = 0, is
equivalent to (= + 3)A, =0, i.e. the u =0 case of
Eq. (2.9). This can readily be seen by recalling that
Riped = 8ac8ba — 8aa8be- We will be particularly inter-
ested in the case w? = —6, which is equivalent to
VbV, A, +V,A,) = 0.

There are two classes of solutions to Eq. (2.9). We
introduce a label m to distinguish between these classes.

The positive-frequency solutions will be denoted A% Hmea),
Those with m = 0 have the time component given by

AP o (coshn) 2P, D (i sinhn) YO (x), €= 1,
(2.10)

where
Li=-3+ ,/5 — ul 2.11)

The space components, AE” 06o) are obtained by postulat-

ing Ag“ H0to) Fe(OV, Y9 where V; is the covariant
derivative on S3, and solving the equation V¢A, = 0 for
fe(?). (This equation cannot be solved for € = 0. Hence,
there are no solutions with € = 0.) The solutions with

m = 1 have A1) = 0 and

AP o p E D sinh Y (x), €= 1 (2.12)

We define the Klein-Gordon inner product for two trans-
verse solutions A(al) and Af) to Eq. (2.9) as

(AD, APy = i [E d3 JAVPVAP — (VeA)AD],
2.13)

Any two solutions with different sets of quantum numbers
m, £ and o are orthogonal to each other with respect to this
inner product. For —6 < u? < 0, the positive-frequency
solutions with m = 0 have negative norm with respect
to this inner product, whereas the m = 1 solutions have
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positive norm. We normalize these solutions for £ = 2 by
requiring

<A(,u2;m€a'),A(Mz;zn’«?’o’))KG — (_ 1)m+16mm’6€€’5zra"_ (214)
The solutions A 5me=19) pocome Killing vectors in the
limit %> — —6. This implies that the Klein-Gordon inner

product vanishes for these solutions because if &4 and
£ are Killing vectors, then

fE dza(é‘:(l)hVué:f) _ g(2)qu§:E?1))

— [z 43, V,(£Vagdb — gy — 0 (2.15)

by the generalized Stokes theorem, which states that for
any antisymmetric tensor F%,

j; ds.,V,F® = 0. (2.16)

For this reason, we normalize the € = 1 solutions as
(AWZ?’”"):L‘T),A(“z;m%:l’”’»KG

= (=" (u? + 6)6mm 577 (2.17)

We write the field equation for a transverse-traceless
tensor field H,;, satisfying V?H,, = 0 and H%, = 0 as

(-O+2+ M*»H,, = 0. (2.18)

The M = 0 case corresponds to linearized gravity. There
are three classes of solutions distinguished by the label
m = 0, 1, 2. We write the positive-frequency solutions as

HSZ’Z;’"("). Those with m = 0 have

H(()}(‘)IZ;O&T) o (Cosht)f.ipzz(ﬁ-l)(i sinh?) Y00 (x), (=2
(2.19)

where
Ly=—3+43- M (2.20)

The other components are obtained by postulating
that Hy = foe(V,YD,  H; = gV, V,y0) +
g(fz)(t)ﬁ,-jY(Oe"), where 7;; is the metric on %, and solving
the equations VP’H,, = and H%, = 0 for the functions
fe(), g(el)(t) and g%z)(t). This is not possible if € = 0 or 1
in Eq. (2.19). The positive-frequency solutions with m = 1
have Hggz‘m’) =0 and

H(()lyz;lén) o (Cosht)—lpzz(f_*l-l)(i Sil’lhl‘)Y}MU)(x), (=2

(2.21)

Then, we postulate that H;; = f((t)v(,»Yj(.)M”) and solve
VeH,, =0 for f,(¢). This is not possible if £ =1 in
Eq. (2.21). Finally, the positive-frequency solutions with
m = 2 have H((f(‘)'lz;z{)”) = H(()?lz;ze”) =0 and
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=2
(2.22)

H 29 o coshrPy 7 (i sinhr) Y27 (x),

We define the Klein-Gordon inner product for two
transverse-traceless solutions H;lh) and Hflzb) to Eq. (2.18) as

(HO, H?)y =i fz d3 [HOPveH — (VeHVP) )
(2.23)

We can normalize the m = 2 solutions as
(HWM*2t0) gP2tial)y = 9§t goo’, (2.24)

The factor of 2 here is for later convenience. For M = 0,
i.e. for linearized gravity, Eq. (2.18) is satisfied by H,;, =
V(GA;&M”). Indeed, one finds, using the associated

Legendre equation (A17) and the lowering and raising
differential operators, Eqgs. (A18) and (A19),

H{(g;mhr) _ vuA2—6;m€(r) + vbAg—&m((r)’ m=0,1, (= 2,
(2.25)
after choosing a phase factor for Hgm(") appropriately

[21]. Now, if Hfllb) is any solution to Eq. (2.18) with
M? =0 and if H}} = VA with (O+3)A7 =0 so
that Hfb) is a solution to Eq. (2.18), then we find

<H(1)’ H(2)>KG - l'L dEaVb[H“)bCV“A(CZ) _ H(l)acvbAg)

+ (VP HMac — vaH(l)hc)A(Cz)]
=0 (2.26)
by the generalized Stokes theorem. Thus,
(H O, HOm ) = 0,

mm' =0,1. (227

It is also known that the solutions H%Z;MU) have negative
norm if 0 < M? <2 [22,23], whereas the solutions
HM*1€9) have positive norm if M2 > 0. For these reasons,
and since we will be interested in the M — 0 limit,
we normalize the solutions with m = 0, 1 as
<H(M2;m€tr), H(Mz;m’e’(f')>KG — (_ 1)m+12M26mm’5€€’8(r(7"
(2.28)

III. PHYSICAL GRAVITON TWO-POINT
FUNCTION

The Lagrangian for free gravitons in de Sitter spacetime
can be written as

‘Einv =/ _g[%vahacvbhbc - %vahbcvahbc
+ UV — 2VP R, )V b — Yhphe® + 102)] (B.1)

with h = h?,. The corresponding field equation is
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Ly = ~Ohy, + VY,V o0, + V, Vb€, =V, V,h
+ gabljh - gabvcvdth] + hab + %gabh
=0. (3.2)

It is well-known that the gauge degrees of freedom can be
used to impose the conditions V?h,, = 0 and h = 0 (see,
e.g. Ref. [21]). Then Eq. (3.2) becomes

(@ — 2)h,, = 0. (3.3)

This equation is Eq. (2.18) with M = 0. Thus, its solutions
are given by Eqgs. (A8)-(A15) with M = 0.

We have seen that the solutions H5™ ™ m =0, 1,
are gauge solutions [see Eq. (2.25)]. Hence, only the solu-
tions Hiob;z(”) represent physical excitations. Retaining
only these solutions corresponds to the synchronous
transverse-traceless gauge, hg, = 0, \% jhf ;=0 and
h',=0. Quantization of the field h,, in this gauge, which
we sometimes call the physical gauge, proceeds as follows.
First, we find the canonical conjugate momentum current
pabc as

pahc — 1 a‘£ Vahhn
where we have used the conditions V?h,, =0 and
h¢, = 0. We note that the field equation (3.2) can be
given as

(3.4)

1 0Ly,
v 8 ahbc

We define the symplectic product between two solutions

v, pe — (3.5)

hgb) and hfb) to this equation as follows:

(h(l)’ h(z))symp — _i/E dza(hgjlc)pu)abc _ p(l)abchfc))’

(3.6)

where p(Veb¢ is obtained by substituting /,, = A') into

Eq. (3.4) and similarly for p®#¢_This product is indepen-
dent of the Cauchy surface 2, thanks to Egs. (3.4) and (3.5).
Then, we find

(H(();Zfo')’ H(O;Q(’(r’))symp — %<H(0;2€(r)’ H(0;2€’(7’)>KG

= st g0, 3.7

We expand the quantum field 4, in the synchronous
transverse-traceless gauge as
(o)
02¢ 0,2¢
ha@) = 3 SlacgHy™ () + al Hy> 0] (3.8)
= a
We then impose the commutation relations [ag,, a},u_,] =

8¢ 0 5 With all other commutators vanishing. We define
the Bunch-Davies vacuum state |0) by requiring that
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a¢,|0) = 0 for all € and o. Then, the Wightman two-point
function is readily found as

AR (1 x7) = (Ol () gy ()]0

= 3 > G HGE W),

(=2 o

(3.9

This two-point function vanishes if any of the indices is
“0”. The space components can be found, using Eq. (A9)
with M = 0, as

(phys)
AU’ 7 (x, x)

= Z(f - DI+ 2)!coshtcosht’P;(“])(l’sinht)
(=2

<P SV, 610

where x = (r,x) and x’ = (¢,x’). This series can be
summed in a closed form. The result of this summation
can be found in Ref. [9], in which it was shown that there
are no IR divergences for this two-point function in the
sense that it is well-defined without any infrared cutoff.

