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The notion of an apparent horizon (AH) in a collapsing object can be carried over from the Lemaı̂tre-

Tolman to the quasispherical Szekeres models in three ways: 1. Literally by the definition—the AH is the

boundary of the region, in which every bundle of null geodesics has negative expansion scalar. 2. As the

locus, at which null lines that are as nearly radial as possible are turned toward decreasing areal radius R.

These lines are in general nongeodesic. The name ‘‘absolute apparent horizon’’ (AAH) is proposed for this

locus. 3. As the boundary of a region, where null geodesics are turned toward decreasing R. The name

‘‘light collapse region’’ is proposed for this region (which is three-dimensional in every space of constant

t); its boundary coincides with the AAH. The AH and AAH coincide in the Lemaı̂tre-Tolman models. In

the quasispherical Szekeres models, the AH is different from (but not disjoint with) the AAH. Properties

of the AAH and light collapse region are investigated, and the relations between the AAH and the AH are

illustrated with diagrams using an explicit example of a Szekeres metric. It turns out that an observer who

is already within the AH is, for some time, not yet within the AAH. Nevertheless, no light signal can be

sent through the AH from the inside. The analogue of the AAH for massive particles is also considered.
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I. MOTIVATION

This paper deals with the relationship between ana-
logues of an apparent horizon (AH) that exist in the quasi-
spherical Szekeres models [1–21] of the �0 � 0 family.1

The AH was first defined by Hawking and Ellis (HE, [24],
in what follows we quote from this source) as the outer
boundary of a connected component of an outer trapped
region within a partial Cauchy surface Sð�Þ. A trapped
region is the collection of all points q 2 Sð�Þ such that
there exists an outer trapped surface P � Sð�Þ containing
q. An outer trapped surface is a 2-surface in Sð�Þ such that
the family of outgoing null geodesics orthogonal to it has
nonpositive expansion scalar, as defined by Sachs [18]. In
our case, the partial Cauchy surfaces will be the hyper-
surfaces of constant t. It is a simple and rather small step
forward from this definition to consider the collection of all
apparent horizons in the sense of HE, and retain the name
AH for the three-dimensional hypersurface thus formed.
We shall use the term AH in the latter sense. Szekeres [2]
showed that in his quasispherical model the AH in this
broader sense is located at R ¼ 2M (in our notation). (He
did not use the term ‘‘AH.’’) Hellaby and Krasiński [15]

gave the name of AH to a different entity, for which the
name ‘‘absolute apparent horizon’’ (AAH) is proposed
here. The AAH is defined in terms of nongeodesic null
lines that are, in a sense to be defined in Sec. IV, as nearly
radial as possible. (Strictly radial curves do not exist in
general Szekeres models because of their lack of symmetry
[25].) The AAH is the locus at which these nearly radial
null curves are turned toward decreasing areal radius R. In
the Lemaı̂tre [26]-Tolman [27] (L-T) model, which is the
spherically symmetric limit of the Szekeres models con-
sidered here, the AAH coincides with the AH [28], and the
curves defining the AAH become radial null geodesics.
One more analogue of AH results when we consider null

geodesics and the region, where they are turned toward
decreasing R. For this region, the name ‘‘light collapse
region’’ (LCR) is proposed here. Unlike AAH and AH,
which are three-dimensional hypersurfaces in spacetime,
the LCR is a four-dimensional subset of spacetime because
the family of geodesics defining it is not uniquely
determined.
The existence of the AAH is proven for every collapsing

quasispherical Szekeres model in Sec. IV. In Sec. V, the
LCR is defined and it is shown that the three-dimensional
future boundary of LCR coincides with the AAH. In
Sec. VI an explicit subcase of the quasispherical
Szekeres model is chosen for a detailed investigation. We
illustrate the relation between the AH and the AAH by
diagrams showing their positions in space. It turns out that,
for some directions, an observer who is already within the
AH is, for some time, not yet within the AAH. The ana-
logue of AAH for massive particles is also considered. In
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1In the literature there are several definitions of different kinds

of horizons. Some of them require asymptotic flatness, others
noninteraction with the surroundings. These do not apply here
because of the dynamical character of the Szekeres spacetime.
For different types of horizons and discussion the reader is
referred to [22,23].
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Sec. VII the matching of the quasispherical Szekeres
solutions to the Schwarzschild solution is considered.
It is shown that it is the AH that matches to the
Schwarzschild event horizon located at r ¼ 2m and that
the outgoing part of the AH is necessarily spacelike, so
light rays cannot traverse it outwards from the inside. Both
these facts indicate that the AH rather than the AAH is the
true horizon.

The aim of this paper is to gain more insight into the
geometry of the Szekeres solutions.

II. INTRODUCING THE �0 � 0 QUASISPHERICAL
SZEKERES SOLUTIONS

In this section, basic facts about the �0 � 0 quasispher-
ical Szekeres solutions are recalled for reference, and to
define the notation. We will use the parametrization intro-
duced by Hellaby [29]. The metric of these solutions is

E¼def S
2

��

x� P

S

�

2 þ
�

y�Q

S

�

2 þ 1

�

;

ds2 ¼ dt2 � ðR;z �RE;z =EÞ2
1þ 2EðzÞ dz2 � R2

E2
ðdx2 þ dy2Þ; (2.1)

where EðzÞ, PðzÞ, QðzÞ, SðzÞ are arbitrary functions, and
Rðt; zÞ obeys the following equation; a consequence of
Einstein’s equations with dust source:

R; 2t ¼ 2EðzÞ þ 2MðzÞ
R

þ 1

3
�R2; (2.2)

MðzÞ being one more arbitrary function, and � being the
cosmological constant. The coordinates of (2.1) are co-
moving, so the velocity field of the dust is u� ¼ ��

0 and

_u� ¼ 0. In the following we assume � ¼ 0.
This solution has in general no symmetry, and reduces to

the L-T solution when P, Q and S are all constant.2 The
sign of EðzÞ determines the type of evolution; with Eðz0Þ<
0 the matter shell at z ¼ z0 expands away from an initial
singularity and then recollapses to a final singularity, with
Eðz0Þ> 0 the shell is ever-expanding or ever-collapsing,
depending on the initial conditions; Eðz0Þ ¼ 0 is the inter-
mediate case, ever-expanding with asymptotically zero
expansion velocity, or its time-reverse. All three evolution
types may exist in different regions of the same spacetime.
We consider here the recollapsing (E< 0) solution of (2.2)
with � ¼ 0,

R ¼ � M

2E
ð1� cos�Þ;

