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Gaussian processes provide a method for extracting cosmological information from observations

without assuming a cosmological model. We carry out cosmography—mapping the time evolution of

the cosmic expansion—in a model-independent manner using kinematic variables and a geometric probe

of cosmology. Using the state of the art supernova distance data from the Union2.1 compilation, we

constrain, without any assumptions about dark energy parametrization or matter density, the Hubble

parameter and deceleration parameter as a function of redshift. Extraction of these relations is tested

successfully against models with features on various coherence scales, subject to certain statistical

cautions.
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I. INTRODUCTION

Cosmic acceleration is a fundamental mystery of great
interest and importance to understanding cosmology,
gravitation, and high energy physics. The cosmic expan-
sion rate is slowed down by gravitationally attractive mat-
ter and sped up by some other, unknown contribution to the
dynamical equations. While great effort is being put into
identifying the source of this extra dark energy contribu-
tion, the overall expansion behavior also holds important
clues to origin, evolution, and present state of our Universe.

Indeed, by studying the expansion as a whole one side-
steps the issue of exactly how to divide the gravitationally
attractive (e.g. the imperfectly known matter density) and
the accelerating contributions, and whether they are inde-
pendent or have some interaction (see, e.g., [1–3]). By
concentrating on the kinematic variables—the expansion
properties as a function of redshift z or scale factor
a ¼ 1=ð1þ zÞ—one does not need to know the internal
structure of the field equations, i.e. the dynamics. The
clarity and focus on kinematics trades off against the loss
of information on the specific dynamics.

Another gain comes from using geometric
measurements—cosmic-distancevariables that do not depend
on the particular forces and mass densities. The sensitivity of
Type Ia supernova measurements of the distance-redshift
relation to the deceleration parameter was used to discover
the accelerated expansion [4,5]. Other probes such as gravi-
tational lensing, galaxy-clustering statistics, cluster-mass
abundances, etc. provide valuable information but are depen-
dent on nonkinematic variables. Some techniques, such as
distances from baryon acoustic oscillations and Sunyaev-
Zel’dovich effects in clusters, are on the fence, nominally
geometric but having implicit dependence on the gravitational
interaction of matter and so the force law dynamics.

Given distance and redshift measurements, the cosmic
expansion rate is related by a derivative of the data, and the

deceleration parameter by a further derivative. This is
problematic for data with real world noise, as the differen-
tiation further amplifies the noise. Various smoothing pro-
cedures have been suggested, see e.g. [6], but tend to
induce bias in the function reconstruction due to para-
metric restriction of the behavior or to have poor error
control. Using a general orthonormal basis or principal
component analysis is another approach, to describe the
distance-redshift relation (see e.g. [7]) or the deceleration
parameter [8], or using a correlated prior for smoothness on
the dark energy equation of state [9], but in practice a finite
(and small) number of modes is significant beyond the
prior, essentially reducing to a parametric approach.
Gaussian processes [10] offer an interesting possibility
for improving this situation.
Gaussian processes (GP) have been used recently

[11–13] in a dynamical reconstruction, going from a set
of realizations of the equation of state parameterwðzÞ of the
dark energy component forward to comparison of the de-
rived distance relation to the distance data. The comparison
was carried out through a Markov Chain Monte Carlo
(MCMC) assessment of likelihoods. Note that the GP
interpolation does not occur between data points but rather
on an arbitrary grid of some possibly unmeasured quantity.
This approach is intriguing, but relies on separation of the
matter density from the dark energy behavior, i.e. it works
within a dynamical framework.
The approach in this paper takes a fundamentally differ-

ent path. We begin with the observations of supernova
distances and here consider only kinematic quantities.
Modeling the cosmic distance relation as a smooth kine-
matic function drawn from a GP, the value of the function
at any redshift is then predicted directly through testing the
GP model against the data. The cosmic expansion can then
be extracted from the means and covariance matrices of the
Gaussian process realizations (weighted by a posterior)
directly for quantities related linearly to the original GP,
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even through derivatives. This allows us to probe the rate
and acceleration of the cosmic expansion in a highlymodel-
independent manner (at the price of focusing on only this
type of information). One can view this as a top-down
approach, complementary with the bottom-up approach of
starting with theoretical quantities and working toward the
data, and then applying a likelihood comparison.