IV. SOLUTIONS TO THE FIELD EQUATION IN
THE COVARIANT GAUGE

If we add a covariant gauge-fixing term in the
Lagrangian, there will be solutions to the graviton field
equations in addition to those given by (A8)—(A15) with
M = 0. In this section, we describe all solutions including
these additional solutions to the graviton field equation in
the covariant gauge. These solutions will be used in the
next section to find the two-point function.

The Lagrangian in the covariant gauge is

.£ = -Einv + .ng, (41)

where L,,, is given by Eq. (3.1) and where

Ly— —%(vahab ! ;B Vbh)(vcm,, - #vhh)

4.2)
We require that o > 0 for now. We also assume 8 > 0, but
most of our results will be valid also for most negative

values of . The Euler-Lagrange field equation derived
from L;,, + Ly is

Limvedp 4 p&edp — o, (4.3)

where LSEV)”‘] is defined by Eq. (3.2) and where
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3 +
Lflg})f)cdth = _L[va<vchcb - 1 B’thh)

2a
1+
+ Vb(Vchca - ﬁvah)]
B
1+ 1+
+ —'8 gath<Vcth - —ﬁ th>.
ap B
4.4)
Let us first find the solutions of the form
hS) =V,V,B + g, V. (4.5)

By substituting this expression into Eq. (4.3), we find
VthX + gabY = 0, (46)

where

X = a_l,B[(D —3B)B+ (4 —ap +3B)V] 4.7)

1+

Y=-—00-3p8
41+ B? 1+B
+ [1 e + B ]D\I’ +3¥.  (4.8)

This calculation is simplified by noting that V,V,B does

not contribute to LSZV)thgi) due to gauge invariance.
Equation (4.6) is obviously satisfied if X = Y = 0. These
equations can be simplified by solving the equation X = 0
for (O — 38)B and substituting the result into the equation
Y = 0. Thus, the equations X =Y = 0 can readily be
shown to be equivalent to

(O-=3B)B+[4—(a—3)B]¥ =0, 4.9)

aO-38)¥=0. (4.10)

The following solutions and their complex conjugates form
a complete set of solutions to Egs. (4.9) and (4.10):

BULto) = 4 (36:to) 4.11)
PSLto) = (4.12)
and
d 2
BOXD — —[4 — (a =3Bl WA | (@413
op w=3p
PS2:i4o) = ¢(3ﬁ;€o‘)’ (4.14)

where 9/ u? denotes the first derivative with respect to u?
(rather than the second derivative with respect to u).

Equation (4.9) can be verified for the solutions
(B1$%:t0) p(52:€0)) by noting
J
— (—0 + pH)pwito =0. (4.15)
I w=3p
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Note that the mass of these modes are S-dependent [8,11].
In particular, if 8 <0, then they are tachyonic because
their mass squared is u?> = 38 < 0. Unfortunately, the
familiar de Donder gauge condition, Vh,, — 1V i =0,
corresponds to u?> = 38 = —6 (and a — 0). Thus, these
modes are tachyonic for the de Donder gauge [10,24].
The gauge chosen by Antoniadis and Mottola [7], V2h,,;, —
%Vuh = (0, corresponds to 38 = —4. This choice has an
additional problem: the scalar field theory suffers IR di-
vergences if u> = —k(k + 3) for k =0,1,2,... [8]. [This
fact can readily be seen from Eq. (D7).] This is the cause of
the IR divergences in the Antoniadis-Mottola gauge. These
problems can easily be avoided by requiring 8 > 0.

Although the de Donder gauge (38 = —6) does not lead
to IR divergences in the sense that the two-point function is
finite without an IR cutoff, there are IR divergences in its
expansion in terms of momentum eigenfunctions in
the spatially flat coordinate system [10]. These divergences
are due to the growth of the two-point function for large
separation, which renders the momentum expansion ill-
defined. However, it is possible to regularize the IR diver-
gences in such a way that one recovers the finite two-point
function when the regulator is removed, as we show in
Appendix C.

Let us write the solutions to Eq. (4.3) corresponding to
Egs. (4.11), (4.12), (4.13), and (4.14) as

Sfllb;(’zr) =V,V,BS0) (4.16)

SEJZI;%-) _ vavbB(S2;€(r) + gab\Ir(SZLE(T)‘ 4.17)

We show next that any solution %, to Egs. (4.3) can be
decomposed as h,, = hgj) + hg,), where hg‘? is a linear
combination of the solutions S(ﬁje"), A =1, 2, and their
complex conjugates and where V“Vbhfl? =0 and

g hg,) = 0. For this purpose, it is sufficient to show that
for any given solution 4, to Eq. (4.3), one can construct
scalar fields B and W satisfying Egs. (4.9) and (4.10) such

that the field h') = V,V,B + g,V satisfies Vh,, =

V“hg and g%h,, = g”"hfb). To do so, for any solution
h,;, to Eq. (4.3), we define

D(h) = — (vav,,hab -~ %Dh) (4.18)

1

o

Then, by taking the divergence of Eq. (4.3) twice, we find
O -=3B8)d(h) =0. (4.19)

This calculation is made easier by noting that the tensor

field LSZV)thcd is divergence-free (the background Bianchi
identity). Next, by taking the trace of Eq. (4.3) and using

Eq. (4.19), we find
@O -3B)h +[4— (o —3)BIDH) =0.  (4.20)

Now, we define
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hS) =V, V,B(h) + g W (h), 421
where
1 a—3
B(h) = 3B(h — CI)(h)), 4.22)
1
W(h) = ﬁCD(h). (4.23)

Then, one can readily see that Egs. (4.19) and (4.20) imply
Egs. (4.9) and (4.10). Thus, %) is a solution to Eq. (4.3).
Moreover, we find

gn'S) = OB(h) + 4W(h) = h (4.24)
and
1+ 1+
veven® — LB v — g v, pe - L Py,
B B
(4.25)
and, hence,
Vavep's) = vavbp,,. (4.26)

Thus, any h,;, satisfying Eq. (4.3) can be written as A, =
A + 1), where V*V? 1) = 0 and g*?h'}) = 0.