�� sin� ¼ ð�2EÞ3=2
M

ðt� tBðzÞÞ;
(2.3)

where tBðzÞ is one more arbitrary function and �ðt; zÞ is a
parameter. The mass-density in energy units is

�� ¼ 2ðM;z �3ME;z =EÞ
R2ðR;z �RE;z =EÞ

; �¼def 8�G
c4

: (2.4)

For � > 0, ðM;z �3ME;z =EÞ and ðR;z �RE;z =EÞmust have
the same sign. Note that the sign may be flipped by the
transformation z ! �z, so we may assume that

L¼defR;z �RE;z =E > 0 at least somewhere. Let us then con-
sider whetherL can change sign as a function of z. The set
where L ¼ 0 is either (1) a curvature singularity (a shell
crossing—see a comment on it in the next section) or (2), if it
coincides with the set where M;z �3ME;z =E ¼ 0, an ana-
logue of a neck, well-known from the L-T geometry [18].
Case (1) is excluded by assumption—we choose the func-
tions in the model so that shell crossings do not occur. In
case (2), the neck (if it exists) is a global feature of spacetime,
and no ordinary astronomical object in our neighborhood is
large enough to extendup to and through it. Thus,we assume
that we are on one side of the neck, where

R;z �RE;z =E > 0 ) M;z �3ME;z =E > 0: (2.5)

We also assume

M;z >0 (2.6)

because the region where M;z <0 occurs is an analogue of
the region behind the equator of a closed space in the
positive-curvature Robertson-Walker spacetimes. Again,
no astronomical object is that large.
The Robertson-Walker limit follows when z ¼ r,

Rðt; zÞ ¼ rSðtÞ, E ¼ E0r
2, where E0 ¼ constant and P ¼

Q ¼ 0, S ¼ 1. This definition includes the definition of the
limiting radial coordinate (the Szekeres model is covariant
with the transformations z ¼ fðz0Þ, where fðz0Þ is an arbi-
trary function).
The quasispherical model may be imagined as such a

generalization of the L-T model in which the spheres of
constant mass were made nonconcentric. The functions
PðzÞ, QðzÞ and SðzÞ determine how the center of a sphere
changes its position in a space t ¼ constant when the
radius of the sphere is increased or decreased [15].
Within each single ft ¼ constant; z ¼ constantg surface,

which is a sphere, the ðx; yÞ coordinates of (2.1) can be
transformed to the spherical ð#;’Þ coordinates by

ðx� P; y�QÞ=S ¼ cotð#=2Þðcos’; sin’Þ: (2.7)

This transformation is called a stereographic projection.
For its geometric interpretation see Refs. [15,18]. Using
this transformation the factor E;z =E becomes

2The ‘‘�0 � 0’’ refers to the fact that e�¼defR=E depends on z,
so �0 � �;z � 0 (this notation follows Szekeres [1,2]). There
exists another large family of Szekeres solutions, in which �0 ¼
0. They require separate treatment and will not be considered
here. See an extended presentation in Ref. [18], also for the
associated quasiplane and quasihyperbolic Szekeres models.
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E ;z =E ¼ �½S;z cos# þ sin#ðP;z cos’þQ;z sin’Þ�=S:
(2.8)

III. PROPERTIES OF THE QUASI-SPHERICAL
SZEKERES SOLUTIONS

Definitions of the Szekeres solutions based on invariant
properties can be found using Ref. [18].

Rotation and acceleration of the dust source are zero, the
expansion is nonzero, the shear tensor is

	

� ¼ 1

3
�diagð0; 2;�1;�1Þ; where

� ¼ R;tz �R;t R;z =R

R;z �RE;z =E
: (3.1)

The instant t ¼ tBðzÞ in (2.3) is the Big Bang singularity
corresponding to R ¼ 0. When tB;z � 0 (that is, in general)
the instant of singularity is position-dependent.

Another singularity may occur where R;z �RE;z =E ¼ 0
(if this equation has solutions for ðx; yÞ). This is a shell
crossing, but it is qualitatively different from that in the
L-T model. As can be seen from (2.1), the equation
R;z �RE;z =E ¼ 0 can define at most a subset of an fx; yg
sphere. When a shell crossing exists, its intersection with a
t ¼ constant space will be a circle, or, in exceptional cases,
a single point (in L-T it is a whole sphere). For more
on shell crossings in all the Szekeres solutions see
Refs. [15,30]. They can be avoided if the functions and
their derivatives obey a set of inequalities [15,21].

Equation (2.2) is formally identical with the Friedmann
equation, but, with E and M depending on z, each surface
z ¼ constant evolves independently of the others.

A quasispherical Szekeres region can be matched to the
Schwarzschild solution across a z ¼ constant hypersurface [6].

The mass-density distribution given by (2.4) can be
decomposed into the spherically symmetric monopole

��S ¼ 2ðM=�Þ3
ðR=�Þ2ðR=�Þ;z

; (3.2)

where

�ðzÞ¼def P
2 þQ2 þ S2 þ 1

S
; (3.3)

and the dipole

��� ¼ 6MR;z �2M;z R

R2ðR;z �� R�;z Þ
� �;z ��E;z =E

R;z �RE;z =E
: (3.4)

The dipole is uniquely defined by the requirement that the
surface where �� ¼ 0 (sure to exist, as follows from
calculations—see Refs. [16,18]) passes through the center
of symmetry of the monopole.3

IV. APPARENT VERSUS ABSOLUTE APPARENT
HORIZONS IN THE QUASISPHERICAL

SZEKERES MODELS

The results of this section were partly reported in
Ref. [16]; the basic equations were introduced in Ref. [15].
An AH is the boundary of the region of trapped surfaces.

A trapped surface S is one on which the families of out-
going null geodesics on both sides of S converge (i.e., have
a negative expansion scalar). Thus, if k� is any field of
vectors tangent to null geodesics that intersect S, then

k�;� <0 on S: (4.1)

Consequently, on an AH:

k�;� ¼ 0: (4.2)

Proceeding from this definition, Szekeres [2] found that
in a quasispherical model the AH is given by the same
equation as in an L-T model:

R ¼ 2M: (4.3)

In an L-T model, (4.2) is equivalent to another definition:
on an AH in collapsing matter, RðzÞ calculated along an
outgoing radial null geodesic changes from increasing to
decreasing [18].
Hellaby and Krasiński [15] considered the analogue of

an AH in a quasispherical Szekeres model, using this
second definition, but for nongeodesic null fields defined
below. We propose to name this the ‘‘absolute apparent
horizon’’ (AAH)—because even a maximally accelerated
ray cannot get out of it.
The reasoning was as follows. A general null direction

k
 ¼ dx
=dt in the metric (2.1) obeys4

ðR;z �RE;z =EÞ2
1þ 2E

�

dz

dt

�

2 ¼ 1� R2

E2

��

dx

dt

�

2 þ
�

dy

dt

�

2
�

: (4.4)