In Sec. II we lay out the basics of the kinematic cos-
mology quantities and the Gaussian process formalism.
Readers familiar with the method or eager for results could
go to Sec. III where we analyze the results of performing
the GP reconstruction, for both current and simulated data.
We summarize the cosmological implications and discuss
the prospects in Sec. IV. Appendices present details of tests
of the robustness of the statistical techniques.

II. COSMOGRAPHIC RECONSTRUCTION

A. Expansion history

Homogeneity and isotropy determine the metric of the
Universe to be of the Robertson-Walker form, which
for a spatially flat universe (from a theory or inflationary
prior) is

ds2 ¼ �dt2 þ a2ðtÞ½dr2 þ r2ðd�2 þ sin2�d�2Þ�; (1)

where t is a time coordinate and r the coordinate distance.
The key quantity is the cosmic expansion or scale factor
aðtÞ, or equivalently the redshift z ¼ a�1 � 1.

Without using any field equations, such as the
Friedmann equations (the Einstein equations specialized
to the above metric)—and hence in a purely kinematic
way—we can still define a conformal distance

� �
Z dt

a
¼

Z
dr; (2)

and build a luminosity distance dLðaÞ ¼ a�1�ðaÞ, and an
angular diameter distance daðaÞ ¼ a� if desired.

Flux and redshift measurements of a set of standardized
candles such as Type Ia supernovae deliver observational
access to �ðzÞ. From this function directly comes the
inverse Hubble parameter

H�1ðzÞ �
�
_a

a

��1 ¼ d�

dz
(3)

and the deceleration parameter

qðzÞ ¼ �a €a

_a2
¼ � 1þ z

H�1

dH�1

dz
� 1: (4)

This is a top-down approach, starting with observable
distances and proceeding to cosmological kinematic
quantities.

We follow this top-down approach because of its useful
properties of direct relation to kinematics, avoidance of
reliance on a cosmological model, or knowledge of the
matter density, and well defined and efficient error propa-
gation within the GP method.

An alternative approach with different characteristics is
bottom-up. There, one would either parametrize qðaÞ (or
perhaps a dark energy equation of state, or pressure to
density, ratio wdeðaÞ ¼ ½2qðaÞ � 1�=½3�deðaÞ�, which in-
volves the dimensionless dark energy density �de) or
choose realizations of qðaÞ from a statistical distribution.
Parametrizing qðaÞ allows straightforward error propaga-
tion up to the distances, for comparison to the data; how-
ever, one must ensure that the parametrization does not
restrict or bias the results. Note that choosing a form qðaÞ is
an explicitly dynamical assumption, breaking the kine-
matic nature of the analysis [14]. In terms of the equation
of state, the w0-wa form wdeðaÞ ¼ w0 þ wað1� aÞ is
highly robust, reconstructing dLðaÞ to better than 0.1%
for a wide array of models [15] but does require a separa-
tion into matter density and dark energy behavior.
If one uses statistical realizations of qðzÞ, then the error

propagation necessary, including the covariances between
values i at different redshifts, is

Cov½Hi;Hj� ¼ HiHj

Z zi

0

dz0

1þ z0
Z zj

0

dz00

1þ z00
Cov½qi; qj�;

Cov½di; dj� ¼ ð1þ ziÞð1þ zjÞ

�
Z zi

0

dz0

Hðz0Þ
Z zj

0

dz00

Hðz00ÞCov½Hi;Hj�: (5)

This can be slow numerically, especially in a MCMC
likelihood evaluation.
However, for a GP the relation between the covariance

of a quantity and its derivative (as we use in the top-down
approach) is particularly simple and furthermore one can
avoid functional parametrizations or statistical distribu-
tions of the cosmological variables.

