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Dpto. de Fı́sica Teórica, Universidad del Paı́s Vasco, UPV/EHU Apdo. 644, E-48080, Bilbao, Spain
(Received 29 March 2012; published 4 June 2012)

I present a solution to the full Einstein-fluid equations representing a self-gravitating Bjorken flow. The

motion and the geometry become inhomogeneous in the plane transversal to the flow and the energy

density profile acquires, due to gravity, corrections in terms of proper time as compared to the original

test hydrodynamics. The transverse distribution of energy density, for example, becomes �ð�; rÞ=�ð�; 0Þ ¼
cosh�4ð3arÞ.
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Bjorken flow [1] represents the most fascinating appli-
cation of relativistic hydrodynamics to an extremely com-
plex physical system describing an average motion of
partons resulting in a collision of heavy ions. The applica-
tion of hydrodynamics to similar problems was pioneered
by Landau [2] to describe the high-energy multiparticle
collisions. Both in Bjorken and Landau descriptions it is
assumed that after the collision of heavy ions the mean free
path of the constituencies is short enough, so that the
hydrodynamical description is meaningful. The difference
between the two pictures is in the symmetry assumptions.
In Bjorken hydrodynamics, one assumes the so-called
boost invariance, so that the energy density only depends
on proper time �, while in the Landau picture, no such
symmetry restriction is made and the density may be a
function of all spatial coordinates. Needless to say, Bjorken
flow is a particular and simpler version of Landau hydro-
dynamics; nevertheless, it is surprising that it works so well
[3]. A different and renewed motivation in these studies
comes from their relation to the AdS-CFT correspondence
conjecture [4–6], because they serve as an input to under-
stand the highly nontrivial behavior of quantum chromo-
dynamics in a strong coupling regime.

The symmetries one imposes on the Bjorken flow are as
follows: the boost symmetry along the beam, and transla-
tional and rotational invariance in the transverse plane.
These symmetries allow one to parametrize the ‘‘future
wedge’’ of the Minkowski spacetime in the following way:

ds2 ¼ �d�2 þ �2d�2 þ d�2 þ �2d�2: (1)

Here � is the proper time and � is historically called the
rapidity; the rest are the usual cylindrical coordinates.

For further purposes I will write the metric in the follow-
ing form:

ds2 ¼ �d�2 þ d�2 þ ��ð�=�d�2 þ �=�d�2Þ: (2)

The spacelike Killing fields @
@� and @

@� are the rotational

and the boost Killing vectors, respectively, and the form
of the line element (2) gives one an idea as to how to
proceed in order to generalize this setup to a general
relativistic flow.

Now, if one introduces an ideal fluid with the linear
equation of state p ¼ 1=3� with the energy density and
the pressure such that these only depend on the proper time
�, in other words, the fluid velocity has no tilt, it is quite
easy to solve the hydrodynamical equations and to obtain

that the fluid density scales as / ��4=3. This is quite close
to the experimental picture, grosso modo, within the range
where the hydrodynamics makes sense.
On the other hand, the above picture is quite idealized,

of course; some amount of viscosity should be added and
some symmetries relaxed [7]. Nevertheless, it is quite
surprising that the picture works so well.
While the Bjorken hydrodynamics deals exclusively

with the flow on a given fixed flat background geometry
(test hydrodynamics), and given that even slight relaxa-
tions of symmetry would lead to quite complicated non-
linear hydrodynamical equations, even the so-called
Khalatnikov solution [8] of a 1þ 1 dimensional flow is
quite a mess [9], it is yet another pleasant surprise that one
may integrate an exact general relativistic solution which
describes self-gravitating Bjorken flow. The main purpose
of this paper is to present such a solution and to compare
it to the original Bjorken test hydrodynamics. As a by-
product, I will also obtain solutions to the test hydrody-
namics, without a tilt, on a class of cylindrical geometries.
I will stick as closely as possible to the original Bjorken

picture and will assume that the fluid velocity has no tilt
[see, however, a comment after Eq. (6)]. Nevertheless,
since one must solve the coupled Einstein-fluid equations
self-consistently, one cannot expect that the geometry
would share all the above-mentioned symmetries. This is
the essence of the Einstein theory; the matter influences the
geometry which in turn changes its motion. We may keep
the boost and the rotational Killing vectors intact; however,
there is no reason why the line element should not depend
on both � and � coordinates. In fact, the form of the line
element (2) indeed suggests the dependence on �. I will
therefore assume the following geometry:

ds2 ¼ fð�dt2 þ dr2Þ þ gðqd�2 þ q�1d�2Þ: (3)