Thus, on a null curve with dx=dt ¼ 0 ¼ dy=dt (which, in
general, will not be a geodesic [16,17,25]), jdz=dtj is
maximal. Equation (4.4) implies, along this path:

dt

dz

�

�

�

�

�

�

�

�n
¼ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p

�

R;z �RE;z
E

�

; j ¼ �1; (4.5)

where j ¼ þ1 for outgoing rays, and j ¼ �1 for ingoing
rays. Intuition suggests that along a curve (4.5) the light
signal should escape farther from the ‘‘origin’’ R ¼ 0 than
along any other path. An example in Sec. VI will show that
this is only partly true. Along some directions, the rays
given by (4.5) can indeed proceed toward larger values of R
even within the AH. But along the other directions the

3Equation (3.4) corrects a typo in Eqs. (2.194) and (2.196) of
Ref. [16] and in Eq. (19.165) of Ref. [18]: one of the two
appearances of �2 in each equation should not be there.

4Along a null curve parametrized by an affine parameter s, the
time coordinate t must obey dt=ds > 0 or dt=ds < 0 at all points
(the curve would be spacelike at every point where dt=ds ¼ 0).
This shows that t can be used as a parameter on null geodesics
(but in general it is not affine).
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reverse happens: the rays (4.5) are redirected to decreasing
values of R even outside the AH. The reason for this
behavior is the fact that the two definitions of AH that
are equivalent in the L-T limit are inequivalent in a
Szekeres model: the locus where all bundles of light rays
begin to converge is different from the locus where light
rays are forced to collapse toward decreasing R, see Sec. V.

Let the solution of (4.5) be

t ¼ tnðzÞ: (4.6)

The value of R along this ray, RnðzÞ¼defRðtnðzÞ; zÞ, is a
monotonic function of z in some neighborhood of the
emission point. The AAH is where RnðzÞ changes from
increasing to decreasing or vice versa:

0 ¼ dRn

dz
� @R

@t

dtn
dz

þ @R

@z

¼ ‘j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M=Rþ 2E
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p

�

R;z �RE;z
E

�

þ R;z ; (4.7)

from (2.2) and (4.5), where ‘ ¼ þ1 for an expanding
model and ‘ ¼ �1 for a collapsing model. We consider
an AAH that is created in the collapse phase (‘ ¼ �1), so
it is defined by the outgoing rays (j ¼ þ1). Then, (4.7)
becomes

R;z

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M=Rþ 2E
p

� 1

�

þ R
E;z
E

¼ 0: (4.8)

In Ref. [15] it was found that in a constant-t space the
AAH ‘‘is a kind of oval with half inside R ¼ 2M and half
outside.’’5 In Sec. VI we will investigate the relation of the
AAH to the AH in a simple example of a recollapsing
Szekeres model, and this will provide an illustration to the
quoted statement.
We use the following expression for R;z (to be calculated

from (2.3); see Eq. (18.107) in Ref. [18]):

R;z
R

¼
�

M;z
M

� E;z
E

�

þ
�

3

2

E;z
E

�M;z
M

�

sin�ð�� sin�Þ
ð1� cos�Þ2

� ð�2EÞ3=2
M

tB;z
sin�

ð1� cos�Þ2 : (4.9)

We note from (2.2) and (2.3) that with� � � � 2�, where
R;t <0, we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M=Rþ 2E
p

¼ � ffiffiffiffiffiffiffiffiffiffiffi�2E
p sin�

1� cos�
: (4.10)

We substitute (4.9) and (4.10) in (4.8), then multiply the
result by ð1� cos�Þ2 to avoid the infinite values at � ! 0
and � ! 2�, and obtain:

�ð�Þ¼def
��

M;z
M

� E;z
E

�

ð1� cos�Þ3=2 þ
�

3

2

E;z
E

�M;z
M

�

sin�ð�� sin�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos�
p � ð�2EÞ3=2

M
tB;z

sin�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos�
p

�

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos�
p þ

ffiffiffiffiffiffiffiffiffiffiffi�2E
p

sin�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos�
p

�

� ffiffiffiffiffiffiffiffiffiffiffi�2E
p

sin�ð1� cos�Þ E;z
E

¼ 0: (4.11)

This determines �ðM; x; yÞAAH. Then, from (2.3):

tðM; x; yÞAAH ¼ M

ð�2EÞ3=2 ð�� sin�ÞAAH þ tB: (4.12)

We assume that shell crossings are absent. Among the
conditions for no shell crossings, found in Ref. [15], the
following are useful here:

2�

�

3

2

E;z
E

�M;z
M

�

� ð�2EÞ3=2
M

tB;z < 0 (4.13)

(see Eq. (126) in Ref. [15]), and

M;z =M� E;z =E > 0; (4.14)

which follows from the fact that R;z =R > 0 must hold for
all ð�; zÞ, via (4.9) taken at � ¼ � [15]. We observe that

� lim
�!2�

sin�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos�
p ¼ ffiffiffi

2
p ¼ lim

�!0

sin�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos�
p : (4.15)

Now we verify using (4.11) that

lim
�!�

�ð�Þ ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p �

M;z
M

� E;z
E

�

> 0; (4.16)

being positive in consequence of (4.14); and

lim
�!2�

�ð�Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi�2E

p �

2�

�

3

2

E;z
E

�M;z
M

�

� ð�2EÞ3=2
M

tB;z

�

< 0; (4.17)

being negative in consequence of (4.13).
Thus�ð�Þ> 0 and�ð2�Þ< 0, so there exists an �0 2

ð�; 2�Þ at which �ð�0Þ ¼ 0, and it is unique (see
Appendix A). In passing, we have proved that each particle
in a recollapsing quasispherical Szekeres model must cross
the AAH before it hits the Big Crunch at � ¼ 2�.