B. Gaussian process modeling

We begin with the assumption that the stochastic data is
described by a Gaussian process that corresponds to the
cosmological function �ðzÞ. The effective supernova mag-
nitudes at peak brightness, m, and their associated covari-
ance are derived from light-curve data (see e.g. [16]). Those

peak magnitudes transformed by ð1þ zÞ10m=5 represent
measurements of the conformal distance with a nuisance

normalization factor, yðzÞ ¼ 10M=5ð10 pcÞ�1�ðzÞwhereM
is the absolute supernova magnitude.
Derivatives of Gaussian processes are themselves

Gaussian processes (with some ignorable pathological ex-
ceptions). This means that the estimator for the Hubble
length H�1ðaÞ is also a GP (this does not hold for nonflat
universes). The deceleration parameter is not a GP because
of its nonlinear relation to H�1 but its mean value and
covariance can be estimated analytically from the two GP
functions, dy=dz and d2y=dz2, that it depends on. That is,

H�1ðaÞ / dy

dz
; (6)
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qðaÞ ¼ �ð1þ zÞ
�
dy

dz

��1 d2y

dz2
� 1: (7)

1. Gaussian process of the kinematic function

The Gaussian processes serve as a regression tool to
infer directly from distance data the kinematic expansion
properties as a function of redshift z. This provides the
covariances between the values at different redshifts as
well, which one would expect a physical function to have.

A Gaussian process is defined as a collection of random
variables, any finite number of which has a joint Gaussian
distribution [10]. AGP fðzÞ is specified by a mean function
mðzÞ and a covariance function or kernel kðz; z0Þ. For a
finite set Z of z’s, values of the function are drawn from a
Normal distribution, f�N ðmðZÞ; KðZ; ZÞÞ where the
matrix element Kij ¼ kðZi; ZjÞ.

The mean function mðzÞ is an initial guess for the
function, in effect ‘‘prewhitening’’ the data to reduce the
dynamic range over which the variations need to be fit.
Without sufficient care the results can in fact be influenced
by the mean function, so, for example, assuming a �CDM
concordance relation is not necessarily a good choice. We
discuss the issues in Appendix A where we compare
several approaches to choosing a mean function and inves-
tigate their influence. In the main text we adopt an iterated
smoothing set for the mean function and verify that the
final results are not influenced by this input.

For the covariance function we use a common form, the
squared exponential [17],

kðz; z0Þ ¼ �2
f exp

�
�jz� z0j2

2l2

�
; (8)

where �f defines the overall amplitude of the correlation

(one can think of this as an offset or tilt of the reconstructed
function from the input mean function), and l gives a
measure of the coherence length of the correlation. These
effects are discussed and illustrated in Appendix B.

Any parameters for the mean function (such as fiducial
�m and w, which we do not use), and �2

f and l, are

hyperparameters in the fit.

2. Gaussian process of the data

In addition to the regression variation represented by the
GP covariance function, in the data there is intrinsic dis-
persion in the distance indicator and (possibly correlated)

measurement noise. The sum of all these gives the GP of
the measured data y, with covariance function

kyðzi; zjÞ ¼ kðzi; zjÞ þ �2
I�ij þ Nð�i;�jÞ; (9)

where �2
I is the intrinsic dispersion and Nð�i;�jÞ is the

measurement noise covariance matrix.
Note that because qðzÞ involves a ratio of distance

derivatives, it is immune to the absolute amplitude of the
distance, i.e. H0 or its combination with the absolute
supernova magnitude M. In using the smoothing method
to generate the mean functions for the GP (see
Appendix A) we fit out the absolute amplitude, making
the kinematics independent of these nuisance parameters.
Fitting for M is a key step that should not be neglected,
and its uncertainties must be propagated into the final
reconstruction uncertainties. Fixing it to a particular value
can also bias the results. The smoothing method has been
shown robust for including M in [18], and a similar
approach has been used in [19] in reconstruction of the
expansion history of the Universe by combining a smooth-
ing method and Crossing Statistic [20,21].

