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Wepoint out the existing confusion about the slowroll parameters and conditions formultifield inflation. If

one requires the fields to roll down the gradient flow, we find that only articles adopting the Hubble slowroll

expansion are on the right track, and a correct condition can be found in a recent bookbyLiddle andLyth [The

Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure (Cambridge University

Press, Cambridge, England, 2009)]. We further analyze this condition and show that the gradient flow

requirement is stronger than just asking for a slowly changing, quasi-de Sitter solution. Therefore, it is

possible to have amultifield slowroll model that does not follow the gradient flow.Consequently, it no longer

requires the gradient to be small. It even bypasses the first slowroll condition and some related no-go

theorems from string theory. We provide the ‘‘spiral inflation’’ as a generic blueprint of such an inflation

model and show that it relies on amonodromy locus, a common structure in string theory effective potentials.

DOI: 10.1103/PhysRevD.85.123532 PACS numbers: 98.80.Cq

I. INTRODUCTION

Multifield inflation models have received much attention
recently, motivated by both top-down and bottom-up
concerns. Many people suggested that slowroll inflation
can happen in an environment where more than one field is
dynamically important, based on UV considerations like
supersymmetry [1] and some specific string theory derived
models [2–5]. The multifield dynamics can provide a rich
variety of potential observational signatures like the iso-
curvature modes [6] and non-Gaussianities [7,8].

It is somewhat surprising that a fundamental question,
which some might consider to be a prerequisite to these
developments, still has nonuniform answers. Basically,
‘‘What are the conditions for multifield slowroll inflation?’’
By analogy to the single field slowroll models, one might
want to take the ‘‘slowroll condition’’ as a property of a
given point in the multidimensional field space. Such a
condition should be both necessary and sufficient to support
a self-consistent slowroll solution that follows the gradient
flow. This is, therefore, an expansion of the potential at this
point, and the nth order will be related to the nth derivative
of V. It is often truncated at n ¼ 2 as we will do in this
paper; this provides us with what are commonly known as
the first and second slowroll conditions.

Pioneers in multifield string inflation [3,4] have at-
tempted similar goals. As far as we can tell, the conditions
derived or used in those papers do not agreewith each other,
and we can show that neither of them meets our explicit
criterion of sufficient and necessary conditions. Neither is
the condition one can find in the classic paper by Sasaki and
Stewart [6] meant to be necessary. In Sec. II wewill start by
analyzing these earlier works and eventually derive the
correct condition. Our first milestone is equivalent to an
equation given in a recent book by Lyth and Liddle [9].

It is worth noting that parallel to this method of expand-
ing the potential, slowroll conditions can be studied by
another well-known method—the Hubble slowroll expan-
sion [10]. Instead of expanding V, the Hubble constant
H is expanded as a function of �. The potential expansion
is useful to high energy physicists who study effective
potentials of complicated UV theories. The Hubble slow-
roll expansion is useful to astrophysicists, since it is more
naturally related to the observables; it is thus also known as
the ‘‘phenomenological expansion.’’
The equation in Ref. [9] is kind of a hybrid, in that it

contains explicitly bothH andV as functions of time or of the
fields. In this paper we try to exploit the advantages
of both methods more thoroughly. We first follow the poten-
tial expansion to the end so that our condition only involves
V. Then at each order we note the corresponding ‘‘phenome-
nological meaning.’’ This allows us to easily recognize the
correct slowroll parameters according to how they enter
observables. It then becomes obvious that in the multifield
context, following the gradient flow is a stronger condition
than just requiring a quasi-de Sitter solution.
This discovery implies the possibility of having non-

standard slowroll inflation. The Hubble constant H is
slowly changing, but the fields do not follow the gradient
flow. This possibility was already pointed out in Ref. [11]
but did not receive a lot of attention. In Sec. III we will
push the idea further by writing down an explicit potential
for it. Since the fields no longer follow the gradient flow,
these types of models eliminate the need for a small rV,
which was thought to be an obstacle of string inflation
[12,13]. This requires a special point to be surrounded by a
radially attractive potential which is multivalued in the
angular direction. The radial gradient provides the cen-
tripetal force, and the angular gradient balances the Hubble
friction. This combination allows the fields to spiral rapidly
yet descend slowly. The multivalue property is met by the
abundant monodromy loci in the string theory moduli*isheng.yang@gmail.com
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space [14], and a recent calculation of the effective
potential suggests that some of them are radially attractive
[15–19]. Therefore, it is very likely that such spiral infla-
tion could be realized around those monodromy loci [20].