5This can be easily seen from (4.8). Suppose, for definiteness,
that R;z >0. Recall that E > 0 (evident from (2.1)). Then
ðE;z >0Þ ) ðR< 2MÞ, ðE;z ¼ 0Þ ) ðR ¼ 2MÞ and ðE;z <0Þ )
ðR > 2MÞ. For the proof that E;z changes sign on an ðx; yÞ sphere
see Ref. [15]; E;z ¼ 0 is a large circle on that sphere.
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V. THE LIGHT COLLAPSE REGION (LCR)
AND ITS FUTURE BOUNDARY

Consider a bundle of geodesic light rays flashed simul-
taneously from a common origin. Let v be the affine
parameter along these rays, � be the expansion scalar of
the bundle, k� be the tangent vector field to the rays and �S
be the surface area of the propagating front of the bundle.
Then the following holds ([18], Eq. (16.131)):

k�;� � 2� ¼ d

dv
lnð�SÞ: (5.1)

Consequently, by (4.2), on an AH the �S stops increasing
along the geodesics in the bundle defining the AH and
begins to decrease. In an L-T model, a light front (LF)
flashed from the origin R ¼ 0 remains spherically sym-
metric at all times, and its surface area is proportional to R2

calculated at the LF. Therefore, in a collapsing L-T model,
the AH is at the same time the locus at which RjLF reaches
its maximum. This coincidence between � ¼ 0 and the
maximum of RjLF does not hold in a Szekeres model, as
is demonstrated below. The LF is not spherically symmet-
ric, different points on it have different R values at a
constant t, so the area of the front is no longer proportional
to R2. Thus, there may be locations where � < 0, but R is
still increasing along the rays, and locations where � > 0
while R is decreasing. This remark should help in under-
standing the relation between AH and AAH discussed in
Sec. VI.

This noncoincidence allows us to define one more entity
related to AH, which we propose to name the ‘‘light
collapse region’’ (LCR). This is the region where R has
extrema along null geodesics, and so, during collapse, the
rays are turned toward the Big Crunch.

Consider (4.4) along a null geodesic, and suppose we
know the solution of the geodesic equations. Then (4.4)
together with the geodesic equations defines the function

t ¼ tngðzÞ; (5.2)

where ‘‘ng’’ stands for ‘‘along a null geodesic.’’ For an
outward-directed null geodesic we then have

dt

dz

�

�

�

�

�

�

�

�ng
¼ R;z �RE;z =E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p

U

�

�

�

�

�

�

�

�ng
; (5.3)

where

U¼def
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R2

E2

��

dx

dt

�

2 þ
�

dy

dt

�

2
�

s

�

�

�

�

�

�

�

�ng
: (5.4)

Proceeding exactly as from (4.6) to (4.8), and assuming we
consider outward-directed null geodesics in the collapse
phase of the model we arrive at the following analogue
of (4.8)

dR

dz

�

�

�

�

�

�

�

�ng
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M=Rþ 2E
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p

U

�
�

R;z

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p

U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M=Rþ 2E
p

� 1

�

þ R
E;z
E

�
�

�

�

�

�

�

�

�ng
:

(5.5)

We define the LCR as the region where

dR

dz

�

�

�

�

�

�

�

�ng
¼ 0: (5.6)

As stated before, the LCR is a four-dimensional subset of
spacetime and a three-dimensional subset of a space of
constant time. This is because the geodesics that define the
LCR are not uniquely determined: the U in (5.4) depends
on the direction of the geodesic considered and takes a
range of values at a given ðt; zÞ.
Consider the intersection of LCR with the AAH, i.e. a

locus where (4.8) and (5.6) hold simultaneously. Within
this set we have U ¼ 1 ) dx=dt ¼ dy=dt ¼ 0. Thus,
LCR

T

AAH is a set in which both the nongeodesic null
curves referred to in (4.5) and the null geodesics referred to
in (5.3)–(5.4) begin to proceed toward decreasing R, and in
addition the null geodesics happen to have dx=dt ¼
dy=dt ¼ 0 there, i.e. to be tangent to the curves defining
the AAH. The definition of this set is identical to the
definition of AAH, Eq. (4.8). This shows that the AAH is
a boundary of the LCR. Actually, it is the future boundary,
as we show below. Consider the collection of null geo-
desics that cross the AAH as defined by (4.8). For them,
calculate (5.5) at the points that obey (4.8). It is convenient
to rewrite (4.8) and (5.5) as follows:

R;z �ðR;z �RE;z =EÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M=Rþ 2E
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p ¼ 0; (5.7)

dR

dz

�

�

�

�

�

�

�

�ng
¼ R;z �ðR;z �RE;z =EÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M=Rþ 2E
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p

U
: (5.8)

Using (5.7) in (5.8) we obtain

�¼def dR
dz

�

�

�

�

�

�

�

�ngðAAHÞ
¼ ðR;z�RE;z =EÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M=Rþ2E
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ2E
p

�

1� 1

U

�

:

(5.9)

Using (2.5), since U � 1 by construction, we see that
� � 0. Those geodesics, for which � ¼ 0 (U ¼ 1) cross
the AAH with dx=dt ¼ dy=dt ¼ 0 and are just being
turned toward decreasing R. Those for which �< 0, while
crossing the AAH are already proceeding toward decreas-
ing R. This shows that the AAH lies at the future boundary
of the LCR.
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VI. EXPLICIT EXAMPLES OF AAH IN
SZEKERES MODELS

A. Null rays

As an illustration, we take the recollapsing Szekeres
model defined by the same equations that were used in
Ref. [28] to discuss the formation of galactic-size black
holes in the L-T model:6

tBðMÞ ¼ �bM2 þ tB0; (6.1)

tCðMÞ ¼ aM3 þ T0 þ tB0; (6.2)

where tBðMÞ is the bang time, tCðMÞ is the crunch time, a,
b, tB0 and T0 are arbitrary constants; tB0 is the time-
coordinate of the central point of the Big Bang and T0 is
the time between the Big Bang and Big Crunch measured
along the central line M ¼ 0. Then, from (2.3), since
� ¼ 2� at t ¼ tC:

2EðMÞ ¼ � ð2�MÞ2=3
ðaM3 þ bM2 þ T0Þ2=3

: (6.3)

As shown in Ref. [15], Eq. (185), the extreme values of
E;z =E are

De¼def E;zE
�

�

�

�

�

�

�

�extreme
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S;z
2 þ P;z

2 þQ;z
2

q

S
: (6.4)

However, in choosing ðP;Q; SÞ precaution must be taken
not to make De too large. If it is too large, then either the
numerator or the denominator of (2.4) becomes negative in
a region of space, thus rendering the mass density negative
there (and infinite where the denominator is zero).
Physically, this means that the dipole component of (3.4)
dominates over the monopole in that part of the space.