Our next task is to construct all solutions to Eq. (4.3)
satisfying V/V2A'Y) = 0 and g*h)) = 0. Equation (4.3)
becomes
1
2

1 1
" E(l - ;)(vavchgﬁc +V,VhDe,) + D

(T)ed p (T) — (1)
Labc hcd = Dhab
=0. 4.27)
We show that a complete set of solutions h(a? is given by

Elmto) = gOméo) 01,2, €=2, (4.28)

. 1 . . )
Efl2b,m(%(r) E}}E})W(vaAiﬂz’mea) + V;,A(aﬂz’mw) _HEJA};IZ,m«?(r))

(9 ( 2. l )
=2a—=V AF ™7
a,LLZ (a b) /.L2:—6
Jd )
— s Hy " , m=0,1, (=1,
oM M2=0
(4.29)

and their complex conjugates, with the identification

w? = aM? —6. (4.30)

We have defined H%z;m’ezl‘”) = 0 in the second equation.
The second equality in Eq. (4.29) follows from Eq. (2.25),
which is valid also for € = 1.
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One can readily see that A7) = EV€) and their com-
plex conjugates give a complete set of solutions to
Eq. (4.27) under a stronger condition Vbhg)) = (0. The

tensor fields th;me”) and their complex conjugates
are also solutions (under the original condition

VevPhl) = 0) because both Al = V(A% and
H%';M”) are solutions to the massive equation [25]

LDARM) + (R0 — g, Ay =0, (@431)
Then, what is left to do is show that for any solution hg,) of
Eq. (4.27), we can find a linear combination h%) of Efb;me”)
and their complex conjugates such that C,(h")) =
VohD) = V2 pY) This can be done as follows. By taking
the divergence of Eq. (4.27), we find

(O +3)C, (A" = 0. (4.32)

A complete set of solutions to this equation is given by
Cc,= ALGmto) L — 0.1, € = 1, and their complex con-
jugates. Now, since

Vb (VAL g, APmo)y — g p2g05m) (4 33)
(M%;ml o) .
and H are divergence-free, we find

VPEZm) = gl 6mto) (4.34)
Hence, if C,(h7)) = Vbhf;]) = A% then we have
VeR") = C,(h) by setting h) = a1 EE™D 1t s
clear that a similar construction works if hgj) is any linear

combination of A5 %) and their complex conjugates.
Thus, we have constructed a complete set of solutions to

Eq. (4.3), and these solutions are given by Egs. (4.16),

(4.17), (4.28), and (4.29) and their complex conjugates.

V. THE TWO-POINT FUNCTION IN THE
COVARIANT GAUGE

In this section, we compute the Wightman two-point
function for the quantized linearized-gravity field %, and
show that it is physically equivalent to the physical two-
point function of Ref. [9] in linearized gravity.

We define the momentum current conjugate to the field
hab by

abc

1 oL . :
P = abc + pabc

N2 I A
where

e = —AVORP + H(g PV h + gV h® — "V 1ht)
— Hg®Veh + g*VPh) + Lgbeven, (5.2)
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1 1+
pg?c — Zgab<vdhdc _ IB 'BVch)
_ L (g g LT B )
S8 (th SV
1+ 1+ )
+ hc Vhd“——vah. 53
< 5 )

Then the Euler-Lagrange equation (4.3) can be written as

1 oL
Nar g Ohy,

vapabc _

= 0. 5.4)

The equal-time commutation relations on a ¢ = const
Cauchy surface are then given by

[Rap(t, %), hea(t, )] = [p° (2, %), p*?(2, x")] = 0, (5.5)

v—gx) g(X)

[h (2, x), pPd(t, x)] = (6584 + 5285)5(x, x'),

(5.6)

where 8(x, x’) is defined by

fs Pxfx)8(x,x) = f(x). 5.7)

Here, the d°x is the coordinate volume element. That is,
if 6,, 6, and 65 are the coordinates on S°, then d°x =
d6,d0,do;.

For any two solutions hgb) and hfb) to the Euler-Lagrange
equation (4.3), we define the symplectic product by

(D, )y = _ifz a3, (W0 p@ave — phabe @)

(5.8)
where

oL
a(vahbc)

p(l)ubc =

(5.9)

—;
hap=h,,

on a Cauchy surface 3, and similarly for p®?¢. This
symplectic product is independent of the Cauchy surface

3, because the current k') p@abe — pMabepD g conserved

[26,27]. If hglh) and hizh) are transverse-traceless positive-
frequency solutions from Sec. III, then this symplectic
product agrees with Eq. (3.6).

Now, we can expand the quantum field 4, using the
solutions found in Sec. IV as follows:
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ZZ (TT)H(OZKO')( )
1

+
Z[{’ 2 o

hab(x)

mlo
>l EG (x)

m=0
+ 3 S |
=1 o

3

+ 3 S1allsU 7 (x) + 0% ()] + Hee,

o

~

(5.10)

Let us denote the symplectic product among these solu-
tions as follows:

Mi\%m) — (E(A;m€0')’E(B;m€o'))symp,
AB=12 m=01 £=2 (5.11)
M(Gl;m) — (E(2;m,€:1,0), E(Z;m,«f:l,a))symp’ m = 0’ 1’
(5.12)
M) = (sAto) g(B:ta)) AB=12 (513)

Symp»

[It turns out that these matrix elements are independent
of € and o¢. We have already seen that
(H02to) gO2ta) = 8877 ] In Appendix B, we
show that S4“) are orthogonal to the solutions £/
with respect to the symplectic product (5.8). Then, it is not

difficult to show that the equal-time commutation relations
(5.5) and (5.6) imply

[0, T = 54016 4, (5.14)

[T a1 ] = (MGm) 718,08 o, (5.15)
[aTh) dTBY ] = (M) 1S, 8008,  (5.16)
[, aS5T] = (M) ;280018 o (5.17)

(See, e.g. Ref. [28].) Then the Wightman two-point func-
tion for the Bunch-Davies vacuum can be given as follows:

<0|hab(x)ha/b’ (xl)l())
= Auba’b’ (.X, )C/)

_ A(Phys) (x, x') + A©)

S
aba'b’ aba'b’ ()C, xl) + A( )

obaty X X'), (5.18)

where Aflpbhay/sg, (x, x’) is the physical two-point function dis-

cussed in Sec. III and where
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1
(&) — m))—
Ay (6 x) = E E(M(Gl’ N~

m=0 o

XE(Zm(’ la')( )E(Z/hrlne 10')( /)

1 0
WAL
m=0¢=2 o

X EGM O WES! (),

(5.19)

Aisb)a'b’(x x) = Z Z(M(S))Aé S(A Lo) (X)S(lfb(:a) ).

(5.20)

Here, the summation over A and B is understood. Thus, all
we need to do is find the matrix elements of the symplectic
product defined by Eqgs. (5.11), (5.12), and (5.13).

First, we compute M'G™ for € = 2 and MG and find
Afgl,b, (x, x') defined by Eq. (5.19). Let us define the in-
variant and gauge-fixing parts of the symplectic product as
follows:

(O, h@). = i f 43, (1D pabe ., abcy 2))
(5.21)

(h), D)y = _l[ 43 (W) pebe — pUabey )

(5.22)

It is well-known that if 2% = V,A% + v,4% for some
AP k=1, 2, then (h'V, h®),,, = 0 (see, e.g. Ref. [29]).
Now, the solutions Eg,;me”) are of this form for m = 0, 1

and are divergence-free and traceless. This implies that
pgf’c = ( for these solutions, and, hence,

M(l?;m) _ (E(l;mfu')’ E(l;m(’(r))inV _ ¢=2 (523)
Next, we examine M, (G:m) We write Eq. (4.29) as
1 . 2,
E(2 mlo) __ }}}E}()Mz (KEIAZZ’m€a') _ Hl(llzl ,m(fa'))’ (524)
where
gWrmto) — g plpimto) g, qg@mte) (5 95)

with u? = aM? — 6 [see Eq. (4.30)]. We have

(H(Mz;m&r)’ H(Mz;m/f’zr/))symp — (_ 1)m+lM2 5mm/8€€’50'(r/
(5.26)

for m, m’ = 0, 1 from Eq. (2.24) because the symplectic
product (5.8) is half the Klein-Gordon inner product (2.23)
for these solutions. The symplectic product for the modes
K%z;me”) can be found as follows. First, since these are of
pure-gauge form, we have

PHYSICAL REVIEW D 85, 124021 (2012)

(K(Mz;mftf)’ K(M2§m1€/‘7/))inv = 0. (5.27)

Hence,

(K(Mz;m&r), K(Mz;m’é’a"))symp — (K(Mz;m&r), K(Mz;m'ﬁzr’))gf.