Finally, it is worth mentioning that as a hindsight there is
another important advantage of the Hubble slowroll ex-
pansion that is less appreciated. In the potential expansion,

one often uses 3H _�i ¼ �@iV to relate the field motion and
the potential. So it is awkward in the formalism to describe
something that does not follow the gradient flow. In Hubble

slowroll expansion, _� is related to H by just the Einstein
equations and no approximations are involved. Thus, its
multifield generalization [21,22], in principle, provides the
correct conditions already. An alternative way to reach our
conclusion is to follow that approach, and then, at the
second order, analyze the possible fields trajectories and
shapes of the potential.

II. MULTIFIELD SLOWROLL CONDITIONS

We start by reviewing the well-known slowroll condi-
tions for single field inflation models, as well as their
phenomenological meanings. The inputs are the field equa-
tion of motion,

€�þ 3H _� ¼ �V 0; (2.1)

and the assumption that the potential dominates over the
kinetic energy in the Einstein equation,

3M2
PH

2 ¼ V: (2.2)

The consistency of a slowroll solution requires two
slowroll conditions. We will first assume that the second
derivative in Eq. (2.1) could be ignored, which later turns
out to be the second slowroll condition. Given this assump-
tion, we can derive the first slowroll condition,

� � � _H

H2
¼ 3

_�2=2

V
¼ M2

PV
02

2V2
� 1: (2.3)

Its phenomenological meaning is twofold: the expansion
rate H changes by a small fraction during one Hubble time
H�1, and the potential energy dominates. These points are
directly related by virtue of the Einstein equation.

Now, the consistency of ignoring the second derivative
term implies ��������d

dt

��V0

3H

���������� jV 0j; (2.4)

which leads us to ���������3�
M2

PV
00

3V

��������� 1: (2.5)

Thus it is natural to define

� � M2
PV

00

V
(2.6)

as the second slowroll parameter, and

j�j � 1 (2.7)

as the second slowroll condition. Again, the phenomeno-
logical meaning is

1

�H

d�

dt
¼ 4�� 2�: (2.8)

Namely, the first slowroll parameter changes by a small
fraction during one Hubble time.1

In the case of multiple fields, the only difference is in the
field equation of motion,

€� i þ 3H _�i ¼ �@iV: (2.9)

Here we assume canonically normalized kinetic terms.
Nontrivial field space metrics will promote those partial
derivatives to covariant derivatives. Since the slowroll
conditions are about a particular point in the field space
around which we can always locally canonically normal-
ize, such technicality should not bother us.
The first slowroll condition is about the first derivative of

the potential, @iV. Though it is a vector now, obviously we
only care about its magnitude and there is no room for
confusion,

� � � _H

H2
¼ 3

� _�2
i =2

V

�
¼ M2

Pð@iVÞ2
2V2

� 1: (2.10)

This also retains the same phenomenological implications.
The second slowroll condition is about the second de-

rivative of V that is now a matrix @i@jV. It is not directly

clear which part of this matrix really needs to be small.

A. Conditions from the literature

Here we briefly review a few papers that explicitly used
certain second order conditions to construct and study
multifield slowroll models. The first one is by Sasaki and
Stewart [6]. They required the trace of the square of the
matrix @i@jV to be small,

M2
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@i@jVÞð@j@iVÞ

q
� V: (2.11)

This means the curvature in all directions has to be small,
which is of course sufficient. Clearly, they did not mean for
this to be a necessity, and it is straightforward to demon-
strate why not. Consider a potential Vð�Þ where the single
field slowroll conditions are satisfied at ��. We can pro-
mote it to a two field potential by simply adding an
independent orthogonal direction,

Vð�; c Þ ¼ Vð�Þ þm2

2
c 2: (2.12)

1Note that in the Hubble slowroll expansion the second order
parameter is naturally defined as something proportional to H00,
which happens to be just _�=ðH�Þ. In this paper, we will follow
the potential expansion, so we always define the second order
parameter as the second derivative of the potential.

I-SHENG YANG PHYSICAL REVIEW D 85, 123532 (2012)

123532-2



A large m2 immediately ruins the condition in Eq. (2.11),
but we know that at � ¼ ��, c ¼ 0, slowroll inflation
will occur just as in the single field potential. Therefore,
Eq. (2.11) is a sufficient but not necessary condition.