Here f, g, and q are functions of both t and r, the
‘‘conformal’’ coordinates which are labeled differently to
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distinguish them from the proper time and the proper
distance coordinates. Obviously, for the original Bjorken
flow these functions are f ¼ 1, g ¼ tr, and q ¼ t=r.
Equation (3) seems a natural generalization of Bjorken
geometry, while the attempts to use the homogeneous
Kasner, or flat Friedmann Robertson Walker line element,
as some authors do, fail to address the inherent symmetries
of the problem.

I now specify the matter. The perfect fluid is assumed to
have a linear equation of state, and because the fluid flow is
irrotational, which is a must in this geometry, one may
introduce the following velocity potential � [10,11]:

u� ¼ ��=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����

�
p

: (4)

As will be seen later, the velocity potential is an ex-
tremely useful tool to solve the hydrodynamics.

Having done so, one may further define the kinetic scalar
(‘‘enthalpy’’) X ¼ �1=2���

�. The pressure and the en-
ergy density can then be expressed as follows [12]:

p ¼ pðXÞ; � ¼ 2Xp0 � p: (5)

Here the prime, as usual, stands for the derivative of the
function with respect to its argument.

If the equation of state is linear, p ¼ w�, one may
further write [11,12]

pðXÞ ¼ Xðwþ1Þ=2w: (6)

We now assume that we have chosen our coordinates
comoving with the fluid flow as in the original setting so
that the velocity has only a zero component u0. This means,
in terms of the velocity potential, that � is a function of t
alone. In fact, if one even allowed a tilt, so that the velocity
would ‘‘catch’’ a component in the transversal direction
( @�@r � 0), as, for example, in [7], there would still be a way

to introduce a new coordinate system comoving with the
fluid and maintain the form of the metric [13]. This would
not necessarily be true for the test hydrodynamics, and it
may also spoil the separability of the metric functions
which I will assume in the future.

The full Einstein equations for the line element (3) with
the fluid specified above are found in [11]. It is instructive,
however, to display the dynamical equation for the velocity
potential r�ðp0��Þ ¼ 0 [12]. This reads

1

v2
s

€�þ
�
_g=g� 1

2

�
1

v2
s

� 1

�
_f=f

�
_� ¼ 0; (7)

where the velocity of sound vs is given by

v2
s ¼ p0ðXÞ

2Xp00ðXÞ þ p0ðXÞ ; (8)

and can be easily obtained from the relations (5) and the

expression v2
s ¼ @p

@� .

Note that the transversal degree of freedom of the metric
q plays no explicit role in the dynamics of the fluid, but it

does influence the flow via the full Einstein equations
contributing to the longitudinal expansion f. However,
both the longitudinal expansion f and the function g,
which is proportional to the area of the isometry group
orbits, do appear in the equation. These functions (p, g,
and f) are determined by the Einstein equations.
Using the linear equation of state (6), so that v2

s ¼ w,
and assuming that all the functions of the metric are
separable, f ¼ fTfR, g ¼ gTgR, and so on, one may easily
integrate the dynamical equation (7) to get

_� ¼ b
fð1�wÞ=2
T

gwT
; (9)

where the lower index T indicates the time dependent part
of the respective function and b is an arbitrary integration
constant. The solution (9) represents, therefore, Bjorken
flow on a generalized geometry given by the line element
(3). Hence, given the background geometry (3) with sepa-
rable functions, the velocity potential is given by the
solution (9), and therefore all the kinematical fluid varia-
bles may be easily evaluated. For the Bjorken geometry

and w ¼ 1=3 we get � / t2=3, which leaves us with

� / t�4=3, and t is a proper time coordinate in this case.
For the spatially flat Friedmann Robertson Walker geome-
try sourced by the same fluid (radiation) f / g / t2, we get
� / t, X / t�2, and � / t�4, which becomes � / ��2 in
terms of proper time. One may play around with Eq. (7)
further, but I will leave this for future work.
Equation (7), though important, is only part of the full