(5.28)
For hy,, = K%Q;me"), we find
pcgzén _ %MZ(gubA(,u.z;meo)c + gacA(,uz;m&T)b)‘ (5.29)
Using this equation and the equality
AchAla — A/ccha — vc(AlaAc — AaAlc)
(5.30)
if V,AC = VA" = 0

and the generalized Stokes theorem, we obtain

(K(Mz;mfo')’ K(Mz;m’€’o"))symp — _M2<A(,u,2;m€0'),A(Mz;in’(f/a’))KG

=(_1)mM28mm’6€€’6¢ra"‘
(5.3D)
Equation (5.26) and this equation together with the

fact that there are no cross terms [28], i.e.
(K(Mz;mhr)’ H(Mz;m/€’0")) =0, 1mp1y

MG™ = o. (5.32)

Finally, Eq. (5.31) and the fact that there are no cross terms
lead to

M?g;m) - Mg?;m) =(=1)". (5.33)

The first line of Eq. (5.31) is valid for € = 1 as well, but
2. —

in this case, HY ™) = 0 in Eq. (5.24). Hence, we
find, noting Eq. (4.30),

2+6

M@ = (—1)" 1 = (=)™ 34
(=1) Mlg%) =(—D"a (5.34)
Clearly, the inverse of the matrix Mlgm) is itself, and

(M©@1m)=1 = (—1)"q~!. Hence, from Eq. (5.19), we find

aba,b,(x X)=a"! Z (- 1y EZm =10 ()

m=0 o

E(Z,bT =t (T)(-x/)

+ Z i Z( l)m[E(l m(u’)( )E(2m€0)( /)
m=0(=2 o

+E 2m€o‘)( )E(l m€0’)( /)]

e (5.35)

Now, we define the vector two-point function with
squared mass u’ as
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g2
AV (x, 1)

m=0 {=1

PHYSICAL REVIEW D 85, 124021 (2012)

— Z Z Z<A(M2;m€0)’A(#z;m€0)>lzéA£ZM2;m€a)(x)A(al/LZ;m&r)(x,)
=1 o

1 -
= (2 +6)"! Z Z(_1)m+1A(a,u2;m,€=1,tf)(x)Aflfltz;m,€=1,0)(x/)

m=0 o

1 00 -
+ Z Z Z(—1)m+]Agﬂ;me”)(x)AEl’l,Lz;meg)(x/).

m=0{=2

Let us also write

AR () = =5 A (x, ) (5.37)
aa du=
and define
Uy (x, ') = z Z ZAE;&mgU)(x)
m=0¢=2 o
0 Mmto),
X HYL Wl (538)

Then, by Egs. (4.28), (4.29), and (4.25), we find
A( )

aba

X)) = —2a }im6[v(av|a/|AS)/b(,l)” )(x, x')
Pl

2
+ Vi Vi A (!, x)]

+ 2V Upyariy (x, &) + 2V Upty (¥, ).

(5.39)
We have used
lim (4 +6)~'V AR )
n——6
V(HA(“ L (5.40)

GM

which is true because V(aA(b;(’;m’e:l’”) = 0. Thus, AithL’h' is
of pure-gauge form, i.e. is equivalent to O in linearized
gravity.

Next, we find the matrix Mﬁfg for the solutions S(ﬁ;e”),
A =1, 2, given by Egs. (4.16) and (4.17) and use it to find
Ai‘?ﬂ,b,(x, x') defined by Eq. (5.20). We first express the
symplectic product of two solutions

SW=v,V,B0 +g,¥h k=12  (541)

in terms of the Klein-Gordon inner product (2.7). Let us

write the conjugate momentum current for the solutions
SY ag
ab

(B,k)abc (W,k)abc +

nv

p(k)abc =pi + 2

plre, (5.42)

(B,k)abc

where p; and p; are the contribution of

V,V,.B® and g,, V¥, respectively, to p%¢ defined by

mv

(W,k)abc

(5.36)

Eq. (5.2). The tensor p(k)”b‘ is defined by Eq. (5.3). As
noted after Eq. (5.22), we have

(B l)ahcv \V/ B(z)] =0.

mv

] d3,[V,V, B0 plE2abe _
2 mnv
(5.43)

Hence,

(s, 5(2))V

= —z/ dz, [V,V B(l)(Pf,\Kz)“bc pézf)abC)
W, 1)abc Dabc
— (P + ")V, B]

i A2 VP — pg, WEL - (5.44)

By straightforward calculations, we find

pl(rlllik)abc i pg;)abc — — _ gbeyap®), (5.45)
4
gy pabe = — Evﬂlll(k) — 3Vep). (5.46)

By substituting these equations into Eq. (5.44) and using
the field equation (4.9) satisfied by B") and B®, we find

(SW, S@)ymp = 3(BY, WD)y + (¥D, BD))

+ (a = 3P, Py .. (5.47)

Note that (B, W@, ., (WD, B®Y, - and (WD, ¥y,
are not conserved individually, though (S, S@) - is

The symplectic product for the solutions Sg,‘;e"), A=
1, 2, given by Egs. (4.11), (4.12), (4.13), and (4.14) is then

MO =0 M9P=3 MP=a-3 (548

We have used

<¢(M22€0)’ 62¢(M2;€0)> _|_< d)(/t {o) ¢(,U«2 €0)>
d KG a,LL KG

0
= W«W o), Uty =0 (5.49)

in computing Mg). The inverse of the matrix Mgsg is
given by
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M =36-a), MO)=L W93 =o0.

(5.50)

Hence, defining the two-point function for the scalar field
with mass u and its u>-derivative as

Al d) = 33 HHAQSEID, (551)
=0 o

ad

Al = = 5 8o ), (5.52)

and substituting Eq. (5.50) into Eq. (5.20), we find

(S) 3—a
Auba’b'

(x, x") = VaVbVa/Vb/{ Asp(x, x')

+ %[4 — (@ = 3)B1AG(x, X’>}

1
+ g(gabva’vh’ + 8ar VaVp)Asp(x, X').

(5.53)

This is clearly of pure-gauge form and generalizes the
result obtained in Ref. [30], where A(a“?a,b,(x, x') for the
cases with (a — 3)8 = 4 was found.

Thus, we have shown that the two-point function
A pap (%, X') in the covariant gauge given by Eq. (5.18) is

equivalent to A(a‘;h[f,sg,(x, x') in linearized gravity because

Aﬁl,b,(x, x') and Aﬁi)a,b,(x, x') given by Eqgs. (5.39) and
(5.53) are of pure-gauge form. Notice that the &« — 0 limit
of A_p.p(x, x') is well-defined and de Sitter-covariant
unless 38 = —k(k + 3), where k is a non-negative integer.
(In the a— 0 limit, the gauge condition V’h,, —
%Vah = 0 is strictly enforced on h,,.) Thus, we dis-

agree with the authors of Ref. [10], who claim that de Sitter
invariance is broken in the case « = 0 and 8 = —2.

One of the main observations in Ref. [10] is that the
scalar two-point function A 2(x, x'), which appears in the

scalar part A(;;a,b, of the graviton two-point function, is
IR-divergent for all negative w>. This is true if this two-
point function is constructed in the Poincaré patch of
de Sitter spacetime in momentum expansion. However,
no IR divergences are encountered in the mode-sum con-
struction of A »>(x, x’) in global de Sitter spacetime as
shown in Appendix C. (We also show in this appendix
that the IR-finite two-point function is recovered even in
the Poincaré patch by appropriate subtraction.)

Finally, we write A(a%hayf;, + AiGb)a,b, in a covariant form.
A2 . .