3. Inferring kinematic functions from data

Given data y measured at a set of points Z we want a
faithful reconstruction of the distance �, as well as its
derivatives, at some other set of points Z1. Call the recon-
structed function f. In GP, the joint probability distribution
is given by

y

f

" #
�N

�
mðZÞ
mðZ1Þ

" #
;

KyðZ; ZÞ KðZ; Z1Þ
KðZ1; ZÞ KðZ1; Z1Þ

" #�
: (10)

Here the subscript y is just to clearly indicate the GP of the
input data. The conditional distribution of f given the data
is described by

�f ¼ mðZ1Þ þ KðZ1; ZÞK�1
y ðZ; ZÞy; (11)

Cov ðfÞ¼KðZ1;Z1Þ�KðZ1;ZÞK�1
y ðZ;ZÞKðZ;Z1Þ: (12)

The probability distribution functions (PDFs) of the
reconstructed functions [see Eq. (A1) for details] are inte-
grated over the hyperparameter space, weighted by the
hyperparameter posterior distribution. For each point in
hyperparameter space the PDF of the GP function and its
derivatives (e.g. the distance, Hubble length, and second
derivative entering the deceleration parameter) can be
written analytically:

y

f

f0

f00

2
666664

3
777775�N

0
BBBBB@

mðZÞ
mðZ1Þ
m0ðZ1Þ
m00ðZ1Þ

2
666664

3
777775;

�00ðZ; ZÞ �00ðZ; Z1Þ �01ðZ; Z1Þ �02ðZ; Z1Þ
�00ðZ1; ZÞ �00ðZ1; Z1Þ �01ðZ1; Z1Þ �02ðZ1; Z1Þ
�10ðZ1; ZÞ �10ðZ1; Z1Þ �11ðZ1; Z1Þ �12ðZ1; Z1Þ
�20ðZ1; ZÞ �20ðZ1; Z1Þ �21ðZ1; Z1Þ �22ðZ1; Z1Þ

2
666664

3
777775

1
CCCCCA; (13)

where
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��� ¼ dð�þ�ÞK
dz�i dz

�
j

; (14)

and a prime indicates d=dz.
The inferred mean and covariance of the derivatives are given by

�f

�f0

�f00

2
664

3
775 ¼

mðZ1Þ
m0ðZ1Þ
m00ðZ1Þ

2
664

3
775þ

�00ðZ1; ZÞ
�10ðZ1; ZÞ
�20ðZ1; ZÞ

2
664

3
775��1

00 ðZ; ZÞy; (15)

Cov

0
BBB@

f

f0

f00

2
664

3
775
1
CCCA ¼

�00ðZ1; Z1Þ �01ðZ1; Z1Þ �02ðZ1; Z1Þ
�10ðZ1; Z1Þ �11ðZ1; Z1Þ �12ðZ1; Z1Þ
�20ðZ1; Z1Þ �21ðZ1; Z1Þ �22ðZ1; Z1Þ

2
664

3
775

�
�00ðZ1; ZÞ
�10ðZ1; ZÞ
�20ðZ1; ZÞ

2
664

3
775��1

00 ðZ; ZÞ½�00ðZ; Z1Þ;�01ðZ; Z1Þ;�02ðZ; Z1Þ�: (16)

For qðzÞ, which is not a GP, the mean is given by Eq. (7)
and its variance is

Var ½qðzÞ� ¼ ðqþ 1Þ2
�
Var½y0ðzÞ�
y02ðzÞ þ Var½y00ðzÞ�

y002ðzÞ
� 2

Cov½y0ðzÞ; y00ðzÞ�
y0ðzÞy00ðzÞ

�
: (17)

To integrate over the hyperparameter space (with its
non-Gaussian posterior) we can either perform a
Monte Carlo integration or do grid sampling. Since we
only have two hyperparameters, �2

f and l, we use grid

sampling, equispaced in logarithm with priors of 10�5 �
�2

f � 1 and 10�2 � l � 100:2 ¼ 1:6. The final recon-

structed results are weighted averages from the posterior
based on results from all points in the sampled hyper-
parameter space. See Appendix B for further details.

C. Data and simulations

To test the robustness of the reconstruction we perform
cosmographic fits to simulated data, and then we also
perform fits to actual current data. For current data we
use the Union2.1 supernova compilation, including full
error covariance matrix, consisting of 580 distances from
z ¼ 0:02� 1:4. The simulated data consists of the same
number over the same range, realizing distances using a
random intrinsic dispersion of 6% in distance, for various
input cosmologies.