We thus first choose such a value of De that will make
the difference between the graphs of AH and of AAH
visible at the scale of a figure, and then we choose such
P, Q and S that will imply the chosen value of De. To
maximize De, at least one of the derivatives P;z , Q;z , S;z
has to be large. Experiments showed that the following
functions will yield the desired result:

a ¼ 0:1; b ¼ 5000; T0 ¼ 12:5; tB0 ¼ 0;

S ¼ M0:29; P ¼ 0:5M0:29; Q ¼ 0; (6.5)

and z0 ¼ MðzÞ was chosen as the new z-coordinate. The
resulting AAH is shown in Fig. 1. The figure shows tðMÞ on
the AAH for two points in the ðx; yÞ surface: the one where
the De given in (6.4) is maximal (positive) and where it is
minimal (negative). These two curves are compared with
the ordinary AH and with the crunch time function tCðMÞ.

(This figure is a modification of Fig. 1 in Ref. [28].) See
Appendix B for the proof that all four curves indeed have a
common origin at M ¼ 0.
Figure 1 shows that the contribution from E;z =E can

either increase or decrease the region where the accelerated
rays are forced toward the Big Crunch, depending on the
direction. In the direction where this contribution is maxi-
mal (i.e. E;z =E > 0—curveAAH�), the AAH appears later
than the ordinary AH, and the term E;z =E causes that the
accelerating ray can still proceed toward increasing R in a
region where a geodesic bundle already converges. In the
direction where De is minimal (i.e. E;z =E < 0—curve
AAHþ), the AAH appears earlier than the AH, and the
term E;z =E causes that the accelerating ray is turned inward
where a geodesic bundle is still diverging.
Note what this means physically. A nongeodesic light

ray is one that is guided by mirrors or optical fibers. When
the AAH has a smaller radius than the AH, the observer
who has already fallen into the AH still has a chance to
send a message, using nongeodesic rays, to observers
occupying loci with larger R. However, the nongeodesic
ray has no chance to escape from inside the AH and will be
turned toward the Big Crunch as well, only somewhat later
than the geodesic one—see Sec. VII. Even this is possible
only in some of the directions; in other directions the AAH
is outside the AH and no ray within the AH, geodesic or
not, can proceed toward larger R. (See later in this paper—
Figs. 5 and 6 illustrate this point more clearly.)
Figure 2 shows a 3D graph of M on the AAH as a

function of x and y, at the time instant t ¼ 13:0 (compare
to Fig. 1). All values of x and y are admissible, and at every

 0
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 15

 20

4 2  0  2  4

t

M

crunch

AH

AAH+

AAH-

FIG. 1 (color online). A comparison of the future absolute
apparent horizon (AAH) with the ordinary future apparent
horizon (AH) in the model defined by (6.1) and (6.2). Curve
AAH+ is the AAH along the direction where the contribution
from E;z =E is maximal and curve AAH� is the AAH along the
direction where this contribution is minimal. The dashed-dotted
line represents the big crunch singularity. Horizontal solid lines
show the instants for which the next figures are drawn, these are:
t ¼ 4:0, 10.0, 11.5, 11.9772, 12.3 and 13.0. Note that we use M
as the radial coordinate.

6The values of the parameters a, b, T0 and tB0 used here will be
different from those in Ref. [28]. This model is meant to be an
illustration to various geometrical possibilities; it is not supposed
to describe any real object in the Universe.
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pair ðx; yÞ there will be an M obeying (4.11). The graph
shows at which points in the ðx; yÞ plane the AAH has the
largest radius (as measured by M), and where it has the
smallest radius. The maximum of M is at the intersection
of curve AAHþ in Fig. 1 with the line t ¼ 13:0; the
minimum of M is at the intersection of curve
AAH� with the same line. Comparison with Fig. 1 shows
that the values of M are indeed all in the expected range.
Figure 3 shows the intersection of the AAH with the
ordinary AH, which, at t ¼ 13:0 is at the mass

M¼defMAH ¼ 3:82860: (6.6)

The coordinates ðx; yÞ are not very intuitive. To better
visualize the AAH let us first use the stereographic projec-
tion (2.7) to transform ðx; yÞ to the ð#;’Þ coordinates, and
then map the AAH into an abstract Euclidean space with
the coordinates ð
; c ; �Þ. The second transformation has
the following form:

-15 -10 -5  0  5  10  15  20  25  30x -6
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 4.2

 4.4
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-20 -15 -10 -5  0  5  10  15  20

M

y

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

-20 -15 -10 -5  0  5  10  15  20

M

x

FIG. 2 (color online). Graph of Mðx; yÞ on the AAH in the space t ¼ 13:0 (compare Fig. 1). More explanation in the text.
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 3.6

 4

 4.4

M

-2
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-1

-0.5

 0

 0.5

 1
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 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

y

x

FIG. 3 (color online). Left: Intersection of the AAH with the ordinary AH (it lies in the plane M ¼ 3:82860) at t ¼ 13:0. Right: The
line of intersection of the AAH with the ordinary AH.
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¼MAAHð#;’Þsin# cos’; c ¼MAAHð#;’Þsin# sin’;

�¼MAAHð#;’Þcos#: (6.7)

We now use these coordinates to present the evolution of
the AAH. As seen from (2.8), when Q;z ¼ 0 the extreme

values of E;z=E with respect to ’ are when ’ ¼ 0
and ’ ¼ �, which, as follows from (6.7), implies c ¼ 0.
Therefore, Fig. 4 presents the intersection of the
AAH with the plane ð
; c ¼ 0; �Þ at six different time
instants.

Note how the lack of spherical symmetry influences the
situation. The ‘‘origin,’’ where R ¼ 0 (
 ¼ 0, � ¼ 0), is
inside the smallest contour in Fig. 4. The AAHþ first
appears off the origin (inside the closed curve in the lower
left part of the figure). As seen, at this instant, most rays
will miss it. Then it increases in diameter and encroaches
on the origin. At the instant corresponding to the lowest
point of AAH� in Fig. 1 (see the purple curve in Fig. 4,
which presents the AAH just moments before this instant,
t ¼ 11:9772), the cross section is still connected, but con-
sists of two tangent rings, one inside the other. The point of
tangency lies at the minimum of AAH�. From that mo-
ment on, the cross section splits into two disjoint contours,
the smaller of which becomes progressively smaller with
increasing t, and shrinks to a point at the instant corre-
sponding to the minimum of the Big Crunch (inside the
smallest ring in Fig. 4).