We first define AEZ;IZI, )(x, x') to be twice the two-point

function for the transverse-traceless symmetric tensor field

with mass M # 0, satisfying

[0, — 2+ M)]ATTM (1) = 0,

a'b’

(5.54)
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It can be given in the mode-sum form as

2 o

TT;M? 5 ) ~

My (6 X) =23 3 S (HM o), HOLmto)y g
m=0{=2 o

% Hgﬂgz;m{’o)(x)Ha[/lizl;m(o‘) (x/)

(o] -
M?224 M224

= Z ZHt(zb U)(x)Hz(z’b’ 7 (')

(=2 o

1 1 o0
tom 2 2 2
m=0(=2 o

% Hygz;m&r) (X)Hg}f/;m{)g) (.X/).

(5.55)

(See Ref. [31] for an explicit form of A(ag‘,f,z) .) Then, we

find from Eq. (5.35) and the definition E;"¢” = p%mto)
for m = 0, 1 [see Eq. (4.28)]

Agpbhjsb)f(xr )C/) + Aizcblz’b’('x’ X/) = Af;c;)’b’(x’ X/)
+AY) (5 x), (5.56)
where
.9 a2
Ay x') = A;QTOW[MZA%% (x, X)), (5.57)
. V; 1 2
Ay (6 x) = _2‘“#}131 6[v(av|a’|A§))b(/ 9 (x, x')
. 2
+ ViV A x)] (5.58)

These expressions will be used in Appendix B to compare
the two-point function found here and the corresponding
result in the Euclidean approach [11].

VI. SUMMARY

In this paper, we investigated the relationship between
the covariant graviton Wightman two-point function and
the physical transverse-traceless and synchronous one in
global coordinates. We defined two Wightman graviton
two-point functions, Ailb)a,b, (x, x") and Afb)a,b,(x, x'), to be
physically equivalent in linearized gravity if they differ by
a bitensor of the form V(, Q). (x, x) + V(1 Qi (x, x7)
and showed that the covariant two-point function is physi-
cally equivalent to the physical two-point function in
global coordinates. Our result is perhaps not surprising,
but since there has been much controversy over infrared
properties of graviton two-point functions, we believe that
it is a worthwhile addition to the body of knowledge about
gravitational perturbation in de Sitter spacetime.

Although our result holds for all « and B except 8 =
—Lo(Ly + 3), Ly non-negative integer, in global de Sitter
spacetime, one encounters some difficulties if 8 < 0 in the

Poincaré patch because the scalar sector A (x, x') be-
aba'b

comes tachyonic. This is also the case for the vector sector
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aba,b,(x x') if a # 0. (See also Ref. [32] for related
difficulties with @ # 0.) However, none of the objections
raised in Refs. [10,32] are relevant with the choices of
gauge parameters &« = 0 and B8 >0 and the de Sitter-
covariant two-point function can be constructed without
any ambiguities even in the Poincaré patch. It will be
interesting to construct A(Z?b,(x, x') in Eq. (5.57) in the
Poincaré patch by the mode-sum method because this is the
only place where nontrivial IR issues arise with 8 > 0 and
a = 0.
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APPENDIX A: EXPLICIT SOLUTIONS TO
FREE-FIELD EQUATIONS

In this appendix, we give the solutions to free-field
equations discussed in Sec. II explicitly, following
Ref. [16]. The scalar solutions are

PHYSICAL REVIEW D 85, 124021 (2012)

and

(u*0¢0) _
A
‘ \/<L1

(€ +2)
+ 1)(L, +2)

X NL ((COSht) 2PL (f_‘*l'l)(l Sinht)y(()err), (A6)
3 N
gﬂzv%’) B L (7 tanht)
JT D@, T F ) \ot
XP, (fjl)(z sinh?)V,Y(06@), (A7)

Finally, the transverse-traceless symmetric tensor solutions
are

H{T2to) — (A8)
HI2) — AN, coshtP 1D (i sinhe) Y27, (A9)
HME) = 0, (A10)

HD) = i (€= 1)(€ + 3)

X Ny, ¢(coshr)~ IPL(iTI)(z’ sinh) Y9, (A11)

M2:160) _ Niye <3 )
2, . i =j——-2_ coshf{ — + 2tanht
¢ 7 = Ny (cosh) ™' PL (i sinhe) YO, (A1) Y (-1 +3) ot
where Ny, ¢ is defined by X P (ﬁl)(l Siﬂht)(viY](-wo) + iji(Mg)),
1 Al2
2 and
The transverse vector solutions A 5mlo) are )
. H(Olgl 0to) — zN’ ((coshr) 3P, (Hl)(z sinhz) Y(0¢@),
(w3 180) _
A =0, (A3) (A13)
A(# o) — =N, (P L(-{;—ll)(l Smhf)y(wa) (A4) 020te) _ .y (cosh)™!
Hy; = iN; , ( + tanht)
where L4 +2)
) Ny, =2 x P, V(i sinhe)V, ¥ ), (A14)
Ni¢= ' ' A5
L {,/,L2+6NM if € =1, (A5)
|
) 3 cosht (9 d
HUPO) — iyt { [ (— +2t ht)(— +t ht)
i L e+ Lee+2\ar S Ng T
1 . == Al +2)
3 COShl‘iIPLZ(fl—l)(l smht)[V,Vj + — nl-j]Y(Oe") + S coshy ulr Lz(ﬁl)(z 51nht)Y(0€”)} (A15)
where
40 — 1)€(€ + 2)(€ + 3)
N , = N7 _o. Al6
\/ 3Ly + (L, +2) 5 (Al0)
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To show Eq. (2.25), we used the associated Legendre
equation,

[d—2 + tanhti + (¢+1y
dr? dt  cosh?t

=0,

L+ 2)]P;<f1+”(isinhr)
(A17)

and the lowering and raising differential operators for the
associated Legendre functions,

d _
cosht[a — (L + l)tanht:IPLle)(isinht)

= i(L — €)P;“"D(isinhs), (A18)
d _
COShZ[E + (L + l)tanht:IPL Wr”(isinht)
= —i(L + €+ 2)P, V(i sinhy). (A19)

APPENDIX B: ORTHOGONALITY OF
SCALAR-TYPE AND
TENSOR-VECTOR-TYPE SOLUTIONS

In this appendix, we show that the symplectic product
vanishes between a scalar-type solution hisb) = SE{Z&’)
given by Egs. (4.16) and (4.17) and any vector-
tensor-type solution h,, satisfying V,V,h% =0 and
h=h¢,=0. This result implies that the scalar and
tensor-vector sectors can be treated separately as we did.

We consider the symplectic product between a scalar-
type solution hgsb) =V,V,B+ g, "V, with B and ¥ sat-
isfying Egs. (4.9) and (4.10), and the complex conjugate of
a vector-tensor-type solution /,,:

(h, B gymp = —i f ds. X(h, h'®), (B1)
3
where
X4(h, h(S)) = hbcp(S)ahc _ pabch(bi)’ (B2)

and where 3, is a Cauchy surface, e.g. a t = constant hyper-
surface. The conjugate momentum current p®’¢ here is
given by Eq. (5.1) with the conditions V,V, 4%’ = 0 and
h =0 imposed. The contribution to p?¢ defined by
Eq. (5.2) from the part V,V,B in hgl) can be found as

i(f‘zabc _ _%vavbch _% beyjap + %[gabVC(D + 6)B
+g*VP(O + 6)B]. (B3)

The conjugate momentum current for the scalar-type solu-
tion hflsb) is

(B)abc
inv

(W)abc +

inv

p(S)abc =p + p

P (B4

where pi(;l",)“h"

We have

(S)abc

is the contribution to p; *”° from V,V, V.
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(Wabe | Sabe — _ 1 gayy

Pinv of B (BS)