In a paper connecting string inflation models to astro-
physics [3], it was claimed that

� ¼ min eigenvalue

�
M2

Pð@i@jVÞ
V

�
(2.13)

is the second slowroll parameter, and j�j � 1 is the second
slowroll condition. This condition turns out to be not
necessary or sufficient. We can understand that through
the following example:

Vð�1; �2Þ ¼ V0 �m2
1

2
�2

1 þ
m2

2

2
�2

2: (2.14)

In the neighborhood where V0 dominates, this condition
means that

j�j ¼ M2
Pm

2
1

V0

� 1: (2.15)

For a point along the �2 axis in this region, we have

� ¼ M2
Pm

4
2�

2
2

2V2
0

: (2.16)

However, we know choosing a small �2 would not mean
slowroll even though both conditions are satisfied. Because
it is m2 instead of m1 which controls whether the first
slowroll parameter changes slowly,

1

�H

d�

dt
¼ 4�� 2

M2
Pm

2
2

V0

: (2.17)

Actually, it is more appropriate to take

� ¼ M2
Pm

2
2

V0

(2.18)

here, because this is what enters observables like the
spectral index, not some minimum eigenvalue that is not
along the rolling direction.

In another paper on string inflation [4], the authors
argued that in each vector component of Eq. (2.9), the
second derivative needs to be negligible.

j €�ij � j3H _�ij or j@iVjfor each i: (2.19)

This starting point is fundamentally incorrect since the
components do not have a specific physical meaning unless
we specify a special frame. For example, if we rotate to a
frame where @iV goes along one of the axes, then in
all the orthogonal directions its components are zero

and €�i cannot be negligible. This means, by definition,
Eq. (2.19) can never be satisfied.

B. The strong second slowroll condition

In order to get the correct second slowroll condition, we
recall that fundamentally it should act as a consistency
condition for the approximation

3H _�i � �@iV: (2.20)

We should start from Eq. (2.19), but instead of taking its

components, treat it like a vector equation. €�i being neg-
ligible means its magnitude is negligible,

j €�ij � j@iVj: (2.21)

This directly implies that the change to the vector _�i within
one Hubble time is negligible,

jH�1 €�ij
3j _�ij

� 1: (2.22)

After some algebra, we have

1

3

�
M4

P

ð@iVÞð@i@jVÞð@j@kVÞð@kVÞ
V2ð@iVÞ2

�M4
P

ð@iVÞð@i@jVÞð@jVÞ
V3

þ�2
�
1=2�1: (2.23)

It is useful to introduce the following notations:

V̂ 1 � @iV

j@iVj (2.24)

is the normalized direction of the first derivative (gradient)
vector of V;

V
$

2 �
M2

Pð@i@jVÞ
V

(2.25)

is the unitless second derivative matrix of V. We can
simplify Eq. (2.23) to

1

3
½V̂1 �V

$
2 �V

$
2 � V̂1�2�V̂1 �V

$
2 � V̂1þ�2�1=2�1; (2.26)

which is identical to Eq. (20.9) in Ref. [9]. On top of the
first slowroll parameter, we have two other terms related to

the projection of V
$
2 and ðV$2Þ2 along V̂1.

It is easier to understand these two terms by going to the

eigenbasis of V
$
2. Since it is symmetric, it will have a

diagonal form.

V
$
2 ¼ Diagf�ig; (2.27)

ðV$2Þ2 ¼ Diagf�2
i g: (2.28)

Note that V̂1 ¼ fvig, in general, will not be an eigenvector,
so we should have

V̂ 1 � V
$
2 � V

$
2 � V̂1 ¼

X
v2
i �

2
i ; (2.29)

V̂ 1 � V
$
2 � V̂1 ¼

X
v2
i �i; (2.30)

with
P

v2
i ¼ 1.
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One may imagine two ways to satisfy Eq. (2.26). Either
the first two terms are individually small, or they mostly
cancel each other. However, since � � 1, a cancellation
already implies their smallness. So the sufficient and nec-
essary condition is

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂1 � V

$
2 � V

$
2 � V̂1

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
v2
i �

2
i

s
� 1: (2.31)

We call this the strong second slowroll condition because it
implies that the second term in Eq. (2.26) is also small,

� � V̂1 � V
$
2 � V̂1 ¼

X
v2
i �i � 1: (2.32)

Why do we still care about Eq. (2.32)? Apparently by the
choice of symbol �, we do intend to identify it as the
analog of the second slowroll parameter in the single field
case. The reason for this is that the phenomenological
consequence of a slowly changing first slowroll parameter,

1

�H

d�

dt
¼ 4�� 2V̂1 � V

$
2 � V̂1 ¼ 4�� 2� � 1; (2.33)

is controlled by�. Therefore, it is � instead of � that enters
observables like the spectral index.