Figure 4 does not show the cross sections of the ordinary
AH because they would obscure the image. The AH first
appears shortly after t ¼ 10:0 and, at the moment of first
appearance, would show in Fig. 4 as a single circle with the
center at ð
; �Þ ¼ ð0; 0Þ and radius slightly larger than

M ¼ 2. At later instants, the cross section of the AH splits
into two circles, with the centers at the same point. The
smaller circle has its radius decreasing as t increases, and
shrinks to a point at t ¼ T0 þ tB0 ¼ 12:5 (the smaller
contour of the AAH shrinks to a point at the same instant).
The larger circle of the AH keeps increasing, and intersects
the larger contour of the AAH (which is not a circle) at two
points at every instant.
Three-dimensional surface-plots of the AAH and AH at

t ¼ 11:5 and t ¼ 13 are presented in Figs. 5 and 6. At
t ¼ 11:5 the Big Crunch singularity has not yet appeared;
the AAH is still a connected surface and the AH consists of
two disjoint parts—one at MAH ¼ 0:783 and the other at
MAH ¼ 3:199. Both parts are presented in Fig. 5 (the
dotted surfaces), and, as seen, each one has one side inside
the AAH and one side outside it (the solid surface). Each
part of the AH has the shape of a sphere, while at t ¼ 11:5
the AAH has the shape of a ping pong ball depressed on
one side.
At t ¼ 13:0 the singularity already exists at R ¼ 0. Each

of AH and AAH consists only of a single surface, which
surrounds the singularity. As before, part of the AAH is
outside the AH, while the other part is located inside the
AH.
Between t ¼ 11:5 and t ¼ 13:0 there is a period when

each of AH and AAH is split into two disjoint parts. We do
not provide an illustration for this configuration because it
would be unreadable. One can imagine it as the object from
Fig. 6 that contains a small-scale copy of itself inside. The
small object inside does not intersect with the large one.
Figures 4–6 demonstrate that the AH and AAH do not in

fact reveal the whole truth about the future fate of the light

-4

-2

 0

 2

 4

-4 -2  0  2  4

ζ

ξ

t=13.0
t=12.3

t=11.9772
t=11.5
t=10.0

t=4.0

FIG. 4 (color online). The AAH at six different time instants (shown in Fig. 1 as horizontal lines). The curves shown are located on
the plane ð
; c ¼ 0; �Þ. This figure can be imagined as a view of Fig. 1 by an observer sitting high on the t-axis and looking down; with
one spatial dimension added. The value of MAAH at a point ð
0; �0Þ is the distance between ð
0; �0Þ and the origin R ¼ 0, which is
inside the smallest contour in the upper right area at ð
; �Þ ¼ ð0; 0Þ.
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rays. There exists a region between theM ¼ 0 axis and the
AAH� in Fig. 1, in which future-directed rays are only
formally not yet in the black hole because they are able to
proceed outwards. However, they can do so only for a short
while. They have no way to avoid intersecting the AAH
and the AH in near future, and so they are doomed to hit the
Big Crunch.

B. Timelike curves

Equation (4.4) for timelike trajectories is

ðR;z �RE;z =EÞ2
1þ 2E

�

dz

dt

�

2

¼
�

1�
�

ds

dt

�

2
�

� R2

E2

��

dx

dt

�

2 þ
�

dy

dt

�

2
�

: (6.8)

-4

-2

 0

 2

 4

-4 -2  0  2  4

ζ

ξ

FIG. 6 (color online). The analogue of Fig. 5 at the later instant t ¼ 13:0, when the singularity already exists at R ¼ 0.
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FIG. 5 (color online). Left: TheM-coordinate on the AAH (solid surface) and AH (dotted surface) represented as a function of # and
’ in the space t ¼ 11:5. The value of Mð#;’Þ is the distance of a point on the surface shown from the point ð0; 0; 0Þ, in the direction
specified by ð#;’Þ. The axes in this picture are in an abstract Euclidean space with coordinates ð
; c ; �Þ used only to embed the AAH
[see transformation (6.7)]; the ð
; c Þ do not coincide with the ðx; yÞ of Fig. 2. The ðM;#;’Þ are spherical polar coordinates in this
space. The AH consists of two disjoint spheres—one at MAH ¼ 0:783 and the other at MAH ¼ 3:199. The origin (
 ¼ 0, c ¼ 0,
� ¼ 0) is inside the smaller AAH surface. Right: Intersections of the AAH (solid line), and the inner and outer AH (dotted lines) with
the plane ð
; c ¼ 0; �Þ (analogous to Fig. 4).

APPARENT HORIZONS IN THE QUASISPHERICAL . . . PHYSICAL REVIEW D 85, 124016 (2012)

124016-9



For a trajectory with constant x and y we write

ðR;z �RE;z =EÞ2
1þ 2E

�

dz

dt

�

2 ¼ V 2; (6.9)

where V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðdsdtÞ2
q

< 1. Then (4.8) becomes

R;z

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M=Rþ 2E
p

V

�

þ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M=Rþ 2E
p

V
E;z =E

¼ 0; (6.10)

and (4.11) becomes

�ð�Þ ¼
��

M;z
M

� E;z
E

�

ð1� cos�Þ3=2 þ
�

3

2

E;z
E

�M;z
M

�

sin�ð�� sin�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos�
p � ð�2EÞ3=2

M
tB;z

sin�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos�
p

�

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos�
p þ

ffiffiffiffiffiffiffiffiffiffiffi�2E
p

sin�

V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos�
p

�

�
ffiffiffiffiffiffiffiffiffiffiffi�2E

p

V
sin�ð1� cos�Þ E;z

E
¼ 0: (6.11)

Figure 7 is the analogue of Fig. 1 for a particle moving
with velocity V ¼ 0:9.

VII. WHICH IS THE TRUE
HORIZON—AH OR AAH?

To get insight into this question we recall that a quasi-
spherical Szekeres spacetime can be matched to the
Schwarzschild spacetime across an z ¼ b ¼ constant hy-
persurface; this was first proved by Bonnor [6,7]. We
recapitulate the basic facts about this matching by the
method of Ref. [30].