[see Eq. (5.45)]. Then, we find after a tedious but straight-
forward calculation

Xh, h9) = — %thV“V”VCB + %habvb(m + 6)B

1 1
+ VORIV, B + (— - 1>Vch’“‘V“VbB
a
+
+ (1 155 B)Vbh“bDB
2 af
n (¢ —3)B—4
ap
To show that [y d=,X%(h, h') = 0, we first note that

V,he W, (B6)

X(h, ) = Y(h, h') + V,Fab, (B7)
where
F(l)ub — _%(hthach _ hacvbch)
+ %(VahbchB — vbhacch)’ (B8)
and, with the definition C¢ = V,h’,
1 1 1 1+
Ye(h, h®) = (— - —)C”V“V,,B + (— - B )C“DB
a 2 2 afl
+ [—Lvacb + (1 _ i)v'fca]v B
2a 2 2a b
4—(a—3
_4m @3By (BY)

ap
We have used the field equation (4.3) to solve for [h,,,.
Since F1ab ig an antisymmetric tensor, we have

f a3, V,Fe =0 (B10)
P
by the generalized Stokes theorem. Hence,
(h, B gy = —i [ ds., Y (h, k). (B11)
2
Next, we find
1
Y(h, hS)) = V,FPb — —Bca{(m -3B)B
o
+[4 = (a—3)B1¥Y}, (B12)
where
1 1
Fab = (— - —)(CbV"B — C°V’B)
a 2
1
+ —B(VC* — VeC?h) (B13)
2
by using the equation
V,(Vbce — Vach) = —6C (B14)
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[see Eq. (4.32)]. Finally, by Eq. (4.9) and antisymmetry of

F®4b we find (b, h'9)gym, = 0from Egs. (B11) and (B12).

APPENDIX C: TWO-POINT FUNCTION FOR
TACHYONIC SCALAR FIELD

It has been pointed out in Ref. [10] that the two-point
function for the scalar field with negative mass squared is
IR-divergent if it is expanded in terms of momentum
eigenfunctions in the Poincaré patch and that as a result
the de Sitter-invariant graviton two-point function is
IR-divergent for 8 < 0. This is true even if 3 is not one
of the discrete values for which it is IR-divergent in the
Euclidean approach [8,11].

In this appendix, we verify that in global coordinates,
the de Sitter-invariant two-point function is IR-finite even
if the field is tachyonic unless the mass squared w? is of
the form —Ly(Ly + 3), Ly = 0, 1, 2, ... by explicitly con-
structing it. We also point out that this two-point function is
recovered also in the Poincaré patch if an appropriate IR
subtraction is made.

1. Construction of the scalar two-point function in
global coordinates

We first show that the scalar two-point function can be
constructed by the mode-sum method in global coordinates
without any IR divergences even with tachyonic mass
unless the mass squared satisfies u?> = —Ly(Ly + 3),
LO :0, 1,2,....

We write the metric on the unit S° as

dQ? = dx* + sin’ x(d#? + sin*0d¢?), (Cl)

where 0 = y = 7 and where 0 and ¢ are the usual spheri-
cal polar coordinates on S%. The positive-frequency mode
functions corresponding to the Bunch-Davies vacuum are
given by Eq. (2.5):

q)(eezm)(t) X 0’ ¢) =

on(ﬁl)(i sinh?) YO (v, 0, ),
(C2)

cosht

where

YOy, 6, ) = - Lp G cos) e, 0, ¢).

Jsiny 0+(1/2)
(C3)

The Yy,,,(6, ¢) are the standard spherical harmonics on S2.
The Wightman two-point function with one point at
x = 0is given as [16]

> T(€ — L)T(€ + Lo + 3)

Gt x) =Y >
=0
X OO (1, 3 0, ) D1, 0, 6, 0r).

(C4)
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If Ly >0, i.e. if > <0, then some modes have negative
coefficients, i.e. have negative norm.

We assume that L is not an integer. If L is an integer,
then this two-point function is indeed IR-divergent. We
note in passing that the modes ®¢©>" with positive norm
form a unitary representation of the de Sitter group if L is
an integer, whereas for a positive noninteger value of L,
no unitary representation exists because of the negative
norm modes [16,33].

Since only the €, = 0 modes contribute in Eq. (C4), the
function G(¢,, t,, x) is independent of 6;, 6,, ¢, and ¢,.
By noting that

2 sin(€ + 1)y

—(1/2) = == _/A
Pesipleosy) (€ + 1)siny’ ©)
we obtain
1 [e e}
Glty, 1, ) =—— > (€ + DI = Ly)T(€ + Lo +3)
47" =
| P
X MPLJQ )(isinht, + €)
_ in(€ + 1
P, (ﬁl)(—isinhtz + e)—sm( - )X,
coshr, ™0 siny
(Co)

where we inserted the “infinitesimal” positive number €
for UV regularization. This series can be shown to be
convergent by using

1 1 — z\¢+1
(€ + 1)!(1 -I—z)

1 l_Z €+1'
~7(€+1)!(1+Z) if €> 1.

—(€+1) _
PLO(+1 (2) =

(C7)

By using the identity I'(«)['(1 — u) = 7/ sin7u, we find
that Eq. (C6) can be written

CT(=Ly— DI(Ly +2) &
47% cosht, cosht, siny =0
D(Lo+€+3) __+1)
S T DLt
I(Ly—¢+1) "o

X Pgo(ﬁl)(—isinhtz +€)

Xsin[(€ + 1)(7m — x)]

€+1)

G(tb t2: X) =

(i sinht; + €)

(C8)

Now, an addition theorem for the associated Legendre
functions (8.794.1 of Ref. [34]) can be adapted to the series
here as
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P, 11 (sinhz; sinht, — cosht, cosht, cosy + ie(t; — 1))
= PLOJrl(i Sinhtl + E)PLOJrl(_l.Sinhtz + 6)
o [(Lo + €+ 3) p(e+1)

+2y =2 = isinht; + €
2Ty — g ht (fsinh + 6
X P (—isinhe, + €) cos[(€ + 1)(m = x)]

(€9)

By differentiating both sides with respect to y and sub-
stituting the result into Eq. (C8), we obtain

_(=Ly = DI'(Ly +2)
872 cosht, cosht, siny

G(t, 1, x) =
d . .
X — P, (sinhz; sinht,
dy ™°
— cosht; cosht, cosy + ie(t; — 1,)).

(C10)

Finally, by using Eq. (C7) with P, ,(z) = P} .,(z) in
Eq. (C8) and

b
4 pabicu)="CFa+1,b+1lic+ Lu), (CII)
du c
we find
[(—Lo)I'(Ly+3)
G(ty, 1y, =
( b2 X) 16772
(C12)
= — sinht, sinht, + coshz; cosht, cosy, (C13)

which is the standard result [15,20]. Note that our result is
valid also for Ly >0, i.e. for tachyonic scalar fields, as
long as L is not an integer.

2. Two-point function for tachyonic scalar field in the
Poinacaré patch

In this subsection, we show that, even though the two-
point function for tachyonic scalar field is IR-divergent in
the momentum expansion in the Poincaré patch, one can
still recover the two-point function found in the previous
subsection by subtracting the IR-divergent terms.

In the spatially flat coordinate system, the metric of
de Sitter spacetime can be given as

ds* = #(—dn2 + dx?), n E (—00,0). (Cl4)
The Wightman two-point function between points (7, X;)
and (75, X,) with || x; — x, ||= r is found as
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(m1m,)%?
8arr

X f * dkk sinkrHY (—kn ) HY (—kn,),
0

Gflat(T]l’ 12, r) =

(C15)

where

VEL0+

[(S1[O8]

— 2wl (C16)

The Hankel function is given in terms of the Bessel func-
tion as

HY () = ——[e"™J,(u) = J, ]}  (C17)
sinwy

The integral (C15) converges if u? > 0, and the result of
the integral is known to agree with G(, t,, ) in Eq. (C12)

[20] with

24 2,2
Z:M (C18)
2m1m;
in this case. We have
1 2\¥
_ ~— (), < 1. Cl
) = 5= (G) C19)

Hence, the integral (C15) diverges in the infrared if » = %
ie. if u? =0.