It is intriguing that Eq. (2.20) requires Eq. (2.31), which
is stronger than the requirement of Eq. (2.33). This means
that with multiple fields, demanding the fields to slowly
follow the gradient flow is not the only way to get a slowly
changing quasi-de Sitter solution. This possibility was also
noticed in Ref. [11].

III. SPIRAL INFLATION

In order to develop a slowroll model in which Eq. (2.20)
does not hold, it is not wise to think about conditions
for the potential V. Such a goal always requires the use
of Eq. (2.20) to simplify many equations. A parallel tech-
nique, Hubble slowroll expansion [22], is more appropri-
ate. Here we will again stop at the second order, which is
already very informative, so we can just simplify Eq. (2.33)
with the full equation of motion, Eq. (2.9), instead
of Eq. (2.20),

1

H�

d�

dt
� 2�þ 2

_�i
€�i

H _�2
i

: (3.1)

Now it is obvious that instead ofmaking €�i small, we can
satisfy the second slowroll condition by making it almost

orthogonal to _�i. In other words, the _�i vector can turn
rapidly while maintaining a roughly constant magnitude.
Such a situation is familiar to physicists as a stable circular
orbit that is easiest to analyze in the polar coordinate,2

L ¼ 1

2
ð _r2 þ r2 _�2Þ � Vðr; �Þ: (3.2)

Here r is a field with the unit of mass, and � is a unitless
field. The equations of motion are

€rþ 3H _r� r _�2 þ @V

@r
¼ 0; (3.3)

r2 €�þ 2r _r _�þ3Hr2 _�þ @V

@�
¼ 0: (3.4)

A rapid turning slowroll can be realized when both of these
equations are dominated by their last two terms. At zeroth
order we adopt the following approximation:

r ¼ const ¼ R; (3.5)

3HR2 _� ¼ � @V

@�
¼ �c; (3.6)

R _�2 ¼ @V

@r
¼ c2

9H2R3
: (3.7)

These can be satisfied by a simple choice of potential

Vðr; �Þ ¼ V0 þ c�þ c2r�

9�H2R�þ2
: (3.8)

More generally, c can be a function of � and r, as long as it
does not contribute significantly to the radial derivative and
changes slowly enough with �.
An intuitive way to think about this model is the follow-

ing: a radially attractive potential maintains a stable circu-
lar orbit, while a slowly descending angular spiral balances
the Hubble friction.
The first slowroll condition can be derived from its

phenomenological meaning of potential energy domina-
tion,

� ¼ � _H

H2
¼ 3

R2 _�2=2

3M2
PH

2
� 1; (3.9)

which leads us to

c ¼ 3
ffiffiffiffiffiffi
2�

p
MPRH

2 � 3
ffiffiffi
2

p
MPRH

2: (3.10)

The change of � per e-folding is

j��j ¼ jH�1 _�j ¼ ffiffiffiffiffiffi
2�

p MP

R
: (3.11)

If we choose Planckian radius R * MP, then �� � 1 and
it is not turning rapidly enough. This recovers the usual
gradient flow inflation. On the other hand, we can choose

R &
ffiffiffiffiffiffi
2�

p
MP; (3.12)

such that the field rotates a significant fraction of 2� per e-
folding. This is the spiral slowroll we are looking for.
Of course, this implies that the potential is not single

valued after a 2� rotation. This is totally fine and actually
exciting. In string theory, one can get an effective potential
for the moduli fields from Calabi-Yau compactification.

2Similar techniques have been used to study sharp turns, which
the field temporarily leaves the slowroll trajectory [23], or slow
turns that still follow the gradient flow [24]. It was not explicitly
pointed out that one can stay out of the gradient flow yet
maintain slowroll inflation.
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The moduli space always comes with several branch cuts
and multiple layers. The end points of these branch cuts are
monodromy loci, some of which can have attractive po-
tentials when the strong warping correction is included
[15–19].

Note that in this setup, jrVj is dominated by the
radial component that supplies the centripetal force.
Consequently, it does not have to be small and can bypass
the ‘‘first slowroll condition’’ in the usual sense of a small
gradient. In fact, jrVj is bounded from below through the
fast spiraling condition Eq. (3.12),

M2
pjrVj2
2V2

� 4

9
�3: (3.13)

Near a strongly warped conifold, it is possible to have
an attractive potential satisfying the above properties.
However, it remains unknown whether there is a good
chance to sustain a long period of inflation, and we will
try to address that more general problem in Ref. [20].
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