These different cosmologies are intended both to test
the robustness of the GP reconstruction and to explore
the discriminatory power of the reconstruction. They are
summarized in Table I and all have dimensionless
present matter density �m ¼ 0:27. One is a �CDM
cosmology. Another is a member of the family of mirage
models [22], which match the distance to cosmic micro-

wave background (CMB) last scattering of �CDM,
using the relation for the dark energy equation of state
wa ¼ �3:63ð1þ w0Þ. In the limit that w0 ¼ �1 this
family reduces to �CDM. Note their phantom crossing
of w ¼ �1 can give unusual features in qðzÞ that are
useful for testing the GP reconstruction. The last model
is a rapidly evolving dark energy cosmology with a
sharp transition between a high redshift value of the
dark energy equation of state parameter w ¼ �0:5 and
a low redshift value w ¼ �1. The specific wðzÞ is given
by the ‘‘kink’’ form [23] with the same parameters
used in [12]. This is a much more rapid transition, and
at a lower redshift, than expected in general from dark
energy, and so also poses a challenging test of
reconstruction.

III. EXPANSION HISTORY RESULTS

From many realizations of the GP reconstruction we
reconstruct the kinematic functions �, H�1 ¼ �0, and
qð�0; �00Þ, where prime denotes d=dz, and their PDFs.
We show error bands at every redshift defined such that
68% of the realizations lie within this range. We emphasize
that the error band should be interpreted in a redshift by
redshift sense and the covariances are not visible in such a
plot; that is, the upper part of the band at one redshift may

TABLE I. Input cosmologies used to generate simulated dis-
tance data from which the GP tries to reconstruct the appropriate
kinematic cosmological quantities.

Cosmology Description

�CDM �m ¼ 0:27, w ¼ �1
Mirage �m ¼ 0:27, w0 ¼ �0:7, wa ¼ �1:09
Kink �m ¼ 0:27, w0 ¼ �1, wðz � 0:5Þ ¼ �0:5

ARMAN SHAFIELOO, ALEX G. KIM, AND ERIC V. LINDER PHYSICAL REVIEW D 85, 123530 (2012)

123530-4



be correlated with the lower part of the band at another
redshift.

A. Simulated data

For each of the cosmologies in Table I we plot h�1 /
H�1ðzÞ in Fig. 1 and qðzÞ in Fig. 2. The true relations are
given for each cosmology by the long, short, and medium
dashed curves (the same in all panels of a set). The GP
reconstructions are shown using simulated data based on
each cosmology in turn, with 68% error bands. If the error
bands fail to overlap the true relation, the GP reconstruc-
tion would be inaccurate at 68% confidence level; if the
error bands fail to overlap the alternate cosmologies’ true
relations, GP is successful at distinguishing these models.
(Note that these are conservative criteria since even if an
error band overlaps a true relation this does not necessarily
mean agreement with that cosmology because the redshift
correlations are not visible.)

We see that each input cosmology is faithfully recon-
structed, and each alternate cosmology is properly ex-
cluded (at 68% confidence or greater). These results
demonstrate that GP can be a useful statistical tool for
model-independent kinematic parameter estimation.

Agreement of the error band with the input model is a
necessary but not wholly sufficient condition for accurate
reconstruction. One needs to take into account the correla-
tions between the predictions at each redshift. Rather than
do amodel bymodel, full likelihood computation, we tested
the influence of correlations between redshifts through
model-independent, simple statistics. The first used the
Om function [24] of the Hubble parameter that serves as a
straightforward consistency test of �CDM, and the second
example used the deceleration parameter. Looking at
the distribution of the differences �Omð0:2; 0:9Þ �
Omðz ¼ 0:2Þ �Omðz ¼ 0:9Þ and �qð0:2; 0:9Þ, for ex-
ample, we find agreement with the error band results that
the GP reconstructions accurately reproduce the input cos-
mology values. Since our analysis assumes no dynamics,
we do not have to split components into matter and dark
energy, and so our results would apply to data generated
with different input�m (as we have tested) and even cases
with coupling between them.

B. Current data

We now apply the model-independent constraints from
GP to the expansion history reconstructed from actual
current data. The Union2.1 compilation [25] carried out
a homogeneous, blind, systematics-oriented analysis of
supernova distance data. We use their full data covariance
matrix for the statistical plus systematics uncertainties.
The kinematic reconstruction results are presented in
Figs. 3 and 4.