Let us first separate out the term causing the IR diver-
gences as

Gpa(my, M2, 1) = Gi{f{f)(m, M 1) + Gﬁ’:ﬁ(m, N2, 1),
(C20)

where the IR-divergent contribution for v = % is given by

N (mma)¥2 (A
G%az(nl’ M2, r)zm o dkksmkr./,,,(—knl)
XJ_,(=km,), A>0. (C21)

(The case with integer v needs to be treated as a limit of
cases with noninteger ».) The function Gg:f)(nl, Ny, 1) 18
the IR-regularized two-point function with the IR cutoff A.
If Re » <3, then the integral in Eq. (C21) is convergent
and tends to zero as A — (. Now, this can be analytically
continued to Re » >3 as

(m17m2)*?
8mrsinmyr(l + e

X [ dkk sinkrJ _,(—kn)J_,(—kn,),
c
(C22)

b _
GS; )(771, Ny 1) =

—27Ti1/)

where C is a path on the complex k plane from —A to A
which avoids the origin in the upper half-plane. This means
that the two-point function defined by
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i __ b
GI™ (ny, 12, 1) = G52 (1, ma, 1) + G5 (1, 1y, 1)
(C23)

is the two-point function G(zy, t,, ) given by Eq. (C12)
expressed in spatially flat coordinates even for Re v > %

Thus, G is the IR-regularized two-point function as

mentioned before, and G{" is the IR-subtraction term

needed to recover the de Sitter-invariant two-point func-
tion. Note that this scheme does not work if » is a half-odd

integer because GS;tb) (11, My, ) is infinite in this case.

Let us examine the IR-subtraction term G4 more

closely for 3 < » <3 in the limit A — 0. Choosing C to
be the upper semicircle from —A to A, we find

CM)PA (-

(reg)
G
7 Q2v —3) \mim

flat (”’71, 72, l") =

)V + 0N ),
(C24)

Note that A>~* — 0 as A — 0 by our assumption v < 3.
Hence, we have

[(771 1,)3/2

GEZZ)(m, Ny 1) = /l\im S

—0

X f “dick sinkrHY (—kn ) HY (= k)
A

TP (A2nmp\G2-r
w3(2u—3)< 4 ) ]
(C25)

Thus, to recover the de Sitter-covariant two-point function
for 3 < v <3, we need to remove the IR divergences by
subtracting some zero-mode contribution.

Finally, we verify that the large r behavior of
Gg;tv)(m, M, 1) is correctly reproduced by Eq. (C25).
From Eq. (C12), we find, using a transformation formula
for hypergeometric functions and the doubling formula for
the Gamma function,

' 1 3 r2 v—(3/2)
(inv) ~_—  T[=—
Gﬂat (771’ 12, }") - 477-5/2 F(Z V)F(V)(n] 772) .
(C26)

By examining the 1,1, dependence of this term, we find
that this term comes entirely from the leading term in the &
expansion of Hg,l)(—kn,)Hf,l)(—knz) in Eq. (C25). Thus,
we find

(inv) . [[C@)P (i m\G/2->
Gl (nl,nz,r)~}\£r}){ " A

% /’00 dRI=2 sinkr
A k

;
PP (XPnimp\6/2-»
w3<2v—3)< 4 ) } (€20
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Upon integration by parts, the second term cancels out the

boundary term, and we obtain

Gggt\,)(nl’ 72, l") =~

[T(»)] (771772)(3/2)_”
Qv —3)\ 472

% / ” duuZ*b(cosu - ﬂ) (C28)
0 u

where we have let u = kr. We find Eq. (C26) by evaluating
this integral.

APPENDIX D: COMPARISON WITH THE
EUCLIDEAN APPROACH

In this paper, we found the covariant graviton two-point
function using the mode-sum method. It can be written as

Aaba’b’(x) x/) = AE,Y;;?/},I(X’ xl) + Ai‘;)a/h/(xy X/)

(s)
+ Ay (X)), (D1)

where Aiﬁ?b,, Ai‘;)a, , and Aisb)a, o are given by Egs. (5.57),
(5.58), and (5.53), respectively. Now, this two-point func-
tion can also be found in the Euclidean approach. In this
approach, A, (x, x') can also be given as a sum of three
parts:

Aaba/b’(x’ xl) = G(TT) (x’ X/) + G(V)

aba'b’ aba'b’ (x’ xl)

+ G (x, x). (D2)

(See, e.g. Refs. [11,24]. Our graviton two-point functions
are twice that of Ref. [24].) The function Gg}?b,(x, x') is
transverse-traceless and G%)a,b,(x, x') is a symmetric de-
rivative in each of the sets of indices (ab) and (a’b’) of a
vector two-point function like A%)a, (%, x’) in the mode-
sum case. However, these functions are not equal to

ATD (x,x") and AY), (x, x'), respectively. We also find

aba'b’ aba'b’

that the scalar part in the Euclidean approach,
Gg})a,h,(x, x'), given in Ref. [11] is different from
Agjﬂ, (%, x'). In this appendix, we verify that Eqs. (D1) and

(D2) give the same two-point function for spacelike-
separated points x and x in spite of these differences.

ai)a' b
Eq. (5.53) and the scalar part Gﬁ)a,b, in the Euclidean
approach. For spacelike-separated points x and x', the
two-point function A >(x, x') for a scalar field in de Sitter
spacetime is identical to the corresponding Green’s func-
tion on S* as a function of the geodesic distance between x
and x'. If we let 4" (x),n =0, 1,2, ..., be a complete set
of orthonormal scalar modes on S* satisfying

Let us describe the difference between A given by

[0+ n(n +3)]y")(x) =0, n=012..., (D3)

where v represents all labels other than n, and
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[ dsw(nv)(x),’l,(n’v’)(x) — 6nn’5vv” (D4)
S4

then one can readily see that the equation for the Green’s
function

(=0, + wH)A 2 (x, x') = 6(x, '), (D5)
where
8(x,x") = D I (x) (), (D6)
n=0 v
is uniquely solved by
. lp(nv)(x l/j(nv)(x/)
A#Z(.Xf,x)— Z;m (D7)
We define
, w(nv)(x)lp(nv)(x/)
z(x x') = ng, (D8)
& e YR
A 2 (X, = g gm (Dg)

Then the scalar part in the FEuclidean approach,
Ggﬂ,b,(x, x'), is given in Ref. [11] as
GY (xx’)—A(S) (xx')+3v Y,V Ag (x, x)
aba'b'\"™" aba'b'\"™" aVoVa VB X
1
2\ VaV, = gabD

X <Va/Vb/ — Ll—‘ga/b/D’>A:;(x, x'). (D10)

Hence, the Euclidean and mode-sum approaches will be
consistent with each other if

Guba’b’(x )C/) = Aizb)a’b’('x’ X/) N %vgvbva/vb/A(; ()C, xl)’
(D11)
Felu)) n = ATD / _|_ VAY 1 0
balbl(-x) X ) abalb/( X ) b g(lb

X (Va/vb/ - %ga/b/D')A:Z(x, x’).
(D12)

We will verify these relations in the rest of this appendix.
To show Eq. (D11), we first need to define the Green’s

2
function GEXI’,’L )(x, x') for the transverse vector field with

mass 2 in the Euclidean approach. Let V'™ (x), n =

I,2,..., form a complete orthonormal set of transverse
solutions to the eigenvalue equation on S,

PHYSICAL REVIEW D 85, 124021 (2012)