To verify the matching, the Schwarzschild solution must
first be transformed to the Lemaı̂tre [26]-Novikov [31]
coordinates; see Ref. [18] (Sec. 14.12) for a derivation.
In these coordinates, it has the form

ds2 ¼ dt2 � R;2r
1þ 2EðrÞ dr

2 � R2ðt; rÞðd#2 þ sin2#d’2Þ;
(7.1)

where Rðt; rÞ is determined by the equation

R;2t ¼ 2EðrÞ þ 2m

R
; (7.2)

m being the Schwarzschild mass and EðrÞ being an arbi-
trary function. In this form, the Schwarzschild metric is the
limitM;r ¼ 0 of an L-T model, and the limit of constantM,
P, Q, S of a quasispherical Szekeres solution.
Further, the coordinates used on a sphere of constant

ðt; rÞ in (7.1) must be transformed to those used in (2.1).
Suppose the matching is to be done at r ¼ z ¼ b ¼
constant. Then the transformation is

# ¼ 2 arctan

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½x� PðbÞ�2 þ ½y�QðbÞ�2p

SðbÞ
�

;

’ ¼ arctan

�

y�QðbÞ
x� PðbÞ

�

;

(7.3)

where PðbÞ, QðbÞ and SðbÞ are the values of the ðP;Q; SÞ
from (2.1) at z ¼ b. The transformed metric (7.1) is

ds2 ¼ dt2 � R;2r
1þ 2EðrÞ dr

2 � R2ðt; rÞ
E2
1

ðdx2 þ dy2Þ; (7.4)

where

E 1¼def SðbÞ2

��

x� PðbÞ
SðbÞ

�

2 þ
�

y�QðbÞ
SðbÞ

�

2 þ 1

�

: (7.5)

Now it can be easily verified that the matching condi-
tions between (7.4)–(7.5) and (2.1) are fulfilled at any r ¼
z ¼ b ¼ constant, provided that the EðrÞ of (7.5) and the
EðzÞ of (2.1) have the same value at r ¼ z ¼ b, and that
both Rðt; bÞ are the same function of t. The latter condition
implies

MðbÞ ¼ m; (7.6)

where M is the function from (2.2) and m is the
Schwarzschild mass from (7.2).
To answer the question asked in the title of this section

we need to verify whether the AH is spacelike or other-
wise. For the L-T models, this analysis was done in
Ref. [28] and repeated in Ref. [18], with the result that
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FIG. 7 (color online). Comparison of the AAH of a null ray
(dashed lines) with the AAH of a particle moving with velocity
V ¼ 0:9 (solid lines). The dotted line represents the AH, and the
dashed-dotted line represents the big crunch (BC) singularity. As
in Fig. 1 the inner curve (closer to BC) is AAH� , the outer
curve is the AAHþ .
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the ingoing part of the AH (around M ¼ 0 in Fig. 1)7 can
be any, while the outgoing part can be spacelike and
pointwise null, but never timelike.We use the samemethod
here, adapted to the Szekeres geometry, assuming that (2.5)
and (2.6) hold.

From (4.3) we find R;t dtþ R;z dz ¼ 2M;z dz along the
AH, so

dt

dz

�

�

�

�

�

�

�

�AH
¼ 2M;z �R;z

R;t

�

�

�

�

�

�

�

�AH
: (7.7)

But in the collapse phase R;t ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M=Rþ 2E
p

, and along
AH R ¼ 2M, so

dt

dz

�

�

�

�

�

�

�

�AH
¼ R;z �2M;z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p

�

�

�

�

�

�

�

�R¼2M
: (7.8)

The equation of the AH is independent of ðx; yÞ, so a vector
tangent to the AH has only the t- and r- components. We
consider an intersection of a ðt; rÞ surface with the light
cone at a point of the AH; see Fig. 8. Along a null geodesic
that is tangent to this surface at the vertex of the light cone
(and so has dx=dt ¼ dy=dt ¼ 0) we have from (5.3)

dt

dz

�

�

�

�

�

�

�

�ng=AH
¼ R;z �2ME;z =E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p

�

�

�

�

�

�

�

�ng=AH
: (7.9)

As the lower panel of Fig. 8 shows, the following quantity
indicates whether the AH is spacelike or otherwise

B¼def ðdt=dzÞAH
ðdt=dzÞng=AH ¼ R;z �2M;z

R;z �2ME;z =E

�

�

�

�

�

�

�

�ng=AH

� 1� 2ðM;z �ME;z =EÞ
R;z �2ME;z =E

�

�

�

�

�

�

�

�ng=AH
: (7.10)

Namely

THE AH IS WHEN

Outgoing timelike B > 1

Outgoing null B ¼ 1

Spacelike �1<B< 1

Ingoing null B ¼ �1

Ingoing timelike B <�1

From (2.5) and (2.6) we see that M;z �ME;z =E > 0 and
R;z �2ME;z =E > 0 are always fulfilled, so necessarily
B< 1, i.e., the AH can never be outgoing timelike
or null; its outgoing part is necessarily spacelike.
The other three possibilities listed in the table are
allowed.

As Fig. 1 shows, even if part of the ingoing branch of
the AH is timelike, a null curve crossing the AH outwards
from the inside will be trapped in the funnel formed by
the AAH around R ¼ 0. Whether it later crosses the AAH

or not, it will be forced to hit the Big Crunch within a
finite segment of its affine parameter. Where the AH is
spacelike, a null line that crossed it once cannot cross it
again without being redirected toward the past. This
shows that in its outgoing part the AH acts as a black
hole surface, even in that region where the AAH is inside
it. The conclusion is that the true horizon is the AH rather
than the AAH.
This conclusion is strengthened by the following con-

sideration. If a portion of the Szekeres manifold, of finite
spatial diameter, is matched to the Schwarzschild solution,
then, from (7.6), the AH matches to the Schwarzschild
event horizon. Thus, no signal can escape to infinity if it
was within the Szekeres AH while crossing the outer
surface at z ¼ b. The intersection of the AAH with the
outer surface of the Szekeres ball leaves no trace in the
Schwarzschild geometry. In particular, this happens in that
part of the Szekeres region, where the AAH is earlier than
the AH (e.g. in the left half of Fig. 1).
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FIG. 8. Top: The light cone at a point P on the AH and its
intersection with the plane tangent to the ðt; rÞ surface at P. The
intersection determines a null direction ND—the thick line.
The arrow in the plane marks a hypothetical direction tangent
to the AH. Bottom: The plane from the upper panel. The figure
shows also the past light cone of P (ND2) and three hypothetical
directions of the vector tangent to the AH at P. In the position
AH1, the AH would be outgoing timelike, in AH2—spacelike
(the position marked in the top panel), and with AH3—ingoing
timelike. If the direction of AH coincides with ND or ND2, then
the AH is null at P. The quantity B defined in (7.10) identifies the
various possibilities.

7‘‘Ingoing’’ (‘‘outgoing’’) mean, respectively, ‘‘R decreases
(increases) as we proceed along the AH toward increasing t’’.
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The above considerations are illustrated in Fig. 9, which
shows a family of the nearly radial nongeodesic null lines
(NRNL) for the model discussed in Sec. VIA. It is similar to
Fig. 1, but for clarity we only show one part of it, where the
AH is below the AAH. Calculations8 showed that, depend-
ing on the direction and the value of M, both the AAH and
AH can be spacelike or ingoing timelike. Figure 9 shows the
behavior in the direction of maximal contribution from
E;z=E. In this direction the AAH� is everywhere spacelike,

while the AH is ingoing timelike forM< 1:048 (the vertical
line in Fig. 9) and spacelike for M> 1:048. In other direc-
tions parts of the AAH can be timelike. The location of the
border between the ingoing timelike and spacelike parts of
the AH is direction-dependent, as follows from (7.10). (This
is so because the slope of the null cone generator is
direction-dependent, as seen from (7.9)). In neither case
can the AAH or the AH be outgoing timelike. Thus, even
if in some regions radial null rays can propagate toward
increasing R, they cannot escape from inside the AH and
eventually they cross the AAH.

VIII. SUMMARY

In order to gain a deeper insight into the quasispherical
Szekeres geometries we have investigated the spatial rela-
tion between the apparent horizon (AH) as defined by
Szekeres [2] and the absolute apparent horizon (AAH).
The concept of the AAH was first introduced by Hellaby
and Krasiński [15], but under the name of AH. In Ref. [15],
this spatial relation was investigated at a general level, at
which it was not possible to give graphical examples. Such
graphical examples are given here in the simple subcase of

the Szekeres model defined by (6.1), (6.2), and (6.5). The
examples illustrate what was said in Ref. [15], that the
AAH ‘‘is a kind of oval with half inside R ¼ 2M and half
outside.’’ The shape of this ‘‘kind of oval’’ is shown here in
Figs. 5 and 6.
An observer who would fall into the region between the

surfaces of AAH and AH (top part of Fig. 6 between the
solid surface and dotted surface) for a short while would
have a chance to send a message some distance outwards
(i.e., on a path with increasing R). This is because in a
general Szekeres model the hypersurface at which the light
rays begin to converge (the AH) does not coincide with
the hypersurface at which all rays are forced to proceed
toward decreasing areal radius R (the AAH). However, the
signal cannot proceed far enough to escape the AH.
Moreover, if the Szekeres spacetime is matched to the
Schwarzschild spacetime, the AH finds its prolongation
in the Schwarzschild event horizon. Consequently, it is
the AH that acts as a true horizon.
Whether the concept of AAH can be usefully applied to

astrophysical considerations about galactic black holes
remains to be seen. For this purpose, the current position
of the AH in space, inside the galaxy chosen for observa-
tion, would have to be precisely determined, which seems
to be a rather remote possibility.
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APPENDIX A: THE PROOF THAT THE SOLUTION
OF (4.11) IS UNIQUE

We prove here that (4.11) is fulfilled by only one value of
� 2 ð�; 2�Þ for each set of values of ðz; x; yÞ.
We begin by recalling the following:
(1) Equation (4.11) that determines �ðz; x; yÞ on the

AAH is derived from (4.7), and so all quantities in
it are calculated along the nearly radial nongeodesic
null line (NRNL) that obeys (4.4) with x and y being
constant, i.e.,

ðR;z �RE;z =EÞ2
1þ 2E

�

dz

dt

�

2 ¼ 1: (A1)

(2) Note, from (2.3), that

@t

@�
¼ M

ð�2EÞ3=2 ð1� cos�Þ> 0 for � 2 ð0; 2�Þ;
(A2)

at every fixed ðz; x; yÞ, so tð�Þ is a monotonic func-
tion in this range, i.e. ð�i < �jÞ ) ðtð�iÞ< tð�jÞÞ
for every fixed ðz; x; yÞ.
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FIG. 9 (color online). A family of the nearly radial null rays
defined by (4.5) (thin solid lines). The solid thick line represents
the AAH�, the dashed thick line represents the AH, and the
dashed-dotted line represents the big crunch (BC) singularity. To
the right of the dashed vertical line (M ¼ 1:048) the AH is
spacelike, to the left it is ingoing timelike.

8At each point of intersection of the NRNL with the AH and
with the AAH we numerically calculated and compared their
slopes.
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Now suppose that (4.11) has more than one solution for
� at a given ðz; x; yÞ, and call the solutions ð�1; . . . ; �kÞ,
with �1 < . . .<�k. Then (A2) implies that there would be
k instants t1 < . . .< tk, at which the given NRNL would
intersect the AAH, all the ti, i ¼ 1; . . . ; k corresponding to
the same ðz; x; yÞ in (4.11). Our supposition thus implies
that the inverse function to tðz; x; yÞ has the property
zðt1; x; yÞ ¼ zðt2; x; yÞ. Since this function is continuous
(even differentiable, see (A1)), this means that for some
�t 2 ðt1; t2Þ we have dz=dtjt¼�t ¼ 0. But from (A1) we have

dz

dt
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p

R;z �RE;z =E
: (A3)

This can be zero only where E ¼ �1=2. This set is a neck
[18]—an analogue of the Kruskal-Szekeres wormhole in
the Schwarzschild solution. i.e., a special location in space-
time that may or may not exist, depending on whether E
attains the value �1=2 anywhere.

Thus, for every NRNL obeying (A1) that does not
traverse a neck, dz=dt � 0 everywhere along it. This
means that zðt1; x; yÞ ¼ zðt2; x; yÞ cannot happen, i.e., that
(4.11) has only one solution for � at each given ðz; x; yÞ.h

APPENDIX B: THE LIMIT OFAAH AT THE
CENTER M ¼ 0

For the numerical calculation we need to know the
value of the function tðMÞAAH in (4.12) at M ¼ 0. This
has to be calculated exactly because numerical programs

are unreliable in calculating limits. From (6.1) and (6.3)
we have

lim
M!0

tBðMÞ ¼ tB0; lim
M!0

M

ð�2EÞ3=2 ¼
T0

2�
; (B1)

so

lim
M!0

tðMÞAAH ¼ tB0 þ T0

2�
lim
M!0

ð�� sin�Þ: (B2)

In order to calculate limM!0� we use (4.11). Equation
(4.15) shows that sin�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos�
p

is finite in the full
range � 2 ½0; 2��. We take M as the z-coordinate and
observe from (2.1) that with ðP;Q; SÞ given by (6.5),
E;M =E will be finite at M ¼ 0. Then, substituting (6.1)
and (6.3) in (4.11) we get

lim
M!0

�ð�Þ ¼ lim
M!0

ð1� cos�Þ2
3M

¼ 0 (B3)

(because �ð�Þ ¼ 0 all along the AAH). This is possible
only when limM!0 cos� ¼ 1, which, in the collapse
phase, means

lim
M!0

� ¼ 2�: (B4)

Using this in (B2) we obtain

lim
M!0

tðMÞAAH ¼ tB0 þ T0 ¼ lim
M!0

tCðMÞ; (B.5)

i.e., the AAH at M ¼ 0 coincides with the Big Crunch.
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