The �CDM model with �m ¼ 0:27 (now not an input
for the mock data, but a comparison to the fit) is found to be
in strong concordance with the Union2.1 data.

However, we cannot distinguish�CDM from the mirage
family of models, even one with as extreme time variation
as w0 ¼ �0:7, wa ¼ �1:09. Partly this is due to the best
fit from current data lying between the two, roughly
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FIG. 1 (color online). GP reconstructions of the inverse
Hubble parameter h�1ðzÞ / H�1ðzÞ are given for simulated
data based on the three different input cosmologies of Table I.
The dashed curves, the same in all panels, give the true relations.
The error band on each reconstruction represents the 68% con-
fidence level. The reconstruction in each case faithfully agrees
with the input cosmology.
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corresponding to a mirage model with w0 ¼ �0:85, wa ¼
�0:54, and partly due to using the full covariance matrix
with systematics for current data, which gives larger error
bars than the simulated statistical errors used in the pre-
vious plots.

Current data does point unambiguously to current accel-
eration in this model-independent reconstruction, with

q < 0 at low redshift with strong significance. However,
current kinematic data does not indicate when dark energy
fades into the past, i.e. q > 0 is not required at z * 1 from
this data.

IV. CONCLUSIONS

Gaussian processes can be successfully used in a sub-
stantially nonparametric reconstruction of the kinematic
quantities characterizing the cosmic expansion. We simu-
lated several cosmologies and found that GP chose the
correct one each time. GP also has the advantage of simple,
well controlled propagation of errors and covariances to
derivatives (or integrals) of the function, allowing distance
relations to be converted to the Hubble length or second
derivative (which can then be analytically propagated to
the deceleration parameter).
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FIG. 2 (color online). As Fig. 1, but for the deceleration
parameter qðzÞ.
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FIG. 3 (color online). GP reconstruction of the inverse Hubble
parameter h�1ðzÞ / H�1ðzÞ using the Union2.1 data compilation
is given by the shaded error band representing the 68% confi-
dence level.
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FIG. 4 (color online). As Fig. 3, but for the deceleration
parameter qðzÞ.
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Key ingredients entering GP are the mean function and
covariance function, with their hyperparameters. We em-
phasized caution in adopting such functions that might
impose (hidden) restrictions on the reconstruction, e.g.
through the coherence length, possibly leading to results
retaining memory of the starting point. Proper treatment of
hyperparameters through weighted integration over their
space and sufficiently wide priors is essential. The combi-
nation of smoothing based on the data itself, iteration to
remove initial conditions, and a set of mean functions to
enable diversity in GP amplitudes and correlations seems
to deliver robust results based on our tests. Futurework aims
at refining this approach further, in particular, studying the
stability of results for a broad range of input cosmologies.

Our reconstructions of H�1ðzÞ and qðzÞ using current
data are consistent with�CDM, but also with cosmologies
with substantial time variation. In particular, this holds for
the mirage class of models, which preserve the distance to
CMB last scattering and so the addition of CMB data to the
supernova data will not affect this conclusion. Dynamical
probes, such as growth, in combination with the kinematic
distance measurements used can have further leverage, but
mirage models also have substantially similar growth to
�CDM; for example, our extreme mirage model agrees in
growth as a function of redshift to within 1.5% with
�CDM with the same matter density.

While mirage models crossw ¼ �1, no conclusions can
be drawn from the data regarding the necessity for such
crossing to occur. Furthermore, until future data accuracy
constrains the time variation of the equation of state to
below wa & 0:5 (the current best fit mirage value), cross-
ing cannot be said to be tested significantly.

Current distance data has insufficient leverage on the
higher order kinematic quantities, such as the deceleration
parameter qðzÞ. It does definitely show, by this substan-
tially nonparametric approach, that cosmic acceleration is
occurring at low redshift. The transition from acceleration
to deceleration, however, could have happened at any
redshift z * 0:7, or even not at all, according to this current
data. Future kinematic data extending to redshifts z * 1
are necessary to resolve all the issues of substantial time
variation, phantom crossing, and the onset of acceleration.
Future applications of GP include projection of such con-
straints from future surveys, possibly allowing for spatial
curvature, and tests of modified gravity, say, through
growth vs expansion.
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APPENDIX A: GP MEAN FUNCTION

The GP formalism gives a clear formulation for deriva-
tion of the kinematic functions and their derivatives using
the data; however, there are some practical technical details
that require care. One of the important issues is the initial
guess for the mean function. The final results turn out not to
be independent of this for an arbitrary choice, but can in
fact retain some memory of the initial choice, biasing the
results.
One reason for this is because of the multiscale nature

of the data for an arbitrary cosmology. With two square-
exponential-kernel hyperparameters, one for coherence
length and one for the amplitude of deviations from the
mean function, there exists limited freedom for the GP to
track the deviations of the data from the input mean
function redshift by redshift. One solution is to use more
hyperparameters for the GP covariance function but this
leads to a greater computational burden and the possibility
of fitting the noise in the data rather than the cosmological
signal.
The residuals of the data around different mean func-

tions can be quite different. Certainly there is little expec-
tation that any of these residuals are perfectly described by
a Gaussian process with a particular kernel. It is therefore
not unexpected for model predictions from different mean
functions to be statistically inconsistent.
To give another view on this, consider the GP likelihood

probability in more detail. It contains three parts: the usual
	2, the determinant of the GP likelihood function penaliz-
ing overcomplexity, and a constant contribution involving
the number of data points [10],

2 lnpðyjfÞ ¼ �yT�00ðZ; ZÞ�1y� ln det�00ðZ; ZÞ
� n lnð2
Þ; (A1)

GP tries to find the best combination of first and second
parts to get the highest likelihood. That is, it tries to make f
as close as possible to the data y by making minimum
changes to the given mean function to get a reasonable 	2

and at the same time tries to keep the results smooth
enough to get a high likelihood from the second term.
Note the second term is independent of the data and arises
solely from the hyperparameters. (This simplified expla-
nation is somewhat complicated by the weighted integra-
tion over the hyperparameter space, but the basic flavor of
it holds.)
The ultimate model-independent input mean function is

the zero mean function. Here, however, we need a large �f

to bring f close to y; to apply this ‘‘correction’’ to zero
input over a large redshift range, without merely being a
constant offset, requires a large coherence length l. While
one might then succeed in fitting f to y, this comes at the
price of smoothing away the features and losing accurate
reconstruction of y0 and y00. Conversely, if we choose an
input mean function that gives f close to y at several
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redshifts, then GP wants to keep �f small to change the

input function as little as possible. A small �f effectively

makes GP moot and so the reconstruction never strays far
from the input function, with the results retaining memory
of the input.

We have verified these properties by investigating a
large variety of mean functions: (1) zero mean function,
(2) flat �CDM model with a fixed �m, (3) flat �CDM
model with �m as an added hyperparameter, (4) flat
wCDM model with �m and w as added hyperparameters.
The issues raised above show up clearly.

To get around these problems we want to use an input
mean function with little cosmology dependence (for ro-
bust results), sensitivity to multiple scales (for flexibility in
fitting y well enough that the derivatives are reconstructed
well), and few added hyperparameters (for computational
tractability). The solution we have adopted after extensive
testing is an iterated smoothing approach, building on the
method developed in [18,26,27].

We emphasize that the smoothing is only to generate an
initial mean function. The data is smoothed over a scale
� in lnð1þ zÞ, after ‘‘prewhitening’’ using an initial guess
dgL [27]:

lndLðz;�Þs � lndLðzÞg ¼ NðzÞ �X
i

lndLðziÞ � lndLðziÞg
�2

dLðziÞ

� exp

�
� ln2ð1þzi

1þz Þ
2�2

�
; (A2)

NðzÞ�1 ¼ X
i

exp

�
� ln2ð1þzi

1þz Þ
2�2

�
1

�2
dLðziÞ

: (A3)

This procedure is then iterated, with the output of one
iteration serving as the initial guess of the successive
iteration. The final reconstructed results have been shown
to be independent of the first initial guess [18,26,27].
Because the final iteration is a smooth function, we can
take the derivatives of the mean functions as required for
computing f0 and f00. To incorporate many scales we
actually use a set of five initial guess mean functions,
iterating each one independently. The scatter in the final
mean functions or the appropriate derivatives then is
added, weighted by likelihood, as an additional uncer-
tainty, in the statistical sense of the mean squared error
known as risk: the quadratic sum of the mean dispersion
and the dispersion in the mean. We find that stopping the
iteration procedure when the 	2 of each lies within �	2 ¼
2:3 of each other (equivalent to 1� for 2 degrees of free-
dom, hence as much dispersion as from l and �2

f) gives

robust results, as seen from the accurate reconstructions
achieved for the �CDM, mirage, and kink simulations. In
order to capture the true data it is important to have inputs
that can cross the true cosmology over different redshift
ranges, so the five initial guesses cover a wide range of
behaviors, �CDM cosmologies with ð�m;��Þ ¼ ð1; 0Þ,

(0,1), (0,0), (0.3,0.7), (0.5,0.5). Note that no additional
hyperparameters are introduced.
This iterated smoothing set approach to the mean func-

tion has the desired properties of not relying on a specific
cosmological form and having freedom from memory of
the initial guess, while allowing the GP formalism to
balance the different terms in the likelihood and give
accurate reconstructions with well characterized errors.
The tests run for reconstruction of the different cosmolo-
gies as shown in Figs. 1 and 2 demonstrate its success.

APPENDIX B: HYPERPARAMETER
DISTRIBUTION

The hyperparameters of the covariance function are
another ingredient for the GP reconstruction. Each set of
hyperparameters, in our case �2

f and l, gives rise to a

particular likelihood by Eq. (A1), for each of the five
mean functions.
The posterior distribution is derived using Bayes’s

theorem

Pði; �2
f; lÞ ¼

Lði; �2
f; lÞpðiÞpð�2

fÞpðlÞP
5
i¼1

R
Lði; �2

f; lÞpðiÞpð�2
fÞpðlÞd ln�2

fd lnl
;

(B1)

where i is the index for the five mean functions, pðiÞ ¼
1=5, and the other priors are flat in the logarithm for
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FIG. 5 (color online). Schematic plot of the effects of �f and l
on the reconstruction function fðzÞ. The solid red curve has l ¼
0:1 and �2

f ¼ 0:001 and will serve as a reference. The two dark,

blue dotted lines show the impact of changing l, with l ¼ 0:01
(wiggly line) and l ¼ 1:0 (nearly smooth line), keeping �f un-

changed. The two light, green dashed lines show the impact of
changing�f, with�

2
f ¼ 0:1 [increased amplitude of deviations in

fðzÞ] and �2
f ¼ 10�5 (decreased amplitude), keeping l at the

reference value. For very small values of�2
f, GP makes very little

contribution (near zero modification at all scales), while for high
values of l possible features of the data might be smoothed out.
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10�5 � �2
f � 1 and 10�2 � l � 1:6. The lower limit on�2

f

and upper limit of l do impose nontrivial truncation of the
likelihood surface as discussed below. Note that setting a
minimum l ¼ 10�2 is equivalent to imposing a blurring on
the square-exponential kernel, and prevents fitting to merely
noise in the data.Realizations of f, f0, and f00 are drawn from
the Gaussian process models represented by this posterior.

Figure 5 illustrates the role of �2
f and l in the recon-

struction. Basically �f acts to set the amplitude for devia-

tions from the mean function and l controls the wiggliness,
or coherence scale.

As discussed in Appendix A, a small value of �2
f repre-

sents little contribution of GP to the reconstruction process,

i.e. the result is basically just the mean function. Large
values of l smooth over features in the data and basically
give merely an offset that could be absorbed in the ampli-
tude. If we included arbitrarily small �2

f or large l in the

hyperparameter ranges, these regions of the space would
give nearly identical likelihoods and dilute the overall
probabilities, biasing the results toward the mean fun-
ction. To avoid this situation we impose the lower limit
log�2

f � �5 (i.e. ignoring models changing the mean

function by less than 0.7%) and the upper limit l � 1:6
(i.e. the range of the data). We have checked that the final
best fits for the hyperparameters are not significantly
affected by small variations in the priors.
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