VAV, V™ =V, V)
=+ D +2Vv™, n=12..., (DI3)
satisfying VeV = 0 and
f dsvi () v a(y) = gm' s, (D14)
54

Then, we define the transverse Green’s function for the
operator

LYy, =Vvb(V, v, —V,V,) + u2V (D15)
by
0 (nv) (nl/) /
(V;u?) . V" (x )V (x')
G , = . D16
aa bx, x n:§n+l)n+2) w? ( )
This Green’s function satisfies
LYPGYH) (x, x) = 8Y)(x, ), (D17)
where
8 (x, x') = Z S VeIV (). (D18)
n=1 v

On the other hand,
AEX;,“ 2)()c, x') which becomes the Feynman propagator
and hence the Wightman two-point function for

spacelike-separate points after appropriate analytic con-
tinuation satisfies [24]

the Euclidean Green’s function

LQV)bAEJ‘;';lLZ)(x, x') = aaa’(x’ x'), (D19)

where

\v} w(nv)(x)v lp(nv)(xl)
n(n + 3)

%uw—wwo+zz
= 592()6, x)+ V,VyAq (x, X).
(D20)

The two-point function Ay (x, x’) is defined by Eq. (D8).
By noting that

LYV, Vg (v x) = u?V, Vg (v x),  (D21)
we readily find [24]
G2 = AV ) = 9, V8 (5 ).
u
(D22)

The vector part of the propagator in the Euclidean ap-
proach is [11,24]
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ViV () Vi ()

G (o x) = 4 :

abay %) = “Z Z [(n+ )(n +2) — 6
(D23)

Note that there is no contribution from the vectors V(" L)

because they are Killing vectors on S*. Using the definition
(D16), we find

Gizb)a’b’(x’ x) = —Zaﬂlgném[v(avla’l(;b)b, '(x, ')
+ V(aV|b/|Gb)a (x X )] (D24)

[Notice the similarity of this equation with Eq. (5.58).]
From Eq. (D22), we readily find Eq. (D11).

Next, we show Eq. (D12). The transverse-traceless part
of the two-point function in the Euclidean approach is [24]

= KK (x)

Gl ) = 2 3 3 el O

, D25
~ n(n + 3) (D25)

where K(a';”)(x) form a complete orthonormal set of

transverse-traceless eigenfunctions satisfying

Limed g — (_[0 4 2)K") = p(n + 3K, (D26)

and

f dSK (K (x) = 55 (D27)
N

It is convenient to define the massive Green’s function

GZZ,IZ )(x, x') by

L(Mz)cd G(TT M?)

cda'b’ (X, X/)

_ 4 (inv)ed ~(TT:M?) 1402 ~(TT)
= Lanblv cha’b’ (.X X/) + EM Gaba b’('x X)

TT;M?
CdGEda’b’ )(x x)

- lega
= 1(-0+2 + M)

— s(7)
6aba’h’

b (x, ')

(x, x"), (D28)

where LSZV)Cd is defined by Eq. (3.2). The transverse-
traceless delta function is

Bty (% X) = Z ZKE’;”)( KU, (D29)
=2
We clearly have
G(TT Mz)(x X/) =2 i Zw (D30)
a'b' ] o & n(n + 3) + M2 ’
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and

G(TT)

D x)) = hmG(TT,b, (x, x'). (D31)

For spacelike-separated points x and x’, the Lorentzian
tensor two-point function A(T ,[hw, )(x, x') equals the Green’s
function on S* satlsfylng the same equation as
ngi,% )(x, x), i.e. the first line of Eq. (D28), but with the
transverse-traceless delta function 6( D)
the full delta function given by [24]

X X') replaced by

8aba’b’(~x! )C/) - 8(TT)/b/(x /) + 8(Tvlb/ (X xl) + 8(Ts/h/(x X)
(D32)
where
2V v<"">(x)v(a,v<"”>(x/)
By (6 ) = Z > . (D33)

n+1)n+2) -
and, with the definition A, = n(n + 3),

TS
5£zha)’b’ (2, ")

- Z 23/\ (/\ 4) <vavb + %gab)‘l/(m})(-x)

n=

2
X (va/vb’ + _ga b/)‘p(yw)(x/)

1 -
+ 7 8ab8ary Z D) (). (D34)
n=0 v
One can find A(TT,ZIZ ) in the form
2 A2
A ) = G 5) + G )
(TS:M?)
+ Gaba/b/ (-xy -x/)) (D35)
where
(M Yed ~(TV) _ 1)
Loy G gy X)) = 8, 1, (x, X), (D36)
(Mz)cd (TS) _ (TS)
L cha’b’ ()C, x/) - 5aba,b,(x, xl). (D37)

By noting that
) M?
L, M)’V .V, +V,V,) = 7(vavb +V,V,), (D38)

one can readily solve Eq. (D36) as
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2 2
GE;}Z,Z{ '(x, x') = S(aTbZ?b,(x x') = e hm [V(avla’le)b' J(x, &) + V(aV|b/|Gb) 4 (x, x1)]
2 _
= W 2 [v(avla’lAb)b/ (X x') + v(avlb’lAb)a (X, X/)] + 3anvbva’vb’A() (x, x'). (D39)
To find Gf;S/ZI, )(x, x'), we first observe
(M2)cd ) _ M2 iy 4 M? ()
Ly V. V) = TVavblﬁ Y+ TAngabw , (D40)
3
Lo = =9, 9,0 = (A, = 3+ 08 g g (D41)

The functlon GUIsM? )(x x') can be found as the inverse of the operator L(M Jd for the modes g™ and

(V,V, + A2g) ) as

1 1 A A ——
TSM) :_722 + LM )( v, M, ,) () (Y gy (10 (o
Gaba/b/ (x)x ) 3 - (MQ'A 2 _ MZ)()\ _ 4))(vavh 4 gah vu vb 4 g(,l b l/’ (x)l:b (x )

3M2(2 MZ) ZZI:gabw(m})(x)< /V,,/ +_ga’b’)W

n=2 v

- An
+ 8ay l/f("")(x')(vavb + Zgub) lﬂ("v)(x)]

A, +2M2 S
8ap&8ay Y (X)) (). (D42)
,;)ZI2M2(2 M?)

Some terms on the right-hand side have support only for x = x’ on $*. For example,

A, + 202 O+ 2M>
Z ZM2(2+ Mz) ‘ﬂ(ny)(x)lﬂ(w)(x') = m 6()(, x’). (D43)

n=0 v

Thus, for x # x’ on $*, or for spacelike-separated points x and x in de Sitter spacetime, we have

2 2 2 1 1
GE;S/% )(x, .X/) = _anvbva/vb/Aa (.X, x’) - 73(2 — M2) (Vuvb - Zgab[])(va/vh/ — Zga'b’Dl)A :Z (.X, x’), (D44)

where we have used the fact that [JA; (x, x’) is a constant [11]. By substituting this equation and Eq. (D39) into
Eq. (D35), we find

2
AT ) = G () = 17z lim [V, Vi1 Al

b)b’ 2)()( X ) + V(avlbrlAb) | (x X )]

2 I
—73(2_M2)(v v, - gabD)(V Vb/——ga/b/D> Twx),  (D45)

(Viu?) N : :
where G, "’ (x, x') is defined by Eq. (D16). Then, noting that

lim{A(TT M) ) — 5 Tim [V Vi AV (1) + Vo Vg AV x, x’)]}
——6

M—0 b’ MZ 2 b)b' b)a'

1 00 -
_ Z Z H(() 260')( )H(O 2(0)(x/) + 111’1’1 Z Z Z( 1)m+]|:PI(M2 mfo')( )H(/b/ mf(r)(x/) H(O m(’a’)( )H((l)bljzfa)(x/)]

m=0{=2

= Aﬂ?b,(x, x') (D46)

and using Eq. (5.57), we indeed find Eq. (D12).
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