Einstein equations, and it describes a test hydrodynamics
on a given geometry. If one solves the rest of the equations
with the following initial and boundary conditions compat-
ible with the Bjorken geometry, g ! tr as t and r ! 0, and
t ! 0 as � ! 0, one can integrate the following solution to
the Einstein equations:

f ¼ sinh4ðatÞcosh2ð3arÞ;
g ¼ sinhðatÞ sinhð3arÞcosh�2=3ð3arÞ;
q ¼ sinh3ðatÞ sinhð3arÞ:

(10)

The velocity potential for this solution is given by

� ¼ ð15a2Þ1=4 coshðatÞ; (11)

while the energy density becomes

� ¼ 15a2sinh�4ðatÞcosh�4ð3arÞ: (12)

Here a is a free parameter specifying the density. In fact,
this solution was derived some years ago by the present
author and J. Senovilla [14] in the context of inhomoge-
neous cosmology, but it did not occur to us then that the
solution describes the inhomogeneous self-gravitating
Bjorken flow. Indeed, since the coordinate t is not the

proper time, we find that the coordinate time t / �1=3,
and therefore the energy density scales as

ALEXANDER FEINSTEIN PHYSICAL REVIEW D 85, 124006 (2012)

124006-2



� / ��4=3; (13)

to the lowest order in proper time. However, some correc-
tions are due. Because we have chosen our coordinates in a
way that r remains constant along the fluid lines, the proper
time is given by the following expression:

� ¼
Z t

0

ffiffiffi
f

p
dt ¼ 1

3a
ðatÞ3 þ 1

15a
ðatÞ5 þOððatÞ7Þ: (14)

The energy density � then evolves as (just the first two
terms)

� / �ðaÞ��4=3 � 	ðaÞ��2=3: (15)

Here � and 	 are both positive functions of the parameter
a. I have assumed a constant r and have used the lowest
order of the proper time expansion. Of course, having at
hand the exact solution, there is no need for the series
expansions; nevertheless, these are instructive in order to
further elucidate the physics. As one can easily see from
Eq. (15), the second term becomes dominant at late times,
where the energy density appears to become negative. This
is an artifact of the series expansions, as the exact energy
density never becomes negative. On the other hand, while
the first term scales as the energy density of the ideal fluid,
the second term acts as if it were viscosity by enhancing the
falloff of the evolving density. Of course, the fluid remains
inviscid, and this effect is purely due to self-gravity.
Assuming Stefan-Boltzmann’s law (�� T4) one can easily
find the temperature distribution and then define the tem-
perature contrast 
T as


T ¼ T � TB

TB

; (16)

where T is the temperature found from the exact solution,
while TB represents the temperature of the test flow. This

temperature contrast evolves as 
T ���1=3. Another in-
teresting physical quantity is the distribution of energy
density in the transverse coordinate,

�ð�; rÞ=�ð�; 0Þ ¼ cosh�4ð3arÞ; (17)

which is given by a neat, simple expression in terms of
conformal distance r. It is assumed that this quantity is
proportional to the distribution of the nucleus in the fire-
ball; the actual numbers, of course, would depend on the
colliding constituencies.
In closing, I have presented an exact solution to the

Einstein-fluid equations which describes self-gravitating
Bjorken flow. The gravity changes the energy density
distribution and its evolution in proper time. From the
exact expressions one may easily find all relevant kine-
matical and thermodynamical quantities. As a by-product,
I have obtained some test hydrodynamical solutions on the
expanding cylindrical geometry. It would be interesting in
the future to study in more detail the test hydrodynamics
with nonlinear equations of state, as well as to consider the
solution (10) as an input to study the ADS/CFT correspon-
dence in situations where the geometry is both inhomoge-
neous and evolving in